Abzählen und Konstruktion der Strukturisomere von Alkanen, Alkenen und Alkinen

Größe: px
Ab Seite anzeigen:

Download "Abzählen und Konstruktion der Strukturisomere von Alkanen, Alkenen und Alkinen"

Transkript

1 Dokumentation zum Softwarepraktikum Abzählen und Konstruktion der Strukturisomere von Alkanen, Alkenen und Alkinen Bearbeitet von: Sabine Böhm Florian Häberlein Betreuer: Dr. Axel Kohnert Dipl.-math. Sascha Kurz Universität Bayreuth Wintersemester 2004/2005

2 1. Abzählen der Strukturisomere von Alkanen, Alkenen und Alkinen Basierend auf dem Artikel Anzahl von Strukturisomeren der Alkane von Sascha Kurz haben wir seine Implementierung des Algorithmus geändert und den Algorithmus auf das Abzählen von Alkenen und Alkinen erweitert. Die Vorgehensweise wird im folgenden Kapitel beschrieben. 1.1 Änderung der Implementierung des Algorithmus zum Abzählen der Strukturisomere der Alkane Die ursprüngliche Implementierung des Algorithmus 1.14 (counting alkanes) aus dem oben genannten Artikel basiert auf der Idee, dass Polynome von erzeugenden Funktionen der Alkane als Vektoren dargestellt werden können, in deren i-ten Komponente der i-te Koeffizient des Polynoms steht, wobei nur ganzzahlige Koeffizienten vorkommen. Unsere Aufgabe war es nun die Datenstruktur der Polynome so umzuändern, dass ein Polynom in einer ganzen Zahl gespeichert werden kann, da die Multiplikation von Polynomen dargestellt durch Zahlen eine geringere Komplexität und damit eine geringere Laufzeit hat als die Multiplikation der Polynome dargestellt durch Vektoren. Diese Tatsache beweist folgendes Diagramm, das die Rechenzeiten eines Programms darstellt, das zwei Polynome 10 mal multipliziert. Zeit in Sekunden Grad des Polynoms Rechenzeit in Sekunden bei der Implementierung mit Vektoren Rechenzeit in Sekunden bei der Implementierung mit Zahlen ,01 0,37 1,53 7,26 18,63 41,05 85,61 217,17 814,36 0 0,01 0,16 1,65 3,53 7,19 7,44 36,07 37,35 Unter der Annahme, dass alle Koeffizienten des Polynoms kleiner als 4 n sind, wobei n die maximale Anzahl der C-Atome der abzuzählenden Alkane ist, kann man also eine bijektive Funktion mit der zugehörigen Umkehrfunktion vector2number: IN n IN number2vector: IN IN n definieren, die die geforderten Ansprüche erfüllt. Da wir diese Funktionen nach der kompletten Umänderung der Implementierung nicht mehr benötigten, verzichten wir hier auf die genaue Funktionsdefinition und richten unser Augenmerk auf das Ergebnis der Abbildung: Bei einer gegebenen Funktion f(x) = a 0 + a 1 x 1 + a 2 x a n x n werden die

3 Koeffizienten in einer Zahl gespeichert, die sich aus n+1 Blöcken der jeweiligen Größe 2n-Bit zusammensetzt. In jedem Block können daher Zahlen bis zu einer Größe von 2 2n = 4 n gespeichert werden. Da jeder Koeffizient des Polynoms kleiner 4 n ist, ist somit die Abbildung eindeutig, wohldefiniert und bijektiv. Zur Veranschaulichung ist hier der allgemeine Aufbau der Zahl dargestellt: (n+1)-ter Block, der den Koeffizienten a n mit 2n-Bits darstellt n-ter Block, der den Koeffizienten a n-1 mit 2n- Bits darstellt 2. Block, der den Koeffizienten a 1 mit 2n- Bits darstellt 1. Block, der den Koeffizienten a 0 mit 2n- Bits darstellt Nachdem diese erste Hürde geschafft war, haben wir die verwendeten Funktionen im Algorithmus der neuen Datenstruktur angepasst. Die Funktion add, die vorher zwei Polynome in n+1 Schritten addierte, addiert nun die beiden Polynome, dargestellt durch Zahlen, in einem Schritt. Ebenso die Funktion multiply, die vorher zwei Polynome komponentenweise in mehreren Schritten multiplizierte, leistet nun dasselbe, jedoch in einem Schritt. Da bei der Multiplikation von zwei Polynomen vom Grad n auch Koeffizienten a m 0 mit m>n auftreten, uns aber bei der Berechnung nur Koeffizienten mit mn interessieren, haben wir ein Gesamtschema eingeführt. Dies ist eine Zahl, die aus (n+1)*2n-bit 1-ern besteht und mit deren Hilfe man durch den Bitweise-Und-Operator die überflüssigen Koeffizienten abschneiden kann. Die Änderung der Funktionen CycleIndex_2, CycleIndex_3 und CycleIndex_4 war nun der nächste Schritt. In diesen Funktionen wird neben dem Addieren und Multiplizieren von Polynomen auch die Multiplikation eines Polynoms mit einer natürlichen Zahl, das Teilen eines Polynoms durch eine natürliche Zahl und die Berechnung von f(x m ) durchgeführt. Das Multiplizieren und das Dividieren durch eine natürliche Zahl wird für jeden Koeffizienten einzeln vorgenommen, indem man die Zahl mit invertierter Blockreihenfolge in einer temporären Zahl speichert und dann beim wiederholten Rückspeichern mit erneut invertierter, also der ursprünglichen Blockreihenfolge, für jeden Block mit der natürlichen Zahl multipliziert bzw. durch die natürliche Zahl dividiert. Die Berechnung von f(x m ) wird wieder mit Hilfe von Bitoperatoren durchgeführt. Dazu wird das Polynom bis zum Grad n / m in umgekehrter Reihenfolge der Blöcke, welche die Koeffizienten beschreiben, in einer temporären Zahl gespeichert. Beim Rückspeichern der Zahl werden nun zwischen den Blöcken immer m-1 Blöcke bestehend aus 2n 0-ern eingefügt. Nun steht in der neuen Zahl im 1-ten Block gerade a 0, im m-ten Block steht a 1 usw. Insgesamt steht nun in der neuen Zahl das Polynom f(x m ), was gerade gewünscht war. Nachdem nun die Datenstruktur geändert wurde und die Funktionen der neuen Datenstruktur angepasst wurden, ergab sich noch ein Problem, dass vor allem bei der Berechnung für kleinere n auftrat: In den Funktionen CycleIndex_2, CycleIndex_3 und CycleIndex_4 können die Koeffizienten von Zwischenergebnissen größer als 4 n werden. Damit vergrößerte sich der Platzbedarf für die Koeffizienten in der Zahl und der Platz des zugewiesenen Blockes reicht nicht mehr aus. Die Folge war, dass dadurch andere Koeffizienten verändert wurden und es zu falschen Ergebnissen kam. Um dies zu verhindern wurde die alte Blockgröße 2n vergrößert, so dass auch für Zwischenergebnisse die größer als 4 n sind ausreichend Platz vorhanden ist. Das folgende Diagramm zeigt die durchschnittlichen Rechenzeiten der Programme für die beiden Implementierungen und für verschiedene n. Dabei wurde für die Implementierung mit Zahlen eine von Sascha Kurz verbesserte Version verwendet.

4 Zeit in Sekunden (logarithmisch) Anzahl der C-Atome ,1 0, Rechenzeit in Sekunden bei der Implementierung mit Vektoren Rechenzeit in Sekunden bei der Implementierung mit Zahlen 0,01 0,09 1,26 11,27 103, ,15 0,01 0,06 0,58 8,81 157,3 3360,84 Man sieht deutlich, dass für mehr als 160 C-Atome die Implementierung mit Vektoren wieder schneller ist. Dies liegt daran, dass im Originalprogramm sehr speicher- und rechenzeitsparend gearbeitet wurde. Die durch uns veränderte Version birgt noch weitere Zeiteinsparmöglichkeiten, sodass die theoretisch schnellere Implementierung mit Zahlen (siehe Diagramm oben) auch praktisch umgesetzt wirklich schneller ist. 1.2 Erweiterung des Algorithmus auf das Abzählen der Strukturisomere der Alkene Ausgehend von der neuen Implementierung mit Zahlen haben wir den Algorithmus 1.14 (counting alkanes) aus dem oben genannten Artikel so geändert, dass nun die Strukturisomere der Alkene gezählt werden. Dazu wurde die Grenze der maximalen Höhe der Teilbäume von (n+1)/2 auf n-2 erhöht, da bei einem Alken mit n C-Atomen die größte Höhe für einen Teilbaum gerade n-2 ist. Die Berechnung der Wurzelbäume blieb natürlich gleich. Lediglich das Zusammensetzen der Wurzelbäume zu einem Alken hat sich verändert. Dazu haben wir 5 Fälle unterschieden, wobei wir im folgenden Modell annehmen, dass das jeweilige Isomer so gedreht oder gespiegelt ist, dass einer Wurzelbäume mit der aktuell größten Höhe der Wurzelbaum W1 ist. W1 W3 W2 W4 1. Wurzelbaum W1 ist der einzige Wurzelbaum mit der aktuell größten Höhe, alle anderen Wurzelbaum haben eine kleinere Höhe 2. Die Wurzelbäume W1 und W2 haben beide die aktuell größte Höhe, die Wurzelbäume W3 und W4 haben kleinere Höhe 3. Wurzelbaum W1 und genau einer der beiden Wurzelbäume W3 oder W4 haben die aktuell größte Höhe, die beiden anderen haben eine kleinere Höhe 4. Drei der vier Wurzelbäume haben die aktuell größte Höhe, der vierte hat eine kleinere Höhe

5 5. Alle vier Wurzelbäume haben die aktuell größte Höhe 1.3 Erweiterung des Algorithmus auf das Abzählen der Strukturisomere der Alkine Wie bei der Änderung des Algorithmus 1.14 (counting alkanes) für Alkene haben wir die Grenze der maximalen Höhe der Teilbäume der Alkine auf n-2 erhöht. Die Berechnung der Wurzelbäume blieb natürlich ebenfalls gleich. Beim Zusammensetzen der Wurzelbäume zu Alkinen haben wir zwei Fälle unterschieden, wobei wir im folgenden Modell annehmen, dass das jeweilige Isomer so gedreht ist, dass W1 ein Wurzelbaum mit der aktuell größten Höhe ist. W1 W2 1. Wurzelbaum W1 und Wurzelbaum W2 haben die aktuell größte Höhe 2. Wurzelbaum W1 hat die aktuell größte Höhe und Wurzelbaum W2 hat eine kleinere Höhe

6 2. Konstruktion der Strukturisomere der Alkene und Alkine Basierend auf dem Artikel Anzahl von Strukturisomeren der Alkane von Sascha Kurz haben wir seine Implementierung der Algorithmen zur Konstruktion von Alkanen geändert und den Algorithmus auf die Konstruktion von Alkenen und Alkinen erweitert. Die Vorgehensweise wird im folgenden Kapitel beschrieben. 2.1 Erweiterung des Algorithmus auf die Konstruktion der Alkene Ausgehend von der Implementierung der Algorithmen 1.9, 1.12 und 1.13 von Sascha Kurz haben wir die Implementierung auf die Konstruktion von Alkene erweitert. Wir benutzen wieder das gleiche Modell eines Alkens wie in Kapitel 1.2. Die Datenstruktur eines Alkens beschränkt sich somit auf die Speicherung der vier Wurzelbäume. Eine Unterscheidung ob die längste Kette der C-Atome gerade oder ungerade ist wird nicht mehr benötigt. Die Konstruktion ist in acht Fälle gegliedert um alle möglichen Moleküle zu konstruieren. Dabei läuft der Wurzelbaum W1 alle möglichen Wurzelbäume der aktuellen maximalen Höhe durch. Alle anderen Wurzelbäume laufen alle restlichen Höhen inklusive der aktuellen maximalen Höhe durch, wobei folgende Fälle unterschieden werden: 1. Alle Wurzelbäume sind ungleich: W1 > W2 > W3 > W4 2. Zwei Wurzelbäume sind gleich (erster Fall): W1 > W2 > W3 = W4 3. Zwei Wurzelbäume sind gleich (zweiter Fall): W1 = W2 > W3 > W4 4. Zwei Wurzelbäume sind gleich (zweiter Fall): W1 > W2 = W3 > W4 5. Je zwei Wurzelbäume sind gleich: W1 = W2 > W3 = W4 6. Drei Wurzelbäume sind gleich (erster Fall): W1 > W2 = W3 = W4 7. Drei Wurzelbäume sind gleich (zweiter Fall): W1 = W2 = W3 > W4 8. Alle vier Wurzelbäume sind gleich: W1 = W2 = W3 = W4 In jedem der acht Fälle werden dann alle möglichen Stellungen der Wurzelbäume zu der Liste der Alkene hinzugefügt. Zur graphischen Ausgabe der Alkene wird eine XML-Datei im GRAPHDB-Format erstellt. Dabei werden die Wurzelbäume Knoten für Knoten durchgelaufen und anschließend werden noch die zugehörigen H-Atome in die Datei ausgegeben. Die Dokumentation zum GRAPHDB-Format findet man unter Erweiterung des Algorithmus auf die Konstruktion der Alkine Ausgehend von der Implementierung der Algorithmen 1.9, 1.12 und 1.13 von Sascha Kurz haben wir die Implementierung auf die Konstruktion von Alkine erweitert. Wir benutzen wieder das gleiche Modell eines Alkins wie in Kapitel 1.3. Die Datenstruktur eines Alkins beschränkt sich somit auf die Speicherung der zwei Wurzelbäume. Eine Unterscheidung ob die längste Kette der C-Atome gerade oder ungerade ist wird nicht mehr benötigt. Bei der Konstruktion werden für den Teilbaum W1 alle möglichen Bäume mit der aktuellen maximalen Höhe h durchlaufen. Für den rechten Teilbaum werden alle Teilbäume bis zur Höhe h durchlaufen. Die jeweiligen Alkine werden dann zur Liste der Alkine hinzugefügt. Zur graphischen Ausgabe der Alkene wird eine XML-Datei im GRAPHDB-Format erstellt. Dabei werden die Wurzelbäume Knoten für Knoten durchgelaufen und anschließend werden noch die zugehörigen H-Atome in die Datei ausgegeben. Die Dokumentation zum GRAPHDB-Format findet man unter

Anzahl von Strukturisomeren der Alkane

Anzahl von Strukturisomeren der Alkane Anzahl von Strukturisomeren der Alkane??? und Sascha Kurz Universität Bayreuth, D-95440 Bayreuth, Deutschland Zusammenfassung Das Phänomen der Strukturisomerie wird anhand der Klasse der Alkane erklärt.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 11 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil Hash-Verfahren Version vom: 18. November 2016 1 / 28 Vorlesung 9 18. November 2016

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 1. Sitzung Einstieg, Berechnungen und Funktionen, Zuweisungen

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15

Datenstrukturen & Algorithmen Lösungen zu Blatt 4 FS 15 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 18. März

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Polynome und ihre Nullstellen

Polynome und ihre Nullstellen Polynome und ihre Nullstellen 29. Juli 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Explizite Berechnung der Nullstellen 2.1 Polynome vom Grad 0............................. 2.2 Polynome vom Grad 1.............................

Mehr

3. Übungsblatt zu Algorithmen I im SoSe 2017

3. Übungsblatt zu Algorithmen I im SoSe 2017 Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3 D-MATH, D-PHYS, D-CHAB Analsis I HS 016 Prof Manfred Einsiedler Philipp Wirth Lösung 3 Diese Woche werden nur Lösungen zu den Aufgaben 4, 5 und 6 zur Verfügung gestellt 4 a Nach Folgerung (i aus den Axiomen

Mehr

Strukturisomere der Alkane

Strukturisomere der Alkane Strukturisomere der Alkane Zusammenfassung Bei Alkanen tritt das Phänomen der Strukturisomerie auf. In diesem Artikel werden auf hoffentlich für Oberstufenschüler verständlichem Niveau Algorithmen beschrieben,

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und

Mehr

Schleifeninvarianten. Dezimal zu Binär

Schleifeninvarianten. Dezimal zu Binär Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 20) Übungsblatt 8 Abgabe: Montag, 24.06.20, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes Gruppenmitglieds

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie-

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- 1 Vorbemerkungen Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- benen Vektoren. Wird die Matrix A = ( a 1,..., a n ) mit dem Vektor c = c 1. c n multipliziert,

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Serie 3: Ringe, Körper, Vektorräume

Serie 3: Ringe, Körper, Vektorräume D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 3: Ringe, Körper, Vektorräume 1. Im Folgenden sei n N und Z n bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Einführung in die Mathematik des Operations Research Sommersemester 3 en zur Klausur (7. Oktober 3) Aufgabe ( + 3 + 5 = Punkte). Es sei

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 13 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

DEUTSCHE BUNDESBANK Seite 1 Z 10-8. Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015)

DEUTSCHE BUNDESBANK Seite 1 Z 10-8. Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015) DEUTSCHE BUNDESBANK Seite 1 Z 10-8 Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015) 00 Modulus 10, Gewichtung 2, 1, 2, 1, 2, 1, 2, 1, 2 Die Stellen

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Algorithmen und ihre Programmierung -Teil 2-

Algorithmen und ihre Programmierung -Teil 2- Veranstaltung Pr.-Nr.: 101023 Algorithmen und ihre Programmierung -Teil 2- Veronika Waue WS 07/08 Wiederholung: Algorithmen Variablen und Datentypen Variablen haben einen Namen, einen Datentypen und einen

Mehr

Sätze über ganzrationale Funktionen

Sätze über ganzrationale Funktionen Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so

Mehr

Duplizieren von Report-Vorlagen für die Erstellung umfangreicher Reports (ab ArtemiS SUITE 7.2)

Duplizieren von Report-Vorlagen für die Erstellung umfangreicher Reports (ab ArtemiS SUITE 7.2) 02/16 für die Erstellung umfangreicher Reports (ab ArtemiS SUITE 7.2) In der ArtemiS SUITE steht eine sehr flexible Report-Funktion zur Verfügung, die Ihnen die übersichtliche Darstellung Ihrer Analyse-Ergebnisse

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Zweiter Teil des Tutorials Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Workspace Im Workspace sind die Variablen mit ihrem jeweiligen Wert gespeichert.

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

Automatische Teilbarkeitstests

Automatische Teilbarkeitstests Automatische Teilbarkeitstests Andreas Müller Wirklich brauchbare Teilbarkeitstests Alfred Schreiber hat in seinem Artikel [] die bekannten Teilbarkeitstests übersichtlich zusammengestellt und versucht,

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Übungen zu Numerisches Programmieren

Übungen zu Numerisches Programmieren Technische Universität München SS 009 Institut für Informatik Prof. Dr. Thomas Huckle Michael Lieb, M. Sc. Dipl.-Tech. Math. Stefanie Schraufstetter Übungen zu Numerisches Programmieren 3. Programmieraufgabe

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

6.2. Ringe und Körper

6.2. Ringe und Körper 62 RINGE UND K ÖRPER 62 Ringe und Körper Wir betrachten nun Mengen (endlich oder unendlich) mit zwei Operationen Diese werden meist als Addition und Multiplikation geschrieben Meist ist dabei die additiv

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1

LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1 LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

Theorie und Praxis geometrischer Algorithmen

Theorie und Praxis geometrischer Algorithmen 0/36 Theorie und Praxis geometrischer Algorithmen Isolierende Intervalle: Sturmsche Ketten Rico Philipp Motivation 1/36 Was ist eine Sturmsche Kette? Wie berechnet man diese? Durch welche Eigenschaften

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen

WURZEL Werkstatt Mathematik Polynome Grundlagen Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).

Mehr

Grundlagen Algorithmen und Datenstrukturen Kapitel 13

Grundlagen Algorithmen und Datenstrukturen Kapitel 13 Grundlagen Algorithmen und Datenstrukturen Kapitel 13 Christian Scheideler + Helmut Seidl SS 2009 18.07.09 Kapitel 6 1 Speicherverwaltung Drei Ansätze: Allokiere neue Objekte auf einem Keller. Gib nie

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Strukturierte Extraktion von Text aus PDF. Präsentation der Masterarbeit von Fabian Schillinger

Strukturierte Extraktion von Text aus PDF. Präsentation der Masterarbeit von Fabian Schillinger Strukturierte Extraktion von Text aus PDF Präsentation der Masterarbeit von Fabian Schillinger Übersicht Motivation Probleme bei der Textextraktion Ablauf des entwickelten Systems Ergebnisse Präsentation

Mehr

GERICHTETER GEWICHTETER GRAPH DESIGNDOKUMENT

GERICHTETER GEWICHTETER GRAPH DESIGNDOKUMENT User Requirements GERICHTETER GEWICHTETER GRAPH DESIGNDOKUMENT Softwareentwicklung Praktikum, Übungsbeispiel 1 Gruppe 18 Andreas Hechenblaickner [0430217] Daniela Kejzar [0310129] Andreas Maller [0431289]

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Einleitung. Kapitel 1

Einleitung. Kapitel 1 Kapitel 1 Einleitung In diesem Abschnitt geben wir einen kurzen Überblick über den Inhalt der Vorlesung. Wir werden kurz die wesentlichen Probleme erläutern, die wir ansprechen wollen. Wir werden auch

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr