Theorie und Praxis geometrischer Algorithmen

Größe: px
Ab Seite anzeigen:

Download "Theorie und Praxis geometrischer Algorithmen"

Transkript

1 0/36 Theorie und Praxis geometrischer Algorithmen Isolierende Intervalle: Sturmsche Ketten Rico Philipp

2 Motivation 1/36 Was ist eine Sturmsche Kette? Wie berechnet man diese? Durch welche Eigenschaften wird sie charakterisiert? Wozu braucht man eine Sturmsche Kette?

3 Geschichte 2/36 Die Hauptarbeit von Sturm war das Lösen von numerischen Gleichungen. Sturm wandelte Fourier s Folgen in seine eigene Folge um sseq(x) = {p(x), p (1) (x), r 1 (x),..., r k (x)}... und nannte das ganze Sturmsche Kette oder Sturmsche Folge

4 Berechnung - Teil 1 3/36 Polynom p(x) (deg(p(x)) = n) und ohne mehrfache Nullstellen. Erste Element der Sturmschen Kette ist das Polynom p(x). Zweite Element ist die erste Ableitung p (1) (x) von p(x).

5 Berechnung - Teil 2 4/36 Berechnung aller weiteren Elemente mit dem Euklidischen Algorithmus. p(x) = p (1) (x)q 1 (x) r 1 (x) p (1) (x) = r 1 (x)q 2 (x) r 2 (x). r k 2 (x) = r k 1 (x)q k (x) r k (x) r i = Negative der Restpolynome weiteren Elemente der Sturmsche Kette r k (x) = konstant, wenn p(x) ohne mehrfache Nullstellen.

6 Beispiel 5/36 p(x) := x 4 2x 3 2x 2 + 4x p (1) (x) = 4x 3 6x 2 4x + 4 r 1 (x) = 7 4 x2 5 2 x 1 2 r 2 (x) = x r 3 (x) = K := sseq(x) = {p(x), p (1), r 1 (x), r 2 (x), r 3 (x)}

7 Eigenschaften - Teil 1 6/36 (i) In einem genügend kleinen Bereich um ein Nullstelle α von p(x), haben die Polynome p(x) und p (1) (x) entgegengesetze Vorzeichen, wenn x < α und dieselben Vorzeichen wenn x > α. (ii) Zwei aufeinanderfolgende Elemente von einer Sturmschen Kette sseq(x) können nicht beide null sein.

8 Eigenschaften - Teil 2 7/36 (iii) Wenn ein Polynom p i (x) in sseq(x) für ein x 0 zu Null auswertet, so haben die benachbarten Folgeglieder p i 1 (x) und p i+1 (x) für den Wert x 0 unterschiedliche Vorzeichen. (iv) Das letze Polynom der Folge r k (x) verschwindet nicht und behält deshalb immer ein konstantes Vorzeichen, sofern p(x) keine mehrfachen Nullstellen hat.

9 Verwendung 8/36 Eingrenzung von Intervallen in denen Nullstellen der Gleichung liegen

10 Nullstellen eines Polynoms 9/36 Satz: Sei p(x) = 0 eine polynomiale Gleichung mit rationalen Koeffizienten und einfachen Nullstellen. Dann ist die Anzahl der Nullstellen in einem Intervall (r, s) gegeben durch die Differenz V (r) V (s). Dabei beschreibt V (ξ) die folgende Funktion: alle Polynome einer Sturmschen Kette werden für ξ evaluiert dann werden die Vorzeichenwechsel gezählt

11 Beispiel 10/36 K = { } p(x), p (1), r 1 (x), r 2 (x), r 3 (x) Sei ein Intervall I = ( 3, 3) { V ( 3) = 15( 3 2)( 3 + 2), 146, 91 4, 96 7, 49 } 50 = {+,, +,, +} 4 Vorzeichenwechsel { V (3) = 3(3 2)(3 + 2), 46, 31 4, , 49 } 50 = {+, +, +, +, +} 0 Vorzeichenwechsel V ( 3) V (3) = 4 4 Nullstellen

12 Beweis - Teil 1 11/36 Beweis basiert auf den Eigenschaften der Sturmschen Kette (i)-(iv) (i) 2 Fälle: 1. Fall: p(x) monoton fallend, dann ist p (x) < 0: Da p(x) monoton fallend, ist p(x) > 0 und p (x) < 0 für x < α unterschiedliche Vorzeichen für x > α ist p(x) < 0 und p (x) < 0 gleiche Vorzeichen 2. Fall: p(x) ist monoton steigend. Argumentation analog

13 Beweis - Teil 2 12/36 (ii) Nehmen wir an wir hätten zwei aufeinanderfolgende Glieder r i 1 und r i, die gleich 0 sind. Dann wäre die gesamte Sturmsche Kette 0, weil Widerspruch!! r i 2 (x) = 0 q i (x) 0 r i 2 = 0 r i 3 (x) = 0 q i 1 (x) 0 usw. (iii ) Sei r i 1 (x) für x 0 gleich 0, dann folgt: r i 2 (x) = r i 1 (x)q i (x) r i (x) r i 2 (x) = 0 q i (x) r i (x) r i 2 (x) = r i (x)

14 Beweis - Teil 3 Aufbauend darauf werden wir zeigen, dass die Sturmsche Kette ein Vorzeichenwechsel verliert, wenn x in einem Intervall (r, s) über eine Nullstelle von p(x) läuft, jedoch kein Vorzeichen verliert, wenn x über eine Nullstelle eines anderen Elementes der Sturmschen Kette läuft. Von der Eigenschaft (i) (S. 11), wissen wir, dass die Sturmsche Kette genau ein Vorzeichenwechsel verliert, wenn wir eine Nullstelle von p(x) überlaufen. Was passiert, wenn ein Element der Sturmschen Kette, dieselbe Nullstelle hat wie p(x)? Dann wird die Anzahl der Vorzeichenwechsel nicht verändert, weil... 13/36

15 Beweis - Teil 4 14/36 Sei α i eine Nullstelle von r i (x) und x durchläuft diese Nullstelle. Dann wissen wir, aus Eigenschaften (ii) (S. 12) und (iii) (S. 12), dass r i 1 (α i ) und r i+1 (α i ) ungleich 0 sind und verschiedene Vorzeichen haben. Nun kann man für eine Umgebung um α i (α i ɛ, α i + ɛ), ɛ > 0 folgende Tabelle aufstellen. x r i 1 r i r i+1 r i 1 r i r i+1 α i ɛ + ± ± + α i α i + ɛ + (±) (±) + Das Vorzeichenwechsel bei r i beeinflusst nicht die Anzahl der Vorzeichenwechsel in der gesamten Sturmschen Kette.

16 15/36 FRAGEN??

17 Cauchyregel 16/36 Proposition: Sei a m, a m,... mit m > m >... strikt negative Koeffizienten eines Polynoms f mit reellen Koeffizenten f(x) = x n + a 1 x n a n und sei k die Anzahl dieser negative Koeffizenten. Dann erfüllt jede Nullstelle von f die folgende Ungleichung { } x max (k a m ) m, 1 (k a m ) 1 m,...

18 Beispiel 17/36 p(x) = x 4 2x 3 2x 2 + 4x a m = 2 (m = 2) a m = 2 (m = 3) k = 2 { } x max (2 2 ) 2 1, (2 2 ) 1 3 { max } 3 2, 4 x 2

19 Isolierung reeller Nullstellen - allgemein Berechnung der Sturmsche Kette für eine Polynom p(x). Bestimmung der obereren Grenze b der Nullstellen, d.h. x R : x > b gilt: p(x) 0. Berechnung aller isolierenden Intervalle der Nullstellen im Intervall [ b, b]. Speicherung aller isolierenden Intervalle in der Menge S. (Menge der Intervalle die eine Nullstellen isolieren) 18/36

20 Isolierung reellen Nullstellen - Voraussetzungen 19/36 Eine polymiale Gleichung p(x) = 0 ohne mehrfachen Nullstellen.

21 Isolierung reellen Nullstellen - Initialisierung Setze S = (Menge mit allen isolierenden Intervallen für Nullstellen) Setze I := (Liste mit noch zu prüfenden Intervallen) p w (x) := p(x) Notation: [x, x] ein Nullstelle bei x. Berechnung der Sturmsche Kette sseq(x) mit p w (x). 20/36

22 Isolierung reeller Nullstellen - Berechnung der obere Grenze Verwendung von Cauchyregel (Seite 16) zu Bestimmung der obere Grenze für die Nullstellen Sei b die obere Grenze, dann liegen die Nullstellen, im Intervall [ b, b] Teste, ob p w ( b) = 0, wenn ja dann S = S {[ b, b]}. Füge das Intervall ( b, b] in die Liste I ein. 21/36

23 Isolierung reeller Nullstellen - Intervall setzen 22/36 Sei (l 1, r 1 ] das erste Intervall aus der Liste I, dann setze l := l 1 r := r 1

24 Isolierung reeller Nullstellen - Hauptschleife 23/36 Berechnung der Anzahl der Nullstellen im Intervall (l, r] 3 Möglichkeiten: (i) keine Nullstelle mache weiter nichts (ii) eine Nullstelle (l, r] ein isolierendes Intervall S = S {(l, r]} (iii) zwei oder mehr Nullstellen zwei neue Unterintervalle n 1 = (l, (l + r)/2] und n 2 = ((l + r)/2, r] I = n Löschung des Intervall (l, r] aus I

25 Isolierung reeller Nullstellen - Abbruchbedingung 24/36 Wenn I = beende Berechnung der isolierenden Intervalle für Nullstellen, ansonsten prüfe verbliebene Intervalle in I.

26 Beispiel - Initialisierung p(x) = x 4 2x 3 2x 2 + 4x S =, I = p w (x) = p(x) K ist die Sturmkette. Obere Grenze ist 2. Intervall ist [ 2, 2]. Ist p w ( 2) = 0? Nein. Füge das Intervall ( 2, 2] in die List I ein. 25/36

27 Beispiel - Intervall 1 26/36 l = 2, r = 2 sseq( 2) = {+,, +,, +}, sseq(2) = {0, +, +, +, +} V ( 2) V (2) = 4 zwei neue Teilintervalle ( 2, 0], (0, 2], füge zu I hinzu. Lösche Intervall aus I. I = {( 2, 0], (0, 2]}

28 Beispiel - Intervall 2 27/36 l = 2, r = 0 sseq( 2) = {+,, +,, +}, sseq(0) = {0, +,,, +} V ( 2) V (0) = 2 zwei neue Teilintervalle ( 2, 1], ( 1, 0], füge zu I hinzu. Lösche Intervall aus I. I = {( 2, 1], ( 1, 0], (0, 2]}

29 Beispiel - Intervall 3 28/36 l = 2, r = 1 sseq( 2) = {+,, +,, +}, sseq( 1) = {,, +,, +} V ( 2) V ( 1) = 1 eine Nullstelle S = S {( 2, 1]} Lösche Intervall aus I. I = {( 1, 0], (0, 2]}

30 Beispiel - Intervall 4 29/36 l = 1, r = 0 sseq( 1) = {,, +,, +}, sseq(0) = {0, +,,, +} V ( 1) V (0) = 1 eine Nullstelle S = S {( 1, 0]} Lösche Intervall aus I. I = {(0, 2]}

31 Beispiel - Intervall 5 30/36 l = 0, r = 2 sseq(0) = {0, +,,, +}, sseq(2) = {0, +, +, +, +} V (0) V (2) = 2 zwei neue Teilintervalle (0, 1], (1, 2], füge zu I hinzu. Lösche Intervall aus I. I = {(0, 1], (1, 2]}

32 Beispiel 31/36 usw. irgendwann ist I = Abbruch

33 Beispiel - Ergebnis 32/36 Isolierenden Intervalle der Nullstellen: ( 2, 1], (1, 0], (1, 1.5], (1.5, 2] Faktorisiert man das Polynom, mit dem man die Sturmsche Kette berechnet hat, so erhält man: p(x) = x(x 2)(x 2)(x + 2) Die Nullstellen wären also: 2, 0, 2, 2,

34 Visualisierung 33/36

35 Wichtige Informationen Warum Sturmsche Ketten und nicht Uspensky? Uspensky kann nicht mit mehrfachen Nullstellen umgehen, Sturmsche Ketten schon! Zudem können Sturmsche Ketten mit reellen Nullstellen umgehen. Jedoch! Nachteil der Sturmschen Ketten ist die größere Laufzeit Aufgrund der Polynomdivision. 34/36

36 Mehrfache Nullstellen 35/36 keine Einschränkung Denn wenn p(x) mehrfache Nullstellen hätte, gäbe es im faktorisierten Polynom den folgenden Term: (α x) l p(x) = 0, l 2. Dann ist r k (x) = (α x) l 1 β β ist ein Polynom (l 1, wegen der Ableitung von p(x))

37 Mehrfache Nullstellen 36/36 Nun kann man sich eine neue Sturmsche Kette wie folgt definieren: Q 1 (x) = p(x)/r k (x) Q 0 (x) = p (1) (x)/r k (x) Q 1 (x) = r 1 (x)/r k (x). Q n (x) = r k (x)/r k (x) = 1 sseq(x) = {Q 1 (x), Q 0 (x), Q 1 (x)..., Q k (x)} Diese Sturmsche Kette erfüllt wieder die Eigenschaften (i)-(iv).

1 Polynome III: Analysis

1 Polynome III: Analysis 1 Polynome III: Analysis Definition: Eine Eigenschaft A(x) gilt nahe bei a R, falls es ein δ > 0 gibt mit A(x) gilt für alle x (a δ, a + δ)\{a} =: U δ (a) Beispiele: x 2 5 nahe bei 0 (richtig). Allgemeiner:

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

A1-1 Kubische Gleichung

A1-1 Kubische Gleichung A1-1 Kubische Gleichung Wir betrachten das kubische Polynom p(x) = x 3 + a 2 x 2 + a 1 x + a 0, x R bzw. die kubische Gleichung mit reellen Koeffizienten a 0, a 1 und a 2. x 3 + a 2 x 2 + a 1 x + a 0 =

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Sätze über ganzrationale Funktionen

Sätze über ganzrationale Funktionen Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so

Mehr

Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I

Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Michael Buhlmann Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Einleitung: Eine gebrochen rationale Funktion (Polynom) f: D f -> R (mit maximaler Definitionsbereich D f)

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,...

1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,... 9 Folgen Eine (unendliche) Folge im herkömmlichen Sinn entsteht durch Hintereinanderschreiben von Zahlen, z.b.: 1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position.

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.

Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

1 Theorie der Kettenbrüche II

1 Theorie der Kettenbrüche II Theorie der Kettenbrüche II Vom ersten Vortrag erinnern wir, dass sich jede reelle Zahl α wie folgt darstellen lässt: α = a 0 + a + a 2 + mit a 0 Z und a i N >0 für jedes i Die Kettenbruchdarstellung lässt

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Übungsaufgaben Folgen und Reihen

Übungsaufgaben Folgen und Reihen Kallenrode, www.sotere.uos.de Übungsaufgaben Folgen und Reihen. Untersuchen Sie die folgenden Folgen auf Monotonie, Beschränktheit und Konvergenz (geben Sie gegebenenfalls den Grenzwert an): inverse Fakultäten:,,

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Allgemeines Halteproblem Hilberts 10. Problem

Allgemeines Halteproblem Hilberts 10. Problem Allgemeines Halteproblem Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Nullstellenberechnung von nichtlinearen Funktionen

Nullstellenberechnung von nichtlinearen Funktionen Kapitel 3 Nullstellenberechnung von nichtlinearen Funktionen In dieser Vorlesung wird nur die Nullstellenberechnung reeller Funktionen einer reellen Variablen f : R R betrachtet. Man nennt die Nullstellen

Mehr

Theorie 3: Graphische Veranschaulichung der Fallunterscheidung

Theorie 3: Graphische Veranschaulichung der Fallunterscheidung Die Formel von Cardano - mit grahischer Lösung Theorie : Grahische Veranschaulichung der Fallunterscheidung Gegeben ist eine kubische Gleichung in reduzierter Form: x x = 0 mit 0 IR. Definieren Sie einen

Mehr

Reduktion / Hilberts 10. Problem

Reduktion / Hilberts 10. Problem Reduktion / Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Charakterisierung von Gröbnerbasen

Charakterisierung von Gröbnerbasen Charakterisierung von Gröbnerbasen Satz Charakterisierung von Gröbnerbasen Eine Menge G = {g 1,..., g m } I ist eine Gröbnerbasis gdw für jedes f I der Term LT (f ) von einem der LT (g i ), i = 1,...,

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Die Reduktion Hilberts 10. Problem

Die Reduktion Hilberts 10. Problem Die Reduktion Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 8. November 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren) Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am

Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am 22.12.2014 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Polynomdivision. Definition führender Term. Algorithmus Polynomdivision

Polynomdivision. Definition führender Term. Algorithmus Polynomdivision Polynomdivision Definition führender Term Sei f = a m x m +...+a 0 F[x]. Dann bezeichnen wir den führenden Term von f mit LT(f) = a m x m. Anmerkung: Für f, g F[x] gilt: grad(f) grad(g) LT(f) teilt LT(g).

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Mathematik 1 für Bauingenieurwesen

Mathematik 1 für Bauingenieurwesen Mathematik 1 für Bauingenieurwesen Name (bitte ausfüllen): Prüfung am 20.1.2017 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben

Mehr

Aufbauend auf: "Differentiation: Definition, Eigenschaften und Beispiele"

Aufbauend auf: Differentiation: Definition, Eigenschaften und Beispiele 1.) Zusammenfassung: Analysis 1 Wiederhole die Abschnitte "Der Körper der reellen Zahlen" (Worksheet 6), "Konvergenz von Folgen, Eulersche Zahl e" (Worksheet 8), "Konvergenz von Reihen" (Worksheet 11),

Mehr

Münchner Volkshochschule. Planung. Tag 05

Münchner Volkshochschule. Planung. Tag 05 Planung Tag 05 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 108 Lösen von Gleichungen Höhere (algebraische) Polynomgleichungen 0 = a n x n + a n 1 x n 1 + + a 1 x + a 0 (Ab n 4 [ n: Grad des Polynoms]

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

68 3 Folgen und Reihen

68 3 Folgen und Reihen 68 3 Folgen und Reihen dh S 2m m1 monoton wachsend, nach oben beschränkt Satz 3115i S 2m m1 konvergent, s : s lim S 2m; andererseits ist S 2m+1 S 2m + a m 2m+1 lim S 2m+1 lim S 2m s, m m s 0 m m also ist

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

Kapitel 19 Partialbruchzerlegung

Kapitel 19 Partialbruchzerlegung Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Kurvendiskussion von Polynomfunktionen

Kurvendiskussion von Polynomfunktionen Kurvendiskussion von Polynomfunktionen Theorie: Für die weiteren Berechnungen benötigen wie die 1. f (x) und 2. f (x) Ableitung der zu untersuchenden Funktion f (x). Wir werden viele Gleichungen lösen

Mehr

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2017/2018 Dr. Hanna Peywand Kiani Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Polynome, Folgen, Reihen 1. Teil 11/12.12.2017

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

19.2 Mittelwertsatz der Differentialrechnung

19.2 Mittelwertsatz der Differentialrechnung 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 19.1 Satz von Rolle 19.2 Mittelwertsatz der Differentialrechnung 19.4 Globaler Wachstumssatz 19.6 Verallgemeinerter Mittelwertsatz der Differentialrechnung

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Der Divisionsalgorithmus

Der Divisionsalgorithmus Der Divisionsalgorithmus Alexandre Wolf Seminar: Computeralgebra Fachbereich Mathematik der Universität Dortmund Dortmund, November 2006 Inhaltsverzeichnis 1 Einführende Beispiele 1 2 Divisionsalgorithmus

Mehr

Aus meiner Skriptenreihe: "Keine Angst vor "

Aus meiner Skriptenreihe: Keine Angst vor Dipl.-Kaufm. Wolfgang Schmitt Aus meiner Skriptenreihe: "Keine Angst vor " Verfahren der Nullstellenberechnung der Funktionen n n 1 n 2 n i 1 f x ax a x a x... ax... a x 0 1 2 3 i n für n > 1 http://www.nf-lernen.de

Mehr

8 Ungleichungen. Themen: Klassische Ungleichungen Konvexe und monotone Funktionen

8 Ungleichungen. Themen: Klassische Ungleichungen Konvexe und monotone Funktionen 8 Ungleichungen Themen: Klassische Ungleichungen Konvexe und monotone Funktionen Die Youngsche Ungleichung Aus 0 (a±b) 2 erhalten wir die Youngsche Ungleichung für a, b Ê ab 1 2 a2 + 1 2 b2. Ersetzen wir

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Folgen und Reihen. Kapitel Zahlenfolgen

Folgen und Reihen. Kapitel Zahlenfolgen Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,

Mehr

Grundlagen komplexe Zahlen. natürliche Zahlen

Grundlagen komplexe Zahlen. natürliche Zahlen Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y.

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y. Diplom VP Informatik/Numerik 9 September 2000 / Seite 1 1 Pivotisierung : 2 L-R-Zerlegung von A: 3 Vorwärtseinsetzen: (pivotisierung) Aufgabe 1: L-R-Zerlegung, Nachiteration A A = 4 2 10 2 6 9 2 1 6 L

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.

8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n. 8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis

Mehr

ANALYSIS I FÜR TPH WS 2018/19 5. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 5. Übung Übersicht 5. Übung Übersicht Aufgaben zu Kapitel 7 und 8 Aufgabe : Finanzkrise Aufgabe 2: Interpolation Aufgabe 3: ( ) Polynomzeugs Aufgabe 4: Partialbruchzerlegung Aufgabe 5: Der lustige Logarithmus Aufgabe 6:

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Berechnungen mit dem Horner-Schema

Berechnungen mit dem Horner-Schema Berechnungen mit dem Horner-Schema Das Hornerschema kann als Rechenhilfsmittel zur Berechnung von Funktionswerten von Polynomfunktionen, zur Faktorisieriung von Polynomen alternativ zur Polynomdivision

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Oktober 2017 Mathematik Kompensationsprüfung 3 Angabe für Prüfer/innen Hinweise

Mehr

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1.

T n (1) = 1 T n (cos π n )= 1. deg T n q n 1. KAPITEL 3. INTERPOLATION UND APPROXIMATION 47 Beweis: Wir nehmen an qx) für alle x [, ] und führen diese Annahme zu einem Widerspruch. Es gilt nach Folgerung ii) T n ) T n cos π n ). Wir betrachten die

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k. Analysis, Woche 7 Reihen I 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n =

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Affine Varietät. Definition Affine Varietät. Seien f 1,..., f m F[x 1,..., x n ] für einen Körper F. Wir bezeichnen

Affine Varietät. Definition Affine Varietät. Seien f 1,..., f m F[x 1,..., x n ] für einen Körper F. Wir bezeichnen Affine Varietät Definition Affine Varietät Seien f 1,..., f m F[x 1,..., x n ] für einen Körper F. Wir bezeichnen V(f 1,..., f m ) = {(a 1,..., a n ) F n f i (a 1,..., a n ) = 0 für i = 1,..., m} als die

Mehr

Approximationsverfahren für die Kurvendarstellung

Approximationsverfahren für die Kurvendarstellung Approximationsverfahren für die Kurvendarstellung (a) Bézier-Kurven spezielle Form polynomialer Kurven spezifiziert durch n+1 Kontrollpunkte P 0, P 1,..., P n Kurve läuft nicht durch alle Kontrollpunkte,

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k. Analysis, Woche 7 Reihen I A 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n

Mehr

Theorie und Praxis geometrischer Algorithmen Seminarvortrag. Resultanten. von. Manuel Caroli

Theorie und Praxis geometrischer Algorithmen Seminarvortrag. Resultanten. von. Manuel Caroli Theorie und Praxis geometrischer Algorithmen Seminarvortrag Resultanten von Manuel Caroli Motivation Schnittkurve zweier "quadrics": Menge der gemeinsamen Wurzeln ihrer Polynome Fragestellung: Finde die

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr