Gebrochen-rationale Funktionen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Gebrochen-rationale Funktionen"

Transkript

1 Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale Funktion Der Grad des Zählerpolynoms g(x) ist kleiner als der Grad des Nennerpolynoms h(x). Beispiel: f(x) = 2x3 +10x 2 3 6x 4 Unecht gebrochen-rationale Funktion Der Grad des Zählerpolynoms g(x) ist größer als der Grad des Nennerpolynoms h(x). Durch Polynomdivision kann der Funktionsterm einer unecht gebrochen-rationalen Funktion in einen ganzrationalen und einen echt gebrochen-rationalen Term zerlegt werden. Beispiel: f(x) = 2x3 +10x 2 3x 6x 2 Seite 1 von 11

2 Definitionsbereich, Definitionslücken und Nullstellen Jede gebrochen-rationale Funktion ist in ihrem gesamten Definitionsbereich stetig. Bei einer gebrochen-rationalen Funktion gehören nur die reellen Zahlen zum Definitionsbereich, für die die Nennerfunktion h(x) verschieden von Null ist. Daher ist nicht jede gebrochenrationale Funktion für alle rationalen Zahlen definiert. Die Stellen x0 mit h(x0)=0, für die die Funktion f(x) nicht definiert ist, heißen Definitionslücken. Definitionslücken Stellen, an denen der Nenner Null wird und die Funktion nicht definiert ist. Es gibt zwei Arten von Definitionslücken: Hebbare Definitionslücken (stetig behebbare Definitionslücke) Polstellen (Unendlichkeitsstellen). Eine gebrochen-rationale Funktion kann mehrere oder keine Definitionslücken haben. Hebbare Definitionlücken Unter einer hebbaren Definitionslücke x0 versteht man eine Definitionslücke, die durch Kürzen des Funktionsterms behoben werden kann. Der Definitionsbereich wird dadurch aber nicht verändert. Die Funktion f(x) ist damit an der Stelle x0 stetig fortsetzbar. Formal muss lim x> x0 f(x) = a und lim x< x0 f(x) = a gelten. Dann schreibt man kürzer: lim x x0 f(x) = a Polstellen An dieser Definitionslücke nähert sich der Graph der Funktion immer mehr einer Geraden parallel zur y-achse an d.h. an der Definitionslücke x 0, einer gebrochen rationalen Funktion f gilt: lim f(x) = + oder lim f(x) = x x 0 x x0 < < und lim f(x) = + oder lim f(x) = x x0 x x0 > > Die Gerade mit der Gleichung x = x 0 ist die senkrechte Asymptote des Graphen von f. Seite 2 von 11

3 Es gibt vier Arten von Polstellen. Polstellen mit Vorzeichenwechsel und Polstellen ohne Vorzeichenwechsel. Polstellen mit Vorzeichenwechsel nennt man auch Polstellen ungerader Ordnung und Polstellen ohne Vorzeichenwechsel nennt man auch Polstellen gerader Ordnung. Nullstellen Die Nullstellen des Zählerpolynoms einer gebrochen rationalen Funktion f, die nicht Definitionslücken von f sind, sind ihre Nullstellen. Einfluss von Parametern auf den Graphen der Funktion Für die drei Funktionen k, g und h mit k(x) = a x, g(x) = g(x) = f(x + c) und h(x) = f(x) + d a x+c und h(x) = a x + d gilt: Wenn der Graphen zur Funktionsgleichung y = a bekannt ist, erhält man durch Verschieben x im Koordinatensystem auch den Graphen zur Gleichung y = a + d. Die Form des Graphen ändert sich durch die Parameter c und d nicht. Einfluss des Parameters c Wenn eine Zahl c zu x addiert wird, dann verschiebt sich der Graph der Funktion parallel zur y -Achse, für c < 0 nach rechts, für c > 0 nach links. x+c Seite 3 von 11

4 Beispiel: k(x) = 2 x, g(x) = 2 x+4 Hier: 4>0 Verschiebung nach links Einfluss des Parameters d Wenn eine Zahl d zum Funktionswert k(x) addiert wird, dann verschiebt sich der Graph der Funktion parallel zur x -Achse, für d < 0 nach unten, für d > 0 nach oben. Beispiel: k(x) = 2 x, h(x) = 2 x + 4 Hier: 4>0 Verschiebung nach oben Die Funktionsgleichung kann auch beide Parameter gleichzeitig enthalten. Der Graph zu y = a wird dann entlang der x- und y-achsen verschoben. x Einfluss des Parameters a Es gibt 4 Fälle: 1. Fall a>1: Streckung des Graphen 2. Fall 0<a<1: Stauchung des Graphen 3. Fall -1<a<1: Stauchung des Graphen und Spiegelung an der x-achse 4. Fall a<-1: Streckung des Graphen und Spiegelung an der x-achse Seite 4 von 11

5 Zählergrad und Nennergrad Zählergrad Unter dem Zählergrad einer Funktion versteht man die höchste Potenz, die im Zähler vorkommt. Beispiel: f(x) = x4 + 9x 3 10x + 25 x Der Zählergrad der Funktion ist 4, da x 4 die höchste Potenz im Zähler ist. Nennergrad Unter dem Nennergrad einer Funktion versteht man die höchste Potenz, die im Nenner vorkommt. Beispiel: f(x) = x4 + 9x 3 10x + 25 x Der Nennergrad der Funktion ist 2, da x 2 die höchste Potenz im Nenner ist. Waagerechte und senkrechte Asymptoten Asymptoten sind Geraden, denen sich der Graph einer Funktion f(x) beliebig nähert, ohne sie zu berühren. Es gibt drei Arten von Asymptoten: Senkrechte Asymptoten Waagrechte Asymptoten Schräge Asymptoten Senkrechte Asymptote Nullstelle des Nenners (= Definitionslücke) Wird der Betrag der Funktionswerte beliebig groß, während sich die x-werte einer Definitionslücke b annähern, dann hat die gebrochen-rationale Funktion eine senkrechte Asymptote mit der Gleichung x = b. b nennt man dann auch Polstelle der Funktion. Seite 5 von 11

6 Beispiel: f(x) = 1 x+2, D=R\{-2} b=-2; x=-2 Waagrechte Asymptote Zählergrad < Nennergrad oder Zählergrad = Nennergrad Für f(x)= a n x n +a n 1 x n 1 + a 1 x+a 0 e m x m +e m 1 x m 1 + +e 1 x+e 0 Fall 1: Zählergrad < Nennergrad [n<m] In diesem Fall ist die x-achse die waagrechte Asymptote [Beispiel 1]. Bei der Addition einer Konstante c, entspricht die waagrechte Asymptote y=c [Beispiel 2]. Fall 2: Zählergrad = Nennergrad [n=m] In diesem Fall ist die zu x-achse parallel Gerade mit der Gleichung y = a n e m die waagrechte Asymptote. Bei der Addition einer Konstante c, entspricht die waagrechte Asymptote y= a n e m +c. Beispiele 1: f(x) = 1 x+2 y=0 Seite 6 von 11

7 Beispiel 2: f(x) = 1 x y=3 Schräge Asymptote Zählergrad = Nennergrad + 1 Wenn der Zählergrad gleich dem Nennergrad +1 ist, wird der Restterm, d.h. der gebrochen rationale Term, der sich bei der Polynomdivision ergibt, für immer größer werdende Werte von x immer kleiner und nähert sich 0 an. Der Graph der gebrochen-rationalen Funktion nähert sich damit immer weiter dem Graphen der Asymptote an. Beispiel: f(x)= x2 1 x f(x) = x2 1 = x 1 x x x In diesem Fall ist die Funktion y = x die Asymptote und y = 1 der Restterm. x Keine schräge oder waagrechte Asymptote Zählergrad > Nennergrad + 1 Wenn der Zählergrad größer als der Nennergrad +1 ist, gibt es weder eine schräge noch eine waagrechte Asymptote. Seite 7 von 11

8 Übungsaufgaben Aufgabe 1: Geben Sie eine gebrochen-rationale Funktion f an, deren Graph G f die x-achse im Punkt N(2 0) schneidet und Asymptoten mit dem Gleichungen x = 3 und y = 1 x + 1 besitzt. Skizzieren Sie 2 G f. Aufgabe 2: Skizzieren Sie den Graphen der Funktion f(x) = 9 x2 x Untersuchen Sie dazu geeignete Eigenschaften der Funktion und des Funktionsgraphen und zeichnen Sie den Graphen. Seite 8 von 11

9 Lösung 1: Der Graph der Funktion g(x) = x 2 besitzt eine senkrechte Asymptote mit der Gleichung x 3 x = 3 und N ist wegen g(2) = 0 eine Nullstelle des Graphen. Die Funktion besitzt jedoch eine waagrechte (Zählergrad=Nennergrad) und nicht die geforderte senkrechte Asymptote. Der Graph der Funktion h(x) = 1 x besitzt zwar die geforderte schräge Asymptote, 2 x 3 enthält aber den Punkt N wegen h(2) = 1 jedoch nicht. Der Graph der Funktion f(x) = 1 x hat mit f(2) = 0 alle drei geforderten Eigenschaften. x 3 Seite 9 von 11

10 Lösung 2: 1. Definitionslücken: Der Funktionsterm ist nicht definiert, wenn der Nenner gleich null ist: x 2 16 = 0 x 1 = 4; x 2 = 4 Maximale Definitionsmenge ist also Df=R\{-4;4}. Da der Zähler für x= 4 und x= 4 ungleich 0 ist, liegen Polstellen vor. 2. Senkrechte Asymptoten: 9 x 2 f(x) = (x 4)(x + 4) = 9 x2 (x 4) 1 (x + 4) Für x 4 gilt: 7 /+ 8 Setzt man 4 in den ersten Faktor ein, erhält man 7. 8 Der zweite Faktor ändert das Vorzeichen von Minus nach Plus. x 1 = 4 ist daher Polstelle mit Vorzeichenwechsel von nach +. f(x) = 9 x 2 (x 4)(x + 4) = 9 x2 (x + 4) 1 (x 4) Für x 4 gilt: 7 /+ 8 Setzt man +4 in den ersten Faktor ein, erhält man 7. 8 Der zweite Faktor ändert das Vorzeichen von Minus nach Plus. Links von 4 sind beide Faktoren negativ; das Produkt ist also positiv. Rechts von 4 ist der erste Faktor negativ und der zweite Faktor positiv; das Produkt ist also negativ. Das Produkt der beiden Faktoren ändert somit ihr Vorzeichen von Plus nach Minus! x 2 = 4 ist daher Polstelle mit Vorzeichenwechsel von + nach. Die Geraden mit den Gleichungen x = 4 und x = 4 sind senkrechte Asymptoten des Graphen von f. 3. Symmetrie: Es gilt: f( x) = 9 ( x)2 ( x) 2 16 = 9 x2 x 2 16 = f(x) Der Graph ist daher achsensymmetrisch bezüglich der y-achse. 4. Nullstellen: 9 x 2 = 0 x 3 = 3; x 4 = 3 5. Schnittpunkte mit der y-achse f(0) = 9 16 = 9 16 Seite 10 von 11

11 6. Waagrechte oder schräge Asymptoten Zählerpolynom und Nennerpolynom haben beide den Grad 2, also liegt keine schräge, aber eine waagrechte Asymptote vor. f(x) = x2 ( 9 x 2 1) x 2 (1 16 x 2) = 9 x x 2 Für große x-werte geht der Zähler gegen 1 und der Nenner gegen +1. Damit folgt: f(x) = 1 lim x ± Die Gerade mit der Gleichung y = 1 ist also waagrechte Asymptote des Graphen von f. Seite 11 von 11

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit

Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Gebrochenrationale Funktionen Ü bungsaufgaben vor Kurzarbeit Diskutieren Sie die Funktionen: a.) f(x) = 1 + x 5 x 2 1 b.) f(x) = x 4 + 5 x+2 c.) f(x) = x3 +2x 2 +x+2 x+2 Lösung: a.) An der Summenform des

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

durch folgende Einschränkungen bestimmt:

durch folgende Einschränkungen bestimmt: 1 von 11 27.04.2008 16:00 Kurvendiskussion aus Wikipedia, der freien Enzyklopädie Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen Eigenschaften,

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad

Mehr

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0) Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Funktionen-Katalog. I. Geraden. f(x) = 1 oder y = 1. x = 1. eine Gerade parallel zur x-achse. Gerade parallel zur y- Achse (keine Funktion) f(x) = - x

Funktionen-Katalog. I. Geraden. f(x) = 1 oder y = 1. x = 1. eine Gerade parallel zur x-achse. Gerade parallel zur y- Achse (keine Funktion) f(x) = - x Funktionen-Katalog I. Geraden II. Ganzrationale Funktion: Parabeln -ten Grades 3-ten Grades Parabeln höheren Grades III. Gebrochenrationale Funktionen: Asymptoten, Polstellen... IV. Eponentialfunktionen

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α Grundwissen athematik 0.Klasse Gymnasium SOB.Kreiszahl..Kreis α Länge des Kreisbogens b r 360 α Fläche des Kreissektors A r 360 Das Bogenmaß b eines Winkels α ist die Länge der zugehörigen Bogenlänge b

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Die allgemeine Sinusfunktion Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Funktionsgleichung f(x) x. Aus ihr erzeugt man andere Parabeln, indem man den Funktionsterm verändert.

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß?

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß? M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius Kreissektor mit Mittelpunktswinkel? die Länge des Kreisbogens für einen Wie berechnet man in einem Kreis mit Radius Kreissektors

Mehr

1 Verhalten in der Umgebung der Definitionslücken

1 Verhalten in der Umgebung der Definitionslücken Schülerbuchseite 8 Lösungen vorläuig S. 8 I Graphen gebrochen rationaler Funktionen Verhalten in der Umgebung der Deinitionslücken : 0 + 0,6 g: 0 + 0,6 (Gesamtpreis in ) (Durchschnittspreis pro Liter in

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

1 Allgemeines, Verfahrensweisen

1 Allgemeines, Verfahrensweisen 1 Allgemeines, Verfahrensweisen 1.1 Allgemeines Definition einer Funktion Eine Funktion f ist eine eindeutige Zuordnung, die jedem x-wert genau einen y-wert zuordnet. Dem y-wert, welchem ein x-wert zugeordnet

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten.

Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl. auch nur in Intervallen) nicht. Knicke im Funktionsgraphen auftreten. FOS, 11 Jahrgangsstufe (technisch) 6 Stetigkeit Ein Kennzeichen stetiger Funktionen ist es, dass ihre Graphen (evtl auch nur in Intervallen) nicht abreißen und gezeichnet werden können, ohne den Zeichenstift

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen)

Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen) Q11-Mathematik-Wissen kompakt Jahrgang 2014/16 S. 1 Q11-Mathematik-Wissen kompakt (mit CAS-Befehlen) Gebrochen rationale Funktionen Funktionen der Form f(x) = p(x), p(x) und q(x) ganzrationale Funktionen

Mehr

6.Gebrochen-rationale Funktionen

6.Gebrochen-rationale Funktionen Das solltest du können 6.Gebrochen-rationale Funktionen Eine gebrochen-rationale Funktion ist eine Bruchunktion, deren Nenner die Variable enthält. ( ) 4 Bsp: Der Unterschied zu den bisher bekannten linearen

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

4.4. Potenzfunktionen

4.4. Potenzfunktionen .. Potenzfunktionen Definition: Eine Funktion der Form f() = c z mit z \{; } heißt Potenzfunktion.... Potenzfunktionen mit positiven Eponenten (Parabeln) Schaubilder und Wertetabelle: = = - - - - - - -

Mehr

Trainingsheft Analysis Schaubilder schnell zeichnen

Trainingsheft Analysis Schaubilder schnell zeichnen Trainingsheft Analysis Schaubilder schnell zeichnen Schnelles Zeichnen von Kurven: 6 ausführliche Beispiele! Parabeln, Hyperbeln, Gebrochen rationale Funktionen, Wurzelfunktionen als Parabelbögen oder

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

Exponentialfunktionen - Eigenschaften und Graphen

Exponentialfunktionen - Eigenschaften und Graphen Exponentialfunktionen - Eigenschaften und Graphen 1 Taschengeld Peter startet in wenigen Tagen zu einer zweiwöchigen Klassenfahrt Seine Eltern möchten ihm nach folgendem Plan Taschengeld mitgeben: Für

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre

Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Lösungshinweise und Tipps Die Lösungshinweise beziehen sich auf die konkrete Aufgabenstellung, während die von Fall zu Fall beigefügten

Mehr

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen Klausurvorbereitung Lösungen I. Funktionen Funktionen und ihre Eigenschaften S. 14 Aufg. 2 f(-2)=0,5 f(0,1)=-10 f(78)= 1 78 g(-2)=-7 g(0,1)=-2,8 g(78)=153 h(-2)=57 h(0,1)=23,82 h(78)=11257 D f = R/{0}

Mehr

Formelsammlung Analysis

Formelsammlung Analysis Formelsammlung Analysis http://www.fersch.de Klemens Fersch. August 0 Inhaltsverzeichnis Analysis. Grenzwert - Stetigkeit.............................................. Grenzwert von f(x) für x gegen x0...................................

Mehr

Mathematik. Jahrgangsstufe 13. Berufliche Gymnasien. Dr. Claus-Günter Frank, Elisabeth Kettel, Arim Shukri, Harald Ziebarth

Mathematik. Jahrgangsstufe 13. Berufliche Gymnasien. Dr. Claus-Günter Frank, Elisabeth Kettel, Arim Shukri, Harald Ziebarth Dr. Claus-Günter Frank, Elisabeth Kettel, Arim Shukri, Harald Ziebarth unter Mitarbeit von Johannes Schornstein Mathematik Jahrgangsstufe 13 Berufliche Gymnasien 1. Auflage Bestellnummer 11530 Haben Sie

Mehr

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) = 50 Kapitel 2: Rationale Funktionen und ihre Anwendungen 2.2.5 Orthogonale Geraden Geraden, die senkrecht aufeinander stehen, werden als zueinander orthogonale Geraden bezeichnet. Der Graph von g entsteht

Mehr

Rosner. Mathe gut erklärt. Baden-Württemberg Allgemeinbildende Gymnasien. 1. Auflage 2015

Rosner. Mathe gut erklärt. Baden-Württemberg Allgemeinbildende Gymnasien. 1. Auflage 2015 Rosner Mathe gut erklärt Baden-Württemberg Allgemeinbildende Gmnasien. Auflage 05 Inhaltsverzeichnis Inhaltsverzeichnis I. Grundlagen Analsis........................ 7 Funktionen..............................

Mehr

fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10.

fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10. M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

Differenzialrechnung

Differenzialrechnung Mathematik bla Differenzialrechnung Ort - Zeit - Geschwindigkeit E:\1_GYMER\_Unterricht\AUFGABEN\0_3 Differenzialrechnung\00_differenzialrechnung.docx 1 Das Weg-Zeit-Diagramm und die Geschwindigkeit Ordne

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus EvBG Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen Wahrscheinlichkeitsrechnung 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor. M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

B.7 Kurzzusammenfassung zum Thema Kurvendiskussion

B.7 Kurzzusammenfassung zum Thema Kurvendiskussion B.7 Kurzzusammenfassung zum Thema Kurvendiskussion B.7.a Übersicht Charakteristische Punkte/Verläufe einer Kurve Eine Funktion bzw. Gleichung wird üblicherweise auf folgende charakteristische Punkte analysiert:

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Viele Aufgaben sind ähnlich, beim Bearbeiten ist genaues Hinsehen

Viele Aufgaben sind ähnlich, beim Bearbeiten ist genaues Hinsehen Die Lerndominos sind ein idealer Weg, um Gelerntes zu vertiefen. Das Domino wird mit der Start-Karte begonnen, dann werden die passenden Antwort-Karten angelegt bis die Ziel-Karte erreicht ist. Bewährt

Mehr

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.

Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik BBS Gerolstein Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik für die Berufsoberschule II www.bbs-gerolstein.de/cms/download/mathematik/vorkurs-mathe-bos-.pdf bzw. www.p-merkelbach.de/bos/mathe/vorkurs-mathe-bos-.pdf

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Grundwissen Mathematik 8.Jahrgangsstufe G8

Grundwissen Mathematik 8.Jahrgangsstufe G8 Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache

Mehr

Lösungen ==================================================================

Lösungen ================================================================== Lösungen ================================================================== Aufgabe Bestimme f '(x) a) f(x) = e x f '(x) = e x ( ) = 4 e c x b) f(x) = x e x f '(x) = e x ( ) = + e x c) f(x) = 3 e (x+)

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Funktionen. Folgen und Reihen. Definitionen. Darstellung. Eigenschaften. Elementare reelle Funktionen und Kurven

Funktionen. Folgen und Reihen. Definitionen. Darstellung. Eigenschaften. Elementare reelle Funktionen und Kurven Funktionen Inhalt Funktionen Folgen und Reihen Definitionen Darstellung Eigenschaften Elementare reelle Funktionen und Kurven Funktionen Inhalt Funktionen Folgen und Reihen! Der Begriff der Folge! Eigenschaften

Mehr

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr