4.4. Potenzfunktionen

Größe: px
Ab Seite anzeigen:

Download "4.4. Potenzfunktionen"

Transkript

1 .. Potenzfunktionen Definition: Eine Funktion der Form f() = c z mit z \{; } heißt Potenzfunktion.... Potenzfunktionen mit positiven Eponenten (Parabeln) Schaubilder und Wertetabelle: = = Satz: Eine Potenzfunktion mit geraden (ungeraden) Eponenten ist eine gerade (ungerade) Funktion. Beweis: Sei f() = c n mit n gerade, dann ist n durch teilbar, d.h., n = m und f( ) = c ( ) m = c m = c n = f(). Sei andererseits n ungerade, dann ist n durch teilbar, d.h., n = m + und f( ) = c ( ) m + = c ( m + ) = c m + = c n = f(). Eigenschaften der Potenzfunktionen Smmetrie: Eine Funktion f heißt gerade bzw. achsensmmetrisch zur -Achse, falls f( ) = f() und ungerade bzw. punktsmmetrisch zum Ursprung, falls f( ) = f() für alle D. Beispiele f() = ist gerade, da f( ) = ( ) f() = ist ungerade, da f( ) = ( ) = ( ) ( ) ( ) ( ) = = f(). = ( ) ( ) ( ) ( ) = = f() = =

2 ... Potenzfunktionen mit negativen Eponenten (Hperbeln) Wertetabelle Asmptoten Eine Asmptote ist eine Näherungsgerade im Schaubild einer Funktion f: Das Schaubild kommt ihr für betragsgroße oder beliebig nahe. Senkrechte Asmptoten nennt man auch Polstellen. Schaubilder = = = = Grenzwert einer Funktion für ± Eine Funktion f strebt für ± gegen den Grenzwert (lat. limes) a, wenn die Funktionswerte f() für genügend kleine bzw. große beliebig nahe an die Zahl a herankommen: lim f () = a. Das Schaubild von f besitzt dann für ± eine waagrechte Asmptote = a. Definitions- und Wertebereiche: ± = z z gerade z ungerade z > D = D = W = [; [ W = z < D = \{} D = \{} W = ]; [ W = \{} Übungen: Aufgaben zu Potenzfunktionen Nr. -

3 ... Verschiebung von Potenzfunktionen Beispiel : Verschiebung der kubischen Parabel = + ( ) ( ) = + = ( ) = ( ) - = Beispiel : Verschiebung der Hperbel = + ( ) ( ) = + = ( ) = = ( )

4 Verschiebung von Schaubildern Man verschiebt das Schaubild von = f() um in -Richtung und in -Richtung, indem man in der Funktionsgleichung durch und durch ersetzt. Das verschobene Schaubild hat dann die Gleichung = f( ) bzw. = f( ) +. = f() = f( ) Übungen: Verschiebung von Potenzfunktionen Nr. - Die allgemeine binomische Formel (Pascalsches Dreieck) (a + b) = (a + b) = a + b (a + b) = a + ab + b (a + b) = a + a b + ab + b (a + b) = a + a b + a b + ab + b Beispiel für die Verschiebung einer Parabel Gib die Gleichung der Funktion an, die man erhält, wenn man das Schaubild von f() = um = nach rechts und = nach oben verschiebt. Untersuche ihr Schaubild auf Smmetrie, Hoch- und Tiefpunkte, Asmptoten und Grenzwerte. =f() = = f( ) durch und durch ersetzen: = ( ) mit binomischer Formel ausmultiplizieren = [ + ( ) + ( ) + ( ) + ( ) ] = [ + + ) ausmultiplizieren ausmultiplizieren = = + + Die hat die Gleichung = f( ) bzw. = + +. Ihr Schaubild ist eine verschobene Parabel. Grades, die smmetrisch zur Senkrechten bei = ist. Der Tiefpunkt ist T( ). Für ± strebt auch f() gegen +, d.h., es gibt weder Asmptoten noch Grenzwerte. Beispiel für die Verschiebung einer Hperbel Gib die Gleichung der Funktion an, die man erhält, wenn man das Schaubild von f() = um = nach links und = nach oben verschiebt. Untersuche ihr Schaubild auf Smmetrie, Hoch- und Tiefpunkte, Asmptoten und Grenzwerte. =f() = durch und durch + ersetzen: = f( + ) = mit binomischer Formel ausmultiplizieren (+ )

5 = + + = = auf gleichen Nenner bringen + + Die hat die Gleichung = f( + ) bzw. =. Ihr Schaubild ist eine + + verschobene Hperbel. Grades, die smmetrisch zur senkrechten Asmptote bei = ist. Es besitzt außerdem eine waagrechte Asmptote bei = : lim f() =. Hoch- oder Tiefpunkte gibt es nicht ± Übungen: Aufgaben zu Potenzfunktionen Nr. Beispiel für die Untersuchung einer verschobenen Parabel Untersuche das Schaubild von f() = + auf Smmetrie, Hoch- und Tiefpunkte, Asmptoten und Grenzwerte. Gib die Gleichung der ursprünglichen Potenzfunktion an, und durch welche Verschiebung es aus dieser Potenzfunktion hervorgegangen ist. = + kubische Ergänzung mit binomischer Formel = + + binomische Formel = ( ) + + = ( ) + = f( ) = f() = Es handelt sich um eine Parabel. Grades mit der Gleichung =, die um = nach rechts und = nach unten verschoben wurde. Sie ist smmetrisch zum Punkt P( ). Sie besitzt weder Hoch- noch Tiefpunkte und auch keine Asmptoten Beispiel für die Untersuchung einer verschobenen Hperbel + Untersuche das Schaubild von f() = auf Smmetrie, Hoch- und Tiefpunkte, Asmptoten und + Grenzwerte. Gib die Gleichung der ursprünglichen Potenzfunktion an, und durch welche Verschiebung es aus dieser Potenzfunktion hervorgegangen ist. = = = = = ( ) + + ( ) ( ) + ( ) ( ) + ( ) = + ( ) = ( ) = f( ) = f() binomische Formel quadratische Ergänzung im Zähler binomische Formel im Zähler zusammenfassen Bruch auftrennen

6 = Es handelt sich um eine Hperbel. Grades mit der Gleichung =, die um = nach rechts und = nach oben verschoben wurde. Sie ist smmetrisch zur senkrechte Asmptote bei =. Außerdem hat sie eine waagrechte Asmptote bei = : f() für ±. Sie besitzt weder Hoch- noch Tiefpunkte. Übungen: Aufgaben zu Potenzfunktionen Nr.... Smmetrienachweis durch Verschiebung Smmetrienachweis durch Verschiebung Das Schaubild von = f() ist smmetrisch zur Achse =, wenn die um in -Richtung zurück = f( + ) gerade ist smmetrisch zum Punkt P( ), wenn die um in -Richtung und in - Richtung zurück + = f( + ) ungerade ist + = f( + ) = f() Beispiel: Zeige, dass das Schaubild von f() = + smmetrisch zum Punkt P( ) ist. Lösung = f() = + + = f( + ) + = ( + ) ( + ) + ( + ) durch + und durch + ersetzen mit binomischer Formel ausmultiplizieren + = [ ] ausmultiplizieren und nach Potenzen ordnen [ + + ] + [ + ] + = vereinfachen = + = Da die um in -Richtung und in -Richtung zurück + = f( + ) bzw. = ungerade und damit smmetrisch zu O( ) ist, muss die = f() bzw. = + smmetrisch zu P( ) sein. Übungen: Aufgaben zu Potenzfunktionen Nr.

7 ... Monotonieverhalten Definition Das Schaubild der Funktion = f() heißt im Bereich [a; b] D (streng) monoton steigend, f( ) f( ) wenn f( ) (<) f( ) f( ) f( ) (streng) monoton fallend, wenn f( ) (>) f( ) für alle a < b Übungen: Aufgaben zu Potenzfunktionen Nr.... Bestimmung von Umkehrfunktionen Schaubilder der Wurzel- und Potenzfunktionen für n = und (siehe auch...) = = = =,, g() = ( ) ( ) f() = Das Ziehen der n-ten Wurzel ist die Umkehrung des Potenzierens mit der Hochzahl n: ( ) f - () = / g - () = / ( ) /n = = n Beispiel: Bestimme die Funktionsgleichung und Definitionsbereich der Umkehrfunktion f zu f() = ( ) + = ( ) + Vertauschung von und = ( ) + = ( ) : ( ) = ( ) mit und ( ) = + ( ) + = = f () mit D f = und Wf = [; [ n n Übungen: Aufgaben zu Potenzfunktionen Nr.

4.4. Aufgaben zu Potenzfunktionen

4.4. Aufgaben zu Potenzfunktionen .. Aufgaben zu Potenzfunktionen Definition: Eine Funktion der Form f() = c z mit z Z\{;} heißt Potenzfunktion. Aufgabe : Potenzfunktionen mit positiven Eponenten (Parabeln). Ergänze: 9 8 7 6 - - - - -

Mehr

4.6. Rationale Funktionen

4.6. Rationale Funktionen Rationale Funktionen Eine Funktion der Form f() = z() n().. Rationale Funktionen heißt rationale Funktion, wenn z() und n() zwei ganzrationale Funktionen sind. Der maimale Definitionsbereich ist R\{: n()

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Funktionen ) W(t) = 105 l 15 l. 3) 7 Minuten; Werte von 0 bis 7 Minuten; Definitionsmenge 4) Werte von 0 bis 105 l 6) Der Graph ist eine Gerade.

Funktionen ) W(t) = 105 l 15 l. 3) 7 Minuten; Werte von 0 bis 7 Minuten; Definitionsmenge 4) Werte von 0 bis 105 l 6) Der Graph ist eine Gerade. Funktionen. ) W(t) = l l min t ) W l ) t min W(t) l 9 ) Minuten; Werte von bis Minuten; Definitionsmenge ) Werte von bis l ) Der Graph ist eine Gerade. t min. a) ) ) ) - - - - - - - - - Funktion. Die Funktions-

Mehr

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen .. Prüfungsaufgaben zu Eponential- und Logarithmusfunktionen Aufgabe : Funktionsanpassung bei Eponentialfunktionen () Bestimme die Gleichung der Eponentialfunktion f() = c a, deren Schaubild durch die

Mehr

4.5. Ganzrationale Funktionen

4.5. Ganzrationale Funktionen .5. Ganzrationale Funktionen Definition Eine Funktion der Gestalt f(x) = a n x n a n 1 x n 1... a 2 x 2 a 1 x a 0 mit reellen Koeffizienten a n, a n 1,... und a n 0 heißt ganzrationale Funktion n-ten Grades

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

Polynome. Michael Spielmann. 1 ganzrationale Funktionen, Polynome 1. 2 Kurvenverlauf 1. 3 Symmetrie 2. 4 Nullstellen und Linearfaktoren 3

Polynome. Michael Spielmann. 1 ganzrationale Funktionen, Polynome 1. 2 Kurvenverlauf 1. 3 Symmetrie 2. 4 Nullstellen und Linearfaktoren 3 Polnome Michael Spielmann Inhaltsverzeichnis ganzrationale Funktionen, Polnome Kurvenverlauf Smmetrie Nullstellen und Linearfaktoren 5 Polnomdivision 6 Kurvenverlauf an Nullstellen 5 7 Nullstellen und

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale

Mehr

Weitere Ableitungsregeln. Kapitel 4

Weitere Ableitungsregeln. Kapitel 4 Weitere Ableitungsregeln Kapitel . Die Kettenregel L f() = u(v()) g() = v(u()) a) + + b) cos [( + ) ] (cos + ) c) sin ( ) [sin ()] d) e) ( = _ ) _ ( f) cos [π( + )] cos (π) + g) ( ) = h) ( + ) + = + +

Mehr

SYMMETRIE FRANZ LEMMERMEYER

SYMMETRIE FRANZ LEMMERMEYER SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

1. Teil Repetitionen zum Thema (bisherige) Funktionen

1. Teil Repetitionen zum Thema (bisherige) Funktionen Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

A3.2 Quadratische Funktionen

A3.2 Quadratische Funktionen A. Quadratische Funktionen Die Quadratfunktion Definition: Eine reelle Funktion f: = a + b + c, D = R (a, b, c R a 0) heißt quadratische Funktion. Beispiele:. f: =. f: = 0,5 - + Die Quadratfunktion f:

Mehr

I y = ai + bx + c. 13. Die quadratische Funktion Normalparabel

I y = ai + bx + c. 13. Die quadratische Funktion Normalparabel 3. lässt sich direkt von der abc-normalform der quadratischen Gleichung (vgl. Kapitel 6) ableiten. Die Normalform der quadratischen Funktion ist: I = ai + b + c Der Graph der quadratischen Funktion he

Mehr

4.2. Aufgaben zu quadratischen Funktionen

4.2. Aufgaben zu quadratischen Funktionen .. Aufgaben zu quadratischen Funktionen Aufgabe : Stauchung und Streckung der Normalparabel a) Zeichne die Schaubilder der folgenden Funktionen in das Koordinatensstem. b) Vervollständige die darunter

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

Funktionen. 1.1 Wiederholung

Funktionen. 1.1 Wiederholung Technische Zusammenhänge werden meist in Form von Funktionen mathematisch erfasst. Kennt man die Eigenschaften verschiedener Funktionstpen, lässt sich im Anwendungsfall das Arbeiten mit diesen erleichtern.

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen .8. Prüfungsaufgaben zu trigonometrischen Funktionen Aufgabe : Schaubilder der trigonomtrischen Funktionen () a) Zeichne das Schaubild der Funktion f() = sin(,5) im Bereich π. b) Zeichne das Schaubild

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können: Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt

Mehr

Beschränktheit, Monotonie & Symmetrie

Beschränktheit, Monotonie & Symmetrie Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis

Mehr

1 Verhalten in der Umgebung der Definitionslücken

1 Verhalten in der Umgebung der Definitionslücken Schülerbuchseite 8 Lösungen vorläuig S. 8 I Graphen gebrochen rationaler Funktionen Verhalten in der Umgebung der Deinitionslücken : 0 + 0,6 g: 0 + 0,6 (Gesamtpreis in ) (Durchschnittspreis pro Liter in

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Trainingsheft Analysis Schaubilder schnell zeichnen

Trainingsheft Analysis Schaubilder schnell zeichnen Trainingsheft Analysis Schaubilder schnell zeichnen Schnelles Zeichnen von Kurven: 6 ausführliche Beispiele! Parabeln, Hyperbeln, Gebrochen rationale Funktionen, Wurzelfunktionen als Parabelbögen oder

Mehr

F u n k t i o n e n Potenzfunktionen

F u n k t i o n e n Potenzfunktionen F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht

Mehr

Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Ausdrucken ist nur von der Mathematik-CD möglich. Mai 2002.

Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Ausdrucken ist nur von der Mathematik-CD möglich. Mai 2002. Funktionen Klassenstufe 0/ Teil Ganzrationale Funktionen (ohne Ableitungen) Datei Nr. 80 Ausdrucken ist nur von der Mathematik-CD möglich Mai 00 Friedrich Buckel Internatsgymnasium Schloß Torgelow Funktionen

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

Einführung der quadratischen Funktionen

Einführung der quadratischen Funktionen R. Brinkmann http://brinkmann-du.de Seite 08.0.008 Einführung der quadratischen Funktionen Jeder, der sich auf die Führerscheinprüfung vorbereitet sollte wissen, dass sich der Anhalteweg eines bremsenden

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Symmetrie zum Ursprung

Symmetrie zum Ursprung Symmetrie zum Ursprung Um was geht es? Betrachten wir das Schaubild einer ganzrationalen Funktion mit ungeradem Grad, z.b.: f : R R x f x = 2 15 x3 23 15 x Wertetabelle x f(x) -3 1,0-2 2,0-1 1,4 0 0 1-1,4

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5 Natürliche Eponential- und Logarithmusfunktion Kapitel . Die natürliche Eponentialfunktion und ihre Ableitung 48 Arbeitsaufträge. Individuelle Lösungen Jahr 908 90 90 930 90 960 970 990 000 00 in Sekunden

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 22 1 Funktionen Definitionen

Mehr

Bezeichnung von Funktionen x := y:=

Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder

Mehr

Wiederholung Quadratische Funktionen (Parabeln)

Wiederholung Quadratische Funktionen (Parabeln) SEITE 1 VON 7 Wiederholung Quadratische Funktionen (Parabeln) VON HEINZ BÖER 1. Regeln a) Funktionsvorschriften Normalform f(x) = a x² + b x + c Normalparabel: f(x) = x 2 Graf der Normalparabel Die einfachste

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG...2 Arbeitsbogen

Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG...2 Arbeitsbogen Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG... Arbeitsbogen -...............5 5...5 6...6 7...6 8...7 9...8 Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG Arbeitsbogen - Bestimmen Sie a) b) + a) Bei so

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Mag. DI Rainer Sickinger HTL v 2 Mag. DI Rainer Sickinger Quadratische Funktionen 1 / 33 Definition Quadratische Funktion Definition (Quadratische Funktion) Sei D R und f : D R

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden.

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden. R. Brinkmann http://brinkmann-du.de Seite 0.0.008 Einführung: Funktionenklassen Bisher haben wir nur ganzrationale Funktionen kennen gelernt. Sie gehören zu der Klasse der Rationalen Funktionen. In der

Mehr

Inhaltsverzeichnis. Beispiel einer Abiturprüfung 18

Inhaltsverzeichnis. Beispiel einer Abiturprüfung 18 VB 004 Inhaltsverzeichnis Kurvendiskussion Einführung Ableitungen einer Funktion 3 Monotonieverhalten der Funktion 3 Wie bekommen wir nun raus, wo eine Funktion steigt oder fällt? 3 Symmetrieverhalten

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion

Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion Alexander Kirst 9. Februar Inhaltsverzeichnis Untersuchung der Funktion f(x) = c x n Untersuchung der Funktion f(x) = x n + d 3 Untersuchung

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

A7.2 Kenntnis der Bedeutung der 1. und 2. Ableitung für den Graphen einer Funktion; Untersuchung ganzrationaler Funktionen

A7.2 Kenntnis der Bedeutung der 1. und 2. Ableitung für den Graphen einer Funktion; Untersuchung ganzrationaler Funktionen A7.2 Kenntnis der Bedeutung der 1. und 2. Ableitung für den Graphen einer Funktion; Untersuchung ganzrationaler Funktionen Die folgenden grundsätzlichen Überlegungen sollen am Beispiel der Funktion f 1

Mehr

Mathematik 9. Quadratische Funktionen

Mathematik 9. Quadratische Funktionen Mathematik 9 Funktionen Eine Zuordnung f, die jedem x einer Menge D (Definitionsmenge) genau ein Element y = f(x) einer Menge Z (Zielmenge) zuordnet, heißt Funktion. Dabei heißt y = f(x) Funktionswert

Mehr

mathphys-online QUADRATISCHE FUNKTIONEN

mathphys-online QUADRATISCHE FUNKTIONEN QUADRATICHE FUNKTIONEN Inhaltsverzeichnis Kapitel Inhalt eite Zuordnungsvorschriften, Funktionsgraph ymmetrie. ymmetrie zur. ymmetrie zu einer Parallelen zur Nullstellen Anzahl der Nullstellen 7 cheitel

Mehr

MATHE KLASSE 11. Funktionen Extremwerte lineare Funktionen WOLFGANG STILLER

MATHE KLASSE 11. Funktionen Extremwerte lineare Funktionen WOLFGANG STILLER MATHE KLASSE Funktionen Etremwerte lineare Funktionen FUNKTION Def.: Funktionen sind eindeutige Zuordnungen. (Mathe eine Menge X [Definitionsbereich] wird einer Menge Y [Wertebereich] zugeordnet. Jedem

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

13 3. a) Uhrzeit Wasseranstieg (in cm pro Stunde)

13 3. a) Uhrzeit Wasseranstieg (in cm pro Stunde) 1 Funktionen als mathematische Modelle Noch it in Dierenzialrechnung? 1 1. a) Höhenänderung zwischen 0 m und 1 00 m (in der Horizontalen): ca. 800 m 600 m = 00 m durchschnittliche Änderungsrate im Intervall

Mehr

Funktionen. Teil 2. Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Stand 25. November Friedrich Buckel

Funktionen. Teil 2. Ganzrationale Funktionen (ohne Ableitungen) Datei Nr Stand 25. November Friedrich Buckel Funktionen Teil Ganzrationale Funktionen (ohne Ableitungen) Datei Nr. 80 Stand 5. November 007 Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.de INHALT Grundlagen Symmetrieeigenschaften

Mehr

Grundeigenschaften. Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Text ist einmalig in seiner Art!

Grundeigenschaften. Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Text ist einmalig in seiner Art! Logarithmusfunktionen und weil sie zusammen gehören auch Eponentialfunktionen Grundeigenschaften Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Tet ist einmalig

Mehr

Übungen zum Vorkurs Mathematik

Übungen zum Vorkurs Mathematik Dr. Tatiana Samrowski Institut für Mathematik Universität Zürich Übungen zum Vorkurs Mathematik Mengenlehre Aufgabe : Stellen Sie die folgenden Menge durch Aufzählen ihrer Elemente dar: A = { N : ist Primzahl

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion Wolfgang Kippels. September 017 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3 3 Aufgaben 3.1 Aufgabe 1:................................... 3. Aufgabe :...................................

Mehr

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Gmnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Wissen / Können Aufgaben und Beispiele. Proportionalität Proportionale Zuordnungen und sind proportional zueinander, wenn zum n-fachen Wert von der n-fache

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit

Kapitel 6 Grenzwerte von Funktionen und Stetigkeit Kapitel 6 Grenzwerte von Funktionen und Stetigkeit 225 Relle Funktionen Im Folgenden betrachten wir reelle Funktionen f : D R, mit D R. Wir suchen eine formale Definition für den folgenden Sachverhalt.

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Übungsmaterial 9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Die trigonometrischen Funktionen sind die Sinus-, die Kosinus- und die Tangensfunktion. 9. Eigenschaften der trigonometrischen

Mehr

Basistext Kurvendiskussion

Basistext Kurvendiskussion Basistext Kurvendiskussion In einer Kurvendiskussion sollen zu einer vorgegebenen Funktion (bzw. Funktionsschar) Aussagen über ihrem Verlauf gemacht werden. Im Nachfolgenden werden die einzelnen Untersuchungspunkte

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Gleichungen höheren Grades

Gleichungen höheren Grades GS -.08.05 - c_hoeheregl.mcd Definition: Eine Gleichung der Form k = 0 heißt "Gleichung n-ten Grades". Gleichungen höheren Grades n a k k = 0 mit der Definitionsmenge ID IR und a n 0 Schreibweise: n k

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr