4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen

Größe: px
Ab Seite anzeigen:

Download "4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen"

Transkript

1 .. Prüfungsaufgaben zu Eponential- und Logarithmusfunktionen Aufgabe : Funktionsanpassung bei Eponentialfunktionen () Bestimme die Gleichung der Eponentialfunktion f() = c a, deren Schaubild durch die Punkte P und Q geht. a) P( ) und Q( ) b) P( ) und Q( ) c) P( ) und Q( ) : a) f() =,. b) f() =,. c) f() = Aufgabe : Funktionsanpassung bei Potenz- und Eponentialfunktionen () Bestimme die Gleichungen der Eponentialfunktion f() = c a und der Potenzfunktion g() = b n, deren Schaubilder durch die Punkte P und Q gehen. a) P( ) und Q( ) b) P( ) und Q( ) c) P( ) und Q( ) : a) f() = und g() = b) f() = und g() = c) f() = und g() = log Aufgabe : Eponential- und Logarithmusfunktionen im Vergleich () a) Zeichne die Schaubilder der Funktionen f() = und g() = log in ein gemeinsames Koordinatensstem mit und. () b) Gib den Definitionsbereich und den Wertebereich für beide Funktionen an. () c) Gib die Achsenschnittpunkte beider Schaubilder an. () d) In welcher geometrischen Beziehung stehen die beiden Schaubilder zueinander? () e) Untersuche beide Schaubilder auf Asmptoten. () a) Schaubilder b) D f = R, W f = R + \{}, D g = R + \{}, W g = R. c) f() = schneidet nur die -Achse in S ( ). f () = log () schneidet nur die -Achse in S ( ). d) Durch Spiegelung des Schaubildes von f an der Geraden = erhält man das Schaubild von g. e) Die negative -Achse ist Asmptote von f() = und die negative -Achse ist Asmptote von f () = log (). Aufgabe : Eponential- und Logarithmusfunktionen im Vergleich () a) Zeichne die Schaubilder der Funktionen f() = und f () = log in ein gemeinsames Koordinatensstem mit und. () b) Gib den Definitionsbereich und den Wertebereich der beiden Funktionen an. () c) Gib die Achsenschnittpunkte beider Schaubilder an. () d) In welcher geometrischen Beziehung stehen die beiden Schaubilder zueinander? () e) Untersuche beide Schaubilder auf Asmptoten. () a) Schaubilder b) D f = R, W f = R + \{}, D g = R + \{}, W g = R. c) f() = schneidet nur die -Achse in S ( ). f () = log () schneidet nur die -Achse in S ( ). d) Durch Spiegelung des Schaubildes von f an der Geraden = erhält man das Schaubild von g. e) Die negative -Achse ist Asmptote von f() = und die negative -Achse ist Asmptote von f () = log ().

2 Aufgabe : Umkehrfunktionen () Vergleiche die Schaubilder der Funktionen f() = und g() = sowie ihrer Umkehrfunktionen f und g im Hinblick auf Definitions- und Wertebereiche, Asmptoten und Achsenschnittpunkte anhand der untenstehenden Tabelle Funktion f() = f () = g() = g () = D = W = Asmptoten Achsenschnittpunkte Funktion f() = f () = g() = g () = log () D = R [; [ R ]; [ W = [; [ [; [ ]; [ R Asmptoten - - = für = für Achsenschnittpunkte S( ) S( ) S( ) S( ) Aufgabe : Umkehrfunktionen () Vergleiche die Schaubilder der Funktionen f() = und g() = sowie ihrer Umkehrfunktionen f und g im Hinblick auf Definitions- und Wertebereiche, Asmptoten und Achsenschnittpunkte anhand der untenstehenden Tabelle. Funktion f() = f () = g() = g () = D = W = Asmptoten Achsenschnittpunkte Funktion f() = f () = g() = g () = log () D = R [; [ R ]; [ W = R [; [ ]; [ R Asmptoten - - = für = für Achsenschnittpunkte S( ) S( ) S( ) S( )

3 Aufgabe a: Umkehrfunktionen () Bestimme die Umkehrfunktion f für f() = + und gib die Definitionsbereiche für f und f an. Zeichne f und f mit en: f () = log ( ) + mit D f = R und D f f = ]; [ () Beschriftete Zeichnung mit Asmptoten () f Aufgabe b: Umkehrfunktionen () Bestimme die Umkehrfunktion f für f() = + und gib die Definitionsbereiche für f und f an. Zeichne f und f mit en: f () = log ( ) + mit D f = R und D f = ]; [ () Beschriftete Zeichnung mit Asmptoten () f f

4 Aufgabe c: Umkehrfunktionen () Bestimme die Umkehrfunktion f für f() = + und gib die Definitionsbereiche für f und f an. Zeichne f und f mit en: f () = log ( ) + mit D f = R und D f = ]; [ () Beschriftete Zeichnung mit Asmptoten () f() = - + f - () = log ( - ) Aufgabe d: Umkehrfunktionen () Bestimme die Umkehrfunktion f für f() = + und gib die Definitionsbereiche für f und f an. Zeichne f und f mit en: f () = log ( ) + mit D f = R und D f = ]; [ () Beschriftete Zeichnung mit Asmptoten () f() = - + f - () = log ( - )

5 Aufgabe : Funktionsgleichungen () Bestimme die Gleichungen der abgebildeten Funktionen: d() = e() = c() = a() = b() = en a() = ; b() = log ( + ); c() = ; d() = ( ) ; e() = +

4.4. Aufgaben zu Potenzfunktionen

4.4. Aufgaben zu Potenzfunktionen .. Aufgaben zu Potenzfunktionen Definition: Eine Funktion der Form f() = c z mit z Z\{;} heißt Potenzfunktion. Aufgabe : Potenzfunktionen mit positiven Eponenten (Parabeln). Ergänze: 9 8 7 6 - - - - -

Mehr

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen .8. Prüfungsaufgaben zu trigonometrischen Funktionen Aufgabe : Schaubilder der trigonomtrischen Funktionen () a) Zeichne das Schaubild der Funktion f() = sin(,5) im Bereich π. b) Zeichne das Schaubild

Mehr

4.4. Potenzfunktionen

4.4. Potenzfunktionen .. Potenzfunktionen Definition: Eine Funktion der Form f() = c z mit z \{; } heißt Potenzfunktion.... Potenzfunktionen mit positiven Eponenten (Parabeln) Schaubilder und Wertetabelle: = = - - - - - - -

Mehr

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen

4.8. Prüfungsaufgaben zu trigonometrischen Funktionen .8. Prüfungsaufgaben zu trigonometrischen Funktionen Aufgabe : Schaubilder der trigonomtrischen Funktionen (8) a) Zeichne den Graphen der Sinusfunktion im Bereich π und gib fünf verschiedene Funktionswerte

Mehr

Arbeitsblatt 1 - Umkehrfunktionen

Arbeitsblatt 1 - Umkehrfunktionen Arbeitsblatt - Umkehrfunktionen. Gegeben sind die beiden linearen Funktionen = + und =. (a) (c) Zeichnen Sie beide Funktionsbilder ein! Bestimmen Sie rechnerisch die beiden Umkehrfunktionen! Zeichnen Sie

Mehr

Exponentialfunktionen - Eigenschaften und Graphen

Exponentialfunktionen - Eigenschaften und Graphen Exponentialfunktionen - Eigenschaften und Graphen 1 Taschengeld Peter startet in wenigen Tagen zu einer zweiwöchigen Klassenfahrt Seine Eltern möchten ihm nach folgendem Plan Taschengeld mitgeben: Für

Mehr

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen: Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse

Mehr

14. Die Potenz- / Wurzel- / Exponential- und Logarithmusfunktion

14. Die Potenz- / Wurzel- / Exponential- und Logarithmusfunktion . Die Potenz- / Wurzel- / Eponential- und Logarithmusfunktion In diesem Kapitel werden folgende Funktionen vorgestellt: Potenzfunktion Wurzelfunktion (Umkehrfunktion* der Potenzfunktion) Eponentialfunktion

Mehr

Grundeigenschaften. Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Text ist einmalig in seiner Art!

Grundeigenschaften. Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Text ist einmalig in seiner Art! Logarithmusfunktionen und weil sie zusammen gehören auch Eponentialfunktionen Grundeigenschaften Wie man ihre Schaubilder zeichnet und wie man aus dem Schaubild ihre Gleichung erkennt. Dieser Tet ist einmalig

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =

Mehr

A Differenzialrechnung

A Differenzialrechnung A Differenzialrechnung Seite 1 Stetigkeit und Differenzierbarkeit... 2 Nullstellensatz und Intervallhalbierung... Newton - Verfahren... 8 Funktionsverkettung... 1 5 Kettenregel... 11 Produktregel... 1

Mehr

F u n k t i o n e n Grundbegriffe

F u n k t i o n e n Grundbegriffe F u n k t i o n e n Grundbegriffe Gottfried Wilhelm Leibniz (*66 in Leipzig, 76 in Hannover) war ein deutscher Philosoph und Wissenschaftler, Mathematiker, Diplomat, Physiker, Historiker, Bibliothekar

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge) Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f

Mehr

4.2. Aufgaben zu quadratischen Funktionen

4.2. Aufgaben zu quadratischen Funktionen .. Aufgaben zu quadratischen Funktionen Aufgabe : Stauchung und Streckung der Normalparabel a) Zeichne die Schaubilder der folgenden Funktionen in das Koordinatensstem. b) Vervollständige die darunter

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 22 1 Funktionen Definitionen

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS Prof. Dr. M. Voigt 28. April 2011 II Inhaltsverzeichnis 1 Funktionen einer Variablen 1 24 Februar 2011 III Kapitel 1 Funktionen einer Variablen 1.1 Eigenschaften

Mehr

Celle. Betragsfunktion 1-E1. Vorkurs, Mathematik

Celle. Betragsfunktion 1-E1. Vorkurs, Mathematik Celle Betragsfunktion 1-E1 1-E2 Betragsfunktion y = x : Aufgabe 1 Abb. 1: Graph der Betragsfunktion y = x Die Abb. 3-1 zeigt die Betragsfunktion y = x. Beschreiben Sie die Eigenschaften dieser Funktion:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kompetenzen für die zentralen Prüfungen der 10. Klasse - Mathematik - Funktionen Das komplette Material finden Sie hier: School-Scout.de

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden.

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden. R. Brinkmann http://brinkmann-du.de Seite 0.0.008 Einführung: Funktionenklassen Bisher haben wir nur ganzrationale Funktionen kennen gelernt. Sie gehören zu der Klasse der Rationalen Funktionen. In der

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

Mathematik I Herbstsemester 2018 Kapitel 1: Funktionen

Mathematik I Herbstsemester 2018 Kapitel 1: Funktionen Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 23 1. Funktionen Definition einer Funktion Darstellungsformen einer Funktion Funktionseigenschaften Nullstellen

Mehr

1. Teil Repetitionen zum Thema (bisherige) Funktionen

1. Teil Repetitionen zum Thema (bisherige) Funktionen Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

Thema: Der Logarithmus und die Logarithmusfunktion - Sportgymnasium Dresden Schüler: L. Beer und R. Rost Klasse: 10/2.

Thema: Der Logarithmus und die Logarithmusfunktion - Sportgymnasium Dresden Schüler: L. Beer und R. Rost Klasse: 10/2. Schüler: L. Beer und R. Rost Klasse: 0/ Der Logarithmus Zielstellung: Zeigt man natürliche Zahlen mit dem Computerbildschirm (o.ä.) an, ist es manchmal notwendig zu wissen, wie viele Ziffern die Zahl hat.

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

1 Quadratische Funktionen Potenzfunktionen Potenzrechengesetze... 15

1 Quadratische Funktionen Potenzfunktionen Potenzrechengesetze... 15 A Wahrscheinlichkeiten Seite Kombinatorische Zählverfahren... Pascal sches Dreieck... 5 Binomialkoeffizient... 8 Vierfeldertafel... 9 5 Bedingte Wahrscheinlichkeiten... B Potenzfunktionen Quadratische

Mehr

Definition des Begriffs Funktion

Definition des Begriffs Funktion Definition des Begriffs Funktion In der Mathematik ist eine Funktion (lateinisch functio) oder Abbildung eine Beziehung (Relation) zwischen zwei Mengen, die jedem Element der Definitionsmenge (Funktionsargument,

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Symmetrie zum Ursprung

Symmetrie zum Ursprung Symmetrie zum Ursprung Um was geht es? Betrachten wir das Schaubild einer ganzrationalen Funktion mit ungeradem Grad, z.b.: f : R R x f x = 2 15 x3 23 15 x Wertetabelle x f(x) -3 1,0-2 2,0-1 1,4 0 0 1-1,4

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 Abitur 2012 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an. Teilaufgabe Teil 1 1a (2 BE)

Mehr

Exponential- & Logarithmusfunktionen

Exponential- & Logarithmusfunktionen Exponential- & Logarithmusfunktionen Referenten: Paul Schmelz & Wadim Krapp Fachlehrer: Herr Wettlaufer Fach: Mathematik Thema: Exponential- & Logarithmusfunktionen Inhaltsverzeichnis file:///d /Refs/_To%20Do/zips/ExponentialLogarithmusfunktionen.html

Mehr

Zusammenfassung und Wiederholung zu Geraden im IR ²

Zusammenfassung und Wiederholung zu Geraden im IR ² Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...

Mehr

F u n k t i o n e n Potenzfunktionen

F u n k t i o n e n Potenzfunktionen F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Klasse 10; Mathematik Kessling Seite 1

Klasse 10; Mathematik Kessling Seite 1 Klasse 0; Mathematik Kessling Seite Übungen Eponentialfunktionen/Logarithmus Aufgabe Beim Wachstum einer bestimmten Bakterienart der Bestand der Bakterien stündlich um 43% zu. Am Beginn des Beobachtungszeitraumes

Mehr

Fit in Mathe. Januar Klassenstufe 11 Umkehrfunktion. f x ist 2,5 also Buchstabenpaar GA.

Fit in Mathe. Januar Klassenstufe 11 Umkehrfunktion. f x ist 2,5 also Buchstabenpaar GA. Thema Musterlösungen 1 Umkehrfunktion Bestimme zur Funktion f die Umkehrfunktion f, dargestellt als Tabelle. x 0 1 2 3 4 f x 1 3 5 7 9 x 0 1 2 3 4 f x -0,5 0 0,5 1 1,5 Die Summe der 5 Werte von f x ist

Mehr

Übungsaufgaben zu linearen Gleichungen und Funktionen117

Übungsaufgaben zu linearen Gleichungen und Funktionen117 Übungsaufgaben zu linearen Gleichungen und Funktionen117 Anmerkung: Die Funktionsgraphen sollen den Zusammenhang nur noch einmal veranschaulichen. Sie sind zur Lösung der Aufgabe nicht erforderlich. Die

Mehr

Quadratische Funktionen Die Normalparabel

Quadratische Funktionen Die Normalparabel Quadratische Funktionen Die Normalparabel Kreuze die Punkte an, die auf der Normalparabel liegen. A ( 9) B ( ) C ( 9) D ( ) E (9 ) F (0 0) Die Punkte A bis J sollen auf der Normalparabel liegen. Gib, falls

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

Der lange Weg zu den Potenz- und Logarithmengesetzen

Der lange Weg zu den Potenz- und Logarithmengesetzen Der lange Weg zu den Potenz- und Logarithmengesetzen. Schritt: x n, n N, also eine natürliche Zahl ungleich Null). Wie jeder weiß gilt: 0 6 0 3 = } 0 0 0 {{ 0 0 0} 0 } 0 {{ 0} = } 0 0 0 0 0 {{ 0 0 0 0}

Mehr

e x D = R a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von S an.

e x D = R a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von S an. Aufgabe 1 2e Gegeben ist die Funktion f mit f() = mit dem Definitionsbereich. e D = R + 9 a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von

Mehr

Zusammengesetzte Übungsaufgaben lineare Funktionen

Zusammengesetzte Übungsaufgaben lineare Funktionen Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen

7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen 7.. Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen. Bestimme von den nachfolgenden Funktionsgleichungen zunächst die Schnittpunkte mit den Achsen; stelle sie danach im Koordinatensystem dar.

Mehr

Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts

Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Funktionen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Informationen - Überblick Datei Nr. 800 Stand:

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@m.uni-saarland.de SS 07 Vorlesung 5 MINT Mathkurs SS 07 / 8 Vorlesung 5 (Lecture 5) Reelle Funktionen einer reellen Veränderlichen

Mehr

Der Logarithmus als Umkehrung der Exponentiation

Der Logarithmus als Umkehrung der Exponentiation Der Logarithmus als Umkehrung der Exponentiation -E -E2 Voraussetzungen Umkehrfunktion: Welche Funktionen haben eine Umkehrfunktion? Warum sind Umkehrfunktionen so wichtig? Exponentialfunktion: Definition

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Geben Sie an, welche dieser vier Funktionen im gesamten Definitionsbereich monoton steigend sind, und begründen Sie Ihre Entscheidung!

Geben Sie an, welche dieser vier Funktionen im gesamten Definitionsbereich monoton steigend sind, und begründen Sie Ihre Entscheidung! Aufgabe 3 Funktionen vergleichen Gegeben sind vier reelle Funktionen f, g, h und i mit den nachstehenden Funktionsgleichungen: f() = 3 mit g() = 3 mit h() = 3 mit i() = sin(3) mit Geben Sie an, welche

Mehr

MATHE KLASSE 11. Funktionen Extremwerte lineare Funktionen WOLFGANG STILLER

MATHE KLASSE 11. Funktionen Extremwerte lineare Funktionen WOLFGANG STILLER MATHE KLASSE Funktionen Etremwerte lineare Funktionen FUNKTION Def.: Funktionen sind eindeutige Zuordnungen. (Mathe eine Menge X [Definitionsbereich] wird einer Menge Y [Wertebereich] zugeordnet. Jedem

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer

Mehr

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7 Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7 Im Mathematikunterricht der Oberstufe muss man auf mathematisches Handwerkszeug aus der Sekundarstufe I zurückgreifen. Wir wollen deshalb deine

Mehr

2.4 Exponential - und Logarithmus - Funktionen

2.4 Exponential - und Logarithmus - Funktionen 25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >

Mehr

Exponentialfunktionen. Nur Kurvendiskussionen und Integralrechnung. für die wichtigsten e-funktionen. Lösungen ohne CAS und GTR

Exponentialfunktionen. Nur Kurvendiskussionen und Integralrechnung. für die wichtigsten e-funktionen. Lösungen ohne CAS und GTR Eponentialfunktionen Nur Kurvendiskussionen und Integralrechnung für die wichtigsten e-funktionen Lösungen ohne CAS und GTR Alle Methoden ganz ausführlich Datei Nr. 45 Stand 5. Oktober 6 FRIEDRICH W. BUCKEL

Mehr

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen.

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. IV Umkehrfunktion Umkehrbarkeit 0. Klasse: Logarithmusfunktionen sind die Umkehrungen der Eponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. f f -> 2 2 -> 2 -> - - -> 2 4 -> -> 4 Graphen

Mehr

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern 014 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSBEREICH BESTIMMEN Bei einem Bruch darf der Nenner nicht null werden, d.h. es muss gelten: x 5 0 x

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Eponential- und Logarithmusfunktion. Gegeben sind die Funktionen f : y = 0,5 log 3 ( + 2) und f 2 : y = 0,5 log 3 ( ) mit G =R R. (a) Geben Sie die Definitionsmenge und die Wertemenge der Funktion f 2

Mehr

-+ Steigung = m (= 0.5)

-+ Steigung = m (= 0.5) 14. Die Eponential- und die Logarithmusfunktion 14.1 Grundlagen eponentieller Abläufe Die Steigung einer Funktion ist ein Mass für das Fortschreiten eines Prozesses. Bei linearen Funktionen (vgl. Kapitel

Mehr

CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen

CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen CAS-Einheit: Formen der Funktionsgleichung bei rationalen Funktionen Die folgende Bildfolg zeigt, wie man Funktionsgraphen mit dem CAS-Rechner zeichnen kann: Aufgaben Lasse mit Hilfe des CAS-Rechners die

Mehr

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können: Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt

Mehr

1 Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel α und dem Radius r:

1 Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel α und dem Radius r: Mathematikgrundwissen der 0. Jahrgangsstufe Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel und dem Radius r: r A r b Bogenlänge: b = 60 r Flächeninhalt: b = 60 r Berechne jeweils den Umfang

Mehr

Lineare Funktionen Lineare Gleichungen lösen Frank Schumann

Lineare Funktionen Lineare Gleichungen lösen Frank Schumann Aufgabenserie (Begriff: Nullstelle linearer Funktionen) Lineare Funktionen Lineare Gleichungen lösen Wir erfinden neue mathematische Begriffe. Zum Beispiel die 7-Stelle der Funktion f mit f(x) = 3x + 1.

Mehr

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER 2016 1 / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty Diese Vorlesung: Mengen Reelle Zahlen Elementare Funktionen Anwendungsbeispiel:

Mehr

Beschränktheit, Monotonie & Symmetrie

Beschränktheit, Monotonie & Symmetrie Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Abbildungen und Funktionen Lösung:

Abbildungen und Funktionen Lösung: lineare Funktion f() = Neue Funktionsgleichung: f() = - 5 Es ändert sich nur der y-abschnitt Spiegeln an der -Achse Neue Funktionsgleichung: f() = - + Steigung und y-abschnitt mal (-) Neue Funktionsgleichung:

Mehr

Eine Gerade hat die Gleichung 22. Eine zweite Gerade hat die Steigung und schneidet die -Achse im Punkt

Eine Gerade hat die Gleichung 22. Eine zweite Gerade hat die Steigung und schneidet die -Achse im Punkt 7 Aufgaben im Dokument Aufgabe P6/2003 Eine nach oben geöffnete Normalparabel hat den Scheitelpunkt 2 3. Die Gerade hat die Steigung 1 und schneidet die Parabel in 4 1. Berechnen Sie die Koordinaten des

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe 1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1

Mehr

Über das Entstehen neuer Funktionen

Über das Entstehen neuer Funktionen Leittet Über das Entstehen neuer Funktionen Bernhard Reuß Eine Anleitung zum Selbststudium c 2 beim Verfasser Vorgehensweise Mit Hilfe der nachfolgenden Informationen und Aufgaben werden Sie sehen, dass

Mehr

Teil I. 2.1 Grundlegende Begriffe und Eigenschaften. Eine Funktion ordnet einer Eingangsgröße genau eine Ausgangsgröße zu

Teil I. 2.1 Grundlegende Begriffe und Eigenschaften. Eine Funktion ordnet einer Eingangsgröße genau eine Ausgangsgröße zu Funktionen Wie kann man Funktionen charakterisieren? Welche grundlegenden Funktionen gibt es? Was sind Umkehrfunktionen? Wie geht Partialbruchzerlegung?. Grundlegende Begriffe und Eigenschaften... 6. Polnome

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

QUADRATISCHE FUNKTIONEN

QUADRATISCHE FUNKTIONEN QUADRATISCHE FUNKTION DARSTELLUNG MIT DER FUNKTIONSGLEICHUNG Allgemeine Form - Vorzeichen von a gibt an, ob die Funktion nach oben (+) oder unten (-) geöffnet ist. Der Wert (Betrag) von gibt an, ob die

Mehr

Lösungen ==================================================================

Lösungen ================================================================== Lösungen ================================================================== Aufgabe Bestimme f '(x) a) f(x) = e x f '(x) = e x ( ) = 4 e c x b) f(x) = x e x f '(x) = e x ( ) = + e x c) f(x) = 3 e (x+)

Mehr

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ;

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ; Einige Graphen spezieller Funktionen Lineare Funktion: f = a C b. Der Graph ist eine Gerade (Linie), der Koeffizient a bei gibt die Steigung der Geraden (den Tangens des Winkels, den die Gerade mit der

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Technische Universität Hamburg Harburg WiSe 016/17 Kai Rothe Brückenkurs Mathematik Beispielaufgaben 5 Aufgabe 1: Für folgende Funktionen gebe man den Definitionsbereich D und Wertebereich W an und berechne,

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Aufgabe zum Thema: Gebrochen - rationale Funktionen

Aufgabe zum Thema: Gebrochen - rationale Funktionen Aufgabe zum Thema: Gebrochen - rationale Funktionen Eine gebrochen-rationale Funktion Z (x) hat als Zähler- N (x) funktion Z (x) eine lineare Funktion und als Nennerfunktion N (x) eine ganz-rationale Funktion

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Analysis. Kurvenuntersuchung ganzrationale Funktionen. Nullstellen, Extrempunkte, Wendepunkte, Symmetrie, Verhalten im Unendlichen

Analysis. Kurvenuntersuchung ganzrationale Funktionen. Nullstellen, Extrempunkte, Wendepunkte, Symmetrie, Verhalten im Unendlichen Analysis Nullstellen, Extrempunkte, Wendepunkte, Symmetrie, Verhalten im Unendlichen Allg. Gymnasien: ab J / Q Berufliche Gymnasien: ab Klasse Berufskolleg Alexander Schwarz August 08 Aufgabe : Untersuche

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung II

Abitur 2014 Mathematik Infinitesimalrechnung II Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2014 Mathematik Infinitesimalrechnung II Geben Sie jeweils den Term einer in R definierten periodischen Funktion an, die die angegebene Eigenschaft hat.

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

Technische Oberschule Stuttgart. Aufgabensammlung zur Aufnahmeprüfung Mathematik 2015

Technische Oberschule Stuttgart. Aufgabensammlung zur Aufnahmeprüfung Mathematik 2015 Aufgabensammlung zur Aufnahmeprüfung Mathematik 05 Aufgabe Lösen Sie die folgenden Gleichungen möglichst geschickt. a) (x 3) (3 + x) = 0 b) x 36 = 0 5 c) x 5x 0 + = 4 d) ( x 6) (3x + 8) = 0 Aufgabe Bestimmen

Mehr