Abbildungen und Funktionen Lösung:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abbildungen und Funktionen Lösung:"

Transkript

1 lineare Funktion f() = Neue Funktionsgleichung: f() = - 5 Es ändert sich nur der y-abschnitt Spiegeln an der -Achse Neue Funktionsgleichung: f() = - + Steigung und y-abschnitt mal (-) Neue Funktionsgleichung: f() = - - Steigung mal (-), y-abschnitt bleibt Spiegeln an der Winkelhalbierenden (y = ) Neue Funktionsgleichung: f() = + Steigung im Kehrwert ( m ) Streckfaktor k= Neue Funktionsgleichung: f ( ) Strecken: Steigung m bleibt gleich, y-abschnitt vergrößert sich Stauchen: Steigung m bleibt gleich, y-abschnitt verkleinert sich Drehung mit Ausnahme von zwei Drehwinkeln möglich. Die Gerade darf nicht parallel zur y-achse verlaufen. - - FU WS RF + MGS 5/06

2 quadratische Funktion g() = ² Neue Funktionsgleichung: g() = ( )² + Verschieben in -Richtung um a heißt (-a)² Spiegeln an der -Achse Neue Funktionsgleichung: g() = - ² jede Steigung und y-abschnitt mal (-) Neue Funktionsgleichung: g() = ² Wenn der Scheitelpunkt auf der y-achse liegt, bleibt die Funktionsgleichung gleich, andernfalls ändert sich das Vorzeichen in der Klammer. Aus ( + 4)² wird ( 4)² Spiegeln an der Winkelhalbierenden (y = ) Neue Funktionsgleichung: g() = +, definiert mit der positiven Wurzel; sonst wäre es keine Funktion! Streckfaktor k= Neue Funktionsgleichung: g( ) Die neuen Koordinaten des Scheitelpunktes erhält man, indem man die alten Koordinaten mit dem Streckfaktor multipliziert. Zentrisches Strecken: Parabel wird weiter (Achtung: von der Parabel sagt man dann, dass sie gestaucht wird!) Zentrisches Stauchen: Parabel wird enger (Achtung: von der Parabel sagt man dann, dass sie gestreckt wird!) Drehung nur um 80 und 60 möglich - - FU WS RF + MGS 5/06

3 kubische Funktion h() = ³ Neue Funktionsgleichung: h() = ( )³ + Verschieben in -Richtung um a heißt (-a)³ Spiegeln an der -Achse Neue Funktionsgleichung: h() = - ³ jede Steigung und Y-Abschnitt mal (-) Neue Funktionsgleichung: h() = - ³ jede Steigung mal (-), y-abschnitt bleibt Spiegeln an der Winkelhalbierenden (y = ) Neue Funktionsgleichung: h() = für positive und für negative Streckfaktor k= Neue Funktionsgleichung: h( ) 9 Die neuen Koordinaten des Wendepunktes erhält man, indem man die alten Koordinaten mit dem Streckfaktor multipliziert. Strecken: Der Graph wird deutlich (quadratisch) weiter (Achtung: vom Graphen sagt man dann, dass er gestaucht wird!) Stauchen: Der Graph wird deutlich (quadratisch) enger (Achtung: vom Graphen sagt man dann, dass er gestreckt wird!) Drehung um 80 und 60 möglich, das Bild ergibt die gleiche Funktion. Auch für alle Winkel α mit und handelt es sich um Funktionen, die aber schwer anzugeben sind. - - FU WS RF + MGS 5/06

4 Eponentialfunktion m() = Neue Funktionsgleichung: m() = Verschieben in -Richtung um a heißt (-a) im Eponenten Achtung: das ist keine Parallelverschiebung! Spiegeln an der -Achse Neue Funktionsgleichung: mal (-) m() = - Neue Funktionsgleichung: Basis im Kehrwert m() = ( ) oder m() = Spiegeln an der Winkelhalbierenden (y = ) lg Neue Funktionsgleichung: m( ) log lg lg dividiert durch den lg der Basis, d.h. Logarithmus zu der Basis der Urfunktion. Es handelt sich bei der Spiegelung an der Winkelhalbierenden um die Umkehrfunktion! Streckfaktor (k=) ( ) Neue Funktionsgleichung: m der y-abschnitt multipliziert sich mit dem Streckfaktor Strecken: der Graph wird flacher Stauchen: der Graph wird steiler FU WS RF + MGS 5/06

5 Drehung lg( ) um 90 : m( ) log ( ) lg um 80 : m ( ) lg m( ) log lg um 70 : (Spiegelung an - und y-achse!) (Spiegelung von log ( ) an - und y- Achse, d.h. auch hier mal (-) und Basis im Kehrwert) Auch für alle Winkel α mit und handelt es sich um Funktionen, die aber schwer anzugeben sind. Drehung allgemein: Es ist einfach zu erkennen, ob es sich bei der Drehung eines Funktionsgraphen wieder um einen Funktionsgraphen handelt oder nicht. Die Funktionsgleichung der gedrehten Funktion jedoch konkret anzugeben ist im Allgemeinen schwer FU WS RF + MGS 5/06

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Das kennen wir bereits aus dem vergangenen Unterricht: Funktionen, deren Graph eine Gerade darstellen, nennen wir lineare Funktionen. Sie haben die allgemeine Form: y = mx + b Detlef

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

A.23 Verschieben, Strecken, Spiegeln

A.23 Verschieben, Strecken, Spiegeln A.23 Verschieben 1 A.23 Verschieben, Strecken, Spiegeln A.23.01 Verschieben ( ) Funktionen kann man in x-richtung und in y-richtung verschieben. Verschiebung in positive x-richtung: x (x a) Man verschiebt

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Übungen zur Linearen und zur Quadratischen Funktion

Übungen zur Linearen und zur Quadratischen Funktion Übungen zur Linearen und zur Quadratischen Funktion W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Die Aufgabenstellungen 2 1.1 Aufgabe 1:................................... 2 1.2 Aufgabe 2:...................................

Mehr

3 Abbildungen in der Ebene

3 Abbildungen in der Ebene 18 3 Abbildungen in der Ebene Wir behandeln in diesem Kapitel Abbildungen von Punkten der Ebene auf Punkte. Ziel dieser Betrachtung ist, Funktionsgraphen mit diesen Abbildungen (punktweise) abzubilden

Mehr

Die quadratische Funktion

Die quadratische Funktion Die quadratische Funktion In einem Labor wird die Bewegung eines Versuchswagen aufgenommen. Es werden dabei die folgenden Messreihen aufgenommen: Messreihe 1 Messreihe 2 Messreihe 3 x in s 0,0 0,5 1,0

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen: Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse

Mehr

Einiges zu den Potenzfunktionen. Exponentialfunktionen

Einiges zu den Potenzfunktionen. Exponentialfunktionen Einiges zu den Potenzfunktionen Es sind zunächst zwei Arten der Potenzfunktionen zu unterscheiden. Erstens die eigentlichen Potenzfunktionen, bei denen die Variable x als Basis von Potenzen vorkommt. Diese

Mehr

Lineare Funktionen. Die lineare Funktion

Lineare Funktionen. Die lineare Funktion 1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Die Quadratische Gleichung (Gleichung 2. Grades)

Die Quadratische Gleichung (Gleichung 2. Grades) - 1 - VB 003 Die Quadratische Gleichung (Gleichung. Grades) Inhaltsverzeichnis Die Quadratische Gleichung (Gleichung. Grades)... 1 Inhaltsverzeichnis... 1 1. Die Quadratische Gleichung (Gleichung. Grades)....

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ;

K3 K2 K x. plot x 2 C x K 2, x = K3..2 ; Einige Graphen spezieller Funktionen Lineare Funktion: f = a C b. Der Graph ist eine Gerade (Linie), der Koeffizient a bei gibt die Steigung der Geraden (den Tangens des Winkels, den die Gerade mit der

Mehr

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen.

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. IV Umkehrfunktion Umkehrbarkeit 0. Klasse: Logarithmusfunktionen sind die Umkehrungen der Eponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. f f -> 2 2 -> 2 -> - - -> 2 4 -> -> 4 Graphen

Mehr

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen Dr. Jürgen Senger MATHEMATIK Grundlagen für Ökonomen ÜBUNG.. LÖSUNGEN. Es handelt sich um lineare Funktionen (Geraden), die sich in der Steigung und im Ordinatenschnittpunkt unterscheiden. Der Linearfaktor

Mehr

Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins Bogenmaß: α. α 360. b: Frequenz c: Phasenverschiebung 1,4 1,4 1,0

Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins Bogenmaß: α. α 360. b: Frequenz c: Phasenverschiebung 1,4 1,4 1,0 Wirsberg-Gmnasium Grundwissen Mathematik 0. Jahrgangsstufe Lerninhalte Fakten-Regeln-eispiele Kreis - Kugel Länge des Kreisbogens: Flächeninhalt des Kreissektors: Umrechnung ins ogenmaß: α b π r 0 α π

Mehr

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 -

Die Kugel Grundwissen Mathematik Geometrie Klasse 10. Definitionen und Regeln. Kugeloberfläche: O Kugel = 4 r² π. Kugelvolumen: - 1 - 10.1 Grundwissen Mathematik Geometrie Klasse 10 Die Kugel Beispiele Kugeloberfläche: O Kugel = 4 r² π r Kugelvolumen: V Kugel = 4 3 r³ π - 1 - 10. Grundwissen Mathematik Geometrie Klasse 10 Kreissektor

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 20 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 4255 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( )

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( ) 23 4 Abbildungen von Funktionsgraphen Der Graph zu einer gegebenen Funktion f ist die Menge aller ( ) sind. Für einen einzelnen Punkte, deren Koordinaten ; f () Punkt des Graphen gibt man einen Wert aus

Mehr

Als Nullstelle einer Funktion f bezeichnet man eine Stelle mit dem Funktionswert 0. d.h. x 0 ist Nullstelle von f f(x 0 ) = 0.

Als Nullstelle einer Funktion f bezeichnet man eine Stelle mit dem Funktionswert 0. d.h. x 0 ist Nullstelle von f f(x 0 ) = 0. Der Funktionsbegriff Eine Funktion drückt die Abhängigkeit einer Größe von einer anderen aus. Traditionell werden Funktionen als Regel oder Vorschrift definiert, die eine Eingangsgröße (Argument, meist

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden.

Funktionenklassen. Einiges, was wir bisher über Funktionen gelernt haben kann auf alle Funktionen übertragen werden. R. Brinkmann http://brinkmann-du.de Seite 0.0.008 Einführung: Funktionenklassen Bisher haben wir nur ganzrationale Funktionen kennen gelernt. Sie gehören zu der Klasse der Rationalen Funktionen. In der

Mehr

Gruber I Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch mit Tipps und Lösungen

Gruber I Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch mit Tipps und Lösungen Gruber I Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist speziell auf die Anforderungen der Profiloberstufe

Mehr

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 - - Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion Wolfgang Kippels. September 017 Inhaltsverzeichnis 1 Vorwort Zusammenstellung der Grundlagen 3 3 Aufgaben 3.1 Aufgabe 1:................................... 3. Aufgabe :...................................

Mehr

Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion

Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion Auswirkungen von Summanden und Faktoren auf den Verlauf einer Funktion Alexander Kirst 9. Februar Inhaltsverzeichnis Untersuchung der Funktion f(x) = c x n Untersuchung der Funktion f(x) = x n + d 3 Untersuchung

Mehr

Funktionsgraphen (Aufgaben)

Funktionsgraphen (Aufgaben) Gymnasium Pegnitz JS 9 August 2007 Funktionsgraphen (Aufgaben) 1. Betrachte die beiden linearen Funktionen f(x) = x + 2 und g(x) = x 3 und die quadratische Funktion p(x) = f(x) g(x) (a) Zeichne die Graphen

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011

Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011 Korrigendum Lambacher Schweizer 9/,. Auflage Klett und Balmer Verlag, Baar. April. Seite, Aufgabe Tipp: Suche dir Punkte auf dem Kreis, die du zur Bestimmung heranziehen kannst Bestimme das Streckzentrum

Mehr

Funktionen ) W(t) = 105 l 15 l. 3) 7 Minuten; Werte von 0 bis 7 Minuten; Definitionsmenge 4) Werte von 0 bis 105 l 6) Der Graph ist eine Gerade.

Funktionen ) W(t) = 105 l 15 l. 3) 7 Minuten; Werte von 0 bis 7 Minuten; Definitionsmenge 4) Werte von 0 bis 105 l 6) Der Graph ist eine Gerade. Funktionen. ) W(t) = l l min t ) W l ) t min W(t) l 9 ) Minuten; Werte von bis Minuten; Definitionsmenge ) Werte von bis l ) Der Graph ist eine Gerade. t min. a) ) ) ) - - - - - - - - - Funktion. Die Funktions-

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung

Mehr

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am 24.2.15 1 NT 2013: Quadratische und lineare Funktionen Die abgebildete Parabel gehört zur Funktion f mit f(x) = x 2 5 x + 4. a) Zeige durch eine Rechnung,

Mehr

Einführung der quadratischen Funktionen

Einführung der quadratischen Funktionen R. Brinkmann http://brinkmann-du.de Seite 08.0.008 Einführung der quadratischen Funktionen Jeder, der sich auf die Führerscheinprüfung vorbereitet sollte wissen, dass sich der Anhalteweg eines bremsenden

Mehr

Fit in Mathe. Januar Klassenstufe 11 Umkehrfunktion. f x ist 2,5 also Buchstabenpaar GA.

Fit in Mathe. Januar Klassenstufe 11 Umkehrfunktion. f x ist 2,5 also Buchstabenpaar GA. Thema Musterlösungen 1 Umkehrfunktion Bestimme zur Funktion f die Umkehrfunktion f, dargestellt als Tabelle. x 0 1 2 3 4 f x 1 3 5 7 9 x 0 1 2 3 4 f x -0,5 0 0,5 1 1,5 Die Summe der 5 Werte von f x ist

Mehr

Parabeln und quadratische. Gleichungen. 3.1 Die Gleichung y = ax 2

Parabeln und quadratische. Gleichungen. 3.1 Die Gleichung y = ax 2 Parabeln und quadratische Gleichungen In Klasse 7 hast du schon Geraden und Hperbeln als Funktionsgraphen kennen gelernt. Jetzt lernst du eine weitere Kurve kennen, und zwar die Parabel, zunächst aber

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Nordrhein-Westfalen. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Nordrhein-Westfalen. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Nordrhein-Westfalen Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen

Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten

Mehr

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an.

1 Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. Teste dich! - (/6) Benenne Gemeinsamkeiten und Unterschiede der beiden Graphen und gib die zugehörigen Funktionsgleichungen an. 0 Cornelsen Verlag, Berlin. Alle Rechte vorbehalten. Gemeinsamkeiten: Beide

Mehr

3 Abbildungen von Funktionsgraphen

3 Abbildungen von Funktionsgraphen 32 3 Abbildungen von Funktionsgraphen In Kapitel 1 dieses Workshops haben wir uns mit der Transformation von geometrischen Figuren im Achsenkreuz beschäftigt: mit Verschiebungen, Spiegelungen, Achsenstreckungen

Mehr

Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0.

Klasse Dozent. Musteraufgaben. f(x) = g(x) = Bestimme die zu den abgebildeten Graphen. gehörenden Funktionsgleichungen!0. Fach: Mathematik - Quadratische Funktionen Anzahl Aufgaben: 51 Musteraufgaben Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)

Mehr

3 Abbildungen von Funktionsgraphen

3 Abbildungen von Funktionsgraphen 27 3 Abbildungen von Funktionsgraphen In Kapitel 1 dieses Workshops haben wir uns mit der Transformation von geometrischen Figuren im Achsenkreuz beschäftigt: mit Verschiebungen, Spiegelungen, Achsenstreckungen

Mehr

6.Gebrochen-rationale Funktionen

6.Gebrochen-rationale Funktionen Das solltest du können 6.Gebrochen-rationale Funktionen Eine gebrochen-rationale Funktion ist eine Bruchunktion, deren Nenner die Variable enthält. ( ) 4 Bsp: Der Unterschied zu den bisher bekannten linearen

Mehr

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion

Mathematik Übungsaufgaben zur Vorbereitung auf die 3. Klausur Lösung. 1. Formen Sie die Scheitel(punkt)form der quadratischen Funktion Datum:.0.0 Thema: Quadratische Funktionen. Formen Sie die Scheitel(punkt)form der quadratischen Funktion f mit f(x) = ( x ) + in die Polynomdarstellung um und bestimmen Sie die Nullstellen und den Schnittpunkt

Mehr

Grundwissen. 10. Jahrgangsstufe. Mathematik

Grundwissen. 10. Jahrgangsstufe. Mathematik Grundwissen 10. Jahrgangsstufe Mathematik 1 Kreis und Kugel 1.1 Kreissektor und Bogenmaß Kreis Umfang U = π r=π d Flächeninhalt A=π r Kreissektor mit Mittelpunktswinkel α Bogenlänge b= α π r 360 Flächeninhalt

Mehr

Kap. 7: Die quadratische Funktion numerisch, graphisch, theoretisch

Kap. 7: Die quadratische Funktion numerisch, graphisch, theoretisch Kap. 7: Die quadratische Funktion numerisch, graphisch, theoretisch Dr. Dankwart Vogel Uni Essen W 009/10 1 Drei Beispiele Beispiel 1 Rohölreserven der Welt Wann ist der Vorrat erschöpft? Uni Essen W 009/10

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1

Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Aufgabe 1.: 6,0 5,0,0 3,0,0 1,0 0,0 1,0,0 3,0,0 5,0 6,0 7,0 f() 31,0,5 15,0 8,5 3,0 1,5 5,0 7,5 9,0 9,5 9,0 7,5 5,0 1,5 g(),0 9,0 18,0 9,0,0

Mehr

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2013 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Rudolf Brinkmann Seite und W = {x 3 x 6}

Rudolf Brinkmann Seite und W = {x 3 x 6} Rudolf Brinkmann Seite 0.0.008 Lineare Funktionen Es soll der Graph der Funktion f = {,y y = f() = } in den Bereichen D { } = und W = { 6} - - 0 f() = -6-0 6 9 erstellt werden. 6 6 5 0 Definition Eine

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

Eingangstest aus der Mathematik

Eingangstest aus der Mathematik Staatliche Fachoberschule und Berufsoberschule Coburg FOS: Technik Wirtschaft, Verwaltung und Rechtspflege Sozialwesen BOS: Technik - Wirtschaft REGIOMONTANUS-SCHULE C O B U R G Eingangstest aus der Mathematik

Mehr

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation

Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen

Mehr

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g. Gmnasium bei St. Anna, Augsburg Seite Grundwissen 8. Klasse 8. Proportionalität 8.. Proportionale Zuordnungen Gehört bei einer Zuordnung zweier Größen zu einem Vielfachen der einen Größe das gleiche Vielfache

Mehr

2.4 Exponential - und Logarithmus - Funktionen

2.4 Exponential - und Logarithmus - Funktionen 25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

QUADRATISCHE UND KUBISCHE FUNKTION

QUADRATISCHE UND KUBISCHE FUNKTION QUADRATISCHE UND KUBISCHE FUNKTION Quadratische Funktion 1. Bedeutung der Parameter Als quadratische Funktionen werde alle Funktionen bezeichnet, die die Form y = a*x² + b*x + c aufweisen, also alle, bei

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit. Wertemenge: \W =IR

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit. Wertemenge: \W =IR WS 8/9 5 7 Elementarmathematik (LH) und Fehlerfreiheit. Funktionen.. Die quadratische Funktion... Die quadratische Grundfunktion Wir betrachten die Gleichung = als Funktionsgleichung und bezeichnen die

Mehr

lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0

lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 1 7. Der Graph einer quadratischen Funktion lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 Es wird im Folgenden untersucht,

Mehr

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1

Analysis 1. Einführung. 22. März Mathe-Squad GbR. Einführung 1 Analysis 1 Einführung Mathe-Squad GbR 22. März 2017 Einführung 1 y 10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 910 2 x /* */ Einführung Allgemeines 2 Allgemeines Funktion f(x) bildet jeden

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α Grundwissen athematik 0.Klasse Gymnasium SOB.Kreiszahl..Kreis α Länge des Kreisbogens b r 360 α Fläche des Kreissektors A r 360 Das Bogenmaß b eines Winkels α ist die Länge der zugehörigen Bogenlänge b

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

1 Abbildungen in der Ebene

1 Abbildungen in der Ebene 1 Inhalt 1 Abbildungen in der Ebene... 2 1.1 Verschiebung... 3 1.2 Spiegelung... 3 1.2.1 Achsenspiegelung... 3 1.3 Drehung... 4 1.3.1 Die Drehung... 4 1.4 Zentrische Streckung... 5 2 Funktionen... 7 2.1

Mehr

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten

Mehr

1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität.

1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität. 34 1.7. Die indirekte (umgekehrte) Proportionalität a Die Funktion f : y = a 0, 0 heisst umgekehrte (indirekte) Proportionalität. Spezialfall a = 1: f: Bilde den Kehrwert der gegebenen Zahl. An der Stelle

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

Wie wir in Mathematik für alle die Welt der Mathematik sehen Folie 1 Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2013

Wie wir in Mathematik für alle die Welt der Mathematik sehen Folie 1 Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg, 2013 Ein Blick ----- Einblick Wie wir in Mathematik für alle die Welt der Mathematik sehen Folie 1 Ein Weg ist gangbar vorbereitet Wie wir in Mathematik für alle die Welt der Mathematik sehen Folie 2 Exponentialfunktion

Mehr

Anhang 1: Einige mathematische Grundlagen

Anhang 1: Einige mathematische Grundlagen Prof. Dr. H.-H. Kohler, WS 4/5 PC Anhang Anhang- Anhang : Einige mathematische Grundlagen. Funktion, Ableitung, Differential, Integral,. Näherung Wir schreiben eine Funktion f ( ) vereinfacht in der Form:

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die

Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Die allgemeine Sinusfunktion Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Funktionsgleichung f(x) x. Aus ihr erzeugt man andere Parabeln, indem man den Funktionsterm verändert.

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Maturitätsprüfung Mathematik

Maturitätsprüfung Mathematik Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen .. Prüfungsaufgaben zu Eponential- und Logarithmusfunktionen Aufgabe : Funktionsanpassung bei Eponentialfunktionen () Bestimme die Gleichung der Eponentialfunktion f() = c a, deren Schaubild durch die

Mehr

Die in diesem Skriptum behandelten Themen entsprechen etwa dem Niveau der Sekundarstufe I. Kontakt zum Autor:

Die in diesem Skriptum behandelten Themen entsprechen etwa dem Niveau der Sekundarstufe I. Kontakt zum Autor: Rüdiger Kuhnke Mathematischer Vorkurs zur Physik Die in diesem Skriptum behandelten Themen entsprechen etwa dem Niveau der Sekundarstufe I. Version 0. vom.0.008 Noch nicht vollständig korrigiert Kontakt

Mehr

ABBILDUNGEN. Schiebung, Drehung, Spiegelung, Streckung. Version 2.0 Herbert Paukert. Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ]

ABBILDUNGEN. Schiebung, Drehung, Spiegelung, Streckung. Version 2.0 Herbert Paukert. Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ] Ein PAUMEDIA-Projekt Herbert Paukert 1 ABBILDUNGEN Schiebung, Drehung, Spiegelung, Streckung Version 2.0 Herbert Paukert Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ] Hauptachsen-Transformationen

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK 22. Juni 2016 8:0 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Symmetrien, gerade und ungerade Funktionen

Symmetrien, gerade und ungerade Funktionen Symmetrien, gerade und ungerade Funktionen Wir Menschen fühlen uns von Symmetrien angezogen. 1-E1 1-E2 Vorausgesetzte Kenntnisse Definition einer Funktion, einer Relation, des Definitionsbereiches einer

Mehr

Differenzialrechnung Einführung 1

Differenzialrechnung Einführung 1 0.0.06 Änderungstendenz einer Funktion Differenzialrechnung Einführung Eines der wichtigsten Merkmale einer Funktion ist die Änderungstendenz, womit angegeben wird, wie stark die Funktionswerte f() zu-

Mehr