EINMALEINS BEZIEHUNGSREICH

Größe: px
Ab Seite anzeigen:

Download "EINMALEINS BEZIEHUNGSREICH"

Transkript

1 EINMALEINS BEZIEHUNGSREICH Thema: Übung des kleinen Einmaleins; operative Beziehungen erkunden Stufe: ab 2. Schuljahr Dauer: 2 bis 3 Lektionen Materialien: Kleine Einmaleinstafeln (ohne Farben), Punktefelder Quelle: Wittmann, E.Ch. und Müller, G.N.: Muster und Strukturen als fachliches Grundkonzept des Mathematikunterrichts der Grundschule. In: Walther, G. u.a. (Hg.), Bildungsstandards für die Grundschule: Mathematik konkret. Berlin: Cornelsen Scriptor 2007 Bearbeitung: Salome Tschopp und Elmar Hengartner Aufgabe A: Folgen von Aufgabenpaaren (waagrecht in der Maltafel) 1 Starte mit den Malaufgaben 2x5 und 1x6. Sie liegen in der Maltafel untereinander. Berechne die Ergebnisse. Gehe dann waagrecht nach rechts zu den nächsten Aufgabenpaaren und berechne die Ergebnisse: 2 x 5 = 3 x 6 = 4 x 7 = 5 x 8 =... 1 x 6 = 2 x 7 = 3 x 8 = 4 x 9 =... Beschreibe die Päckchen. Vergleiche die Ergebnisse. 2 Wähle selber Paare von untereinander liegenden Einmaleinsaufgaben. Setze in gleicher Weise wagrecht nach rechts fort und notiere die Rechnungen wie oben. 1

2 Aufgabe B: Folgen von Aufgabenpaaren (senkrecht in der Maltafel) 3 Starte mit den beiden Malaufgaben 1 x 8 und 2 x 9. Sie liegen in der Maltafel nebeneinander. Gehe senkrecht nach oben zu den nächsten Aufgabenpaaren und rechne die Ergebnisse: 1 x 8 =... 2 x 9 =... 2 x 7 =... 3 x 8 =... 3 x 6 =... 4 x 7 =... 4 x 5 =... 5 x 6 = Beschreibe die Päckchen. Vergleiche die Ergebnisse. 4 Wähle selber Paare von nebeneinander liegenden Einmaleinsaufgaben, rechne sie aus und setze sie in gleicher Art senkrecht nach oben oder nach unten fort:... x... = x... = x... = x... =... 2

3 Worum es geht? Die Idee zu dieser Lernumgebung verdanken wir Erich Ch. Wittmann: Wir folgen seiner Beschreibung im Aufsatz: Wittmann, E.Ch./ Müller, G.N.: Muster und Strukturen als fachliche Grundkonzepte des Mathematikunterrichts der Grundschule. Aufgabe A: Folgen von Aufgabenpaaren (waagrecht in der Maltafel) Die Übung des Einmaleins wird in dieser Lernumgebung mit der Maltafel so strukturiert, dass operative Beziehungen zwischen den Einmaleinsaufgaben unmittelbar sichtbar werden und der Kontrolle der Ergebnisse dienen können. Man startet mit einer Malaufgabe, zum Beispiel 2 x 5 und entwickelt daraus ein Päckchen nach folgender Regel: 2 x 5 = 3 x 6 = 4 x 7 = 5 x 8 =... 1 x 6 = 2 x 7 = 3 x 8 = 4 x 9 =... Jede Aufgabe in der zweiten Zeile entsteht aus der darüber stehenden dadurch, dass der erste Faktor um 1 erniedrigt und der zweite um 1 erhöht wird. In jeder Zeile nehmen die Faktoren von einem Feld zum nächsten um je 1 zu. Die Pünktchen am Schluss deuten an, dass das Päckchen fortgesetzt werden kann, wenn und so weit ein Kind das möchte. (ebd. S. XX). Dass die Kinder dies taten, zeigen ihre Dokumente. In ihnen wird auch deutlich, dass sie ein Muster entdeckt haben, dass nämlich die Ergebnisse der zweiten Zeile durchgehend um 4 kleiner sind als die Ergebnisse der darüber stehenden Aufgaben. Und einzelne Kinder konnten dies anhand von Punktfeldern (Kopiervorlage 2) auch begründen (siehe das Dokument von Melanie im Abschnitt Kinderdokumente aus der Erprobung). Aufgabe B: Folgen von Aufgabenpaaren (senkrecht in der Maltafel) Die Regel für die Bildung der Päckchen wird abgewandelt: Man startet zum Beispiel mit 1 x 8 und entwickelt folgendes Päckchen: 1 x 8 =... 2 x 9 =... 2 x 7 =... 3 x 8 =... 3 x 6 =... 4 x 7 =... 4 x 5 =... 5 x 6 = In beiden Päcken rechts wie links wird der erste Faktor um 1 erhöht, während der zweite Faktor um 1 erniedrigt wird. Von links nach rechts werden beide Faktoren der ersten Aufgabe um 1 erhöht. Wiederum bleiben die Ergebnisunterschiede konstant. Und wiederum haben die Kinder die Päckchen teils fortgesetzt, und einzelne versuchten die Konstanz der Ergebnisunterschiede an Punktefeldern zu begründen (siehe das Dokument von Tim). 3

4 Kinderdokumente aus der Erprobung Aufgabe A: Folgen von Aufgabenpaaren (waagrecht in der Maltafel) Simone hat drei Päckchen von Aufgabenpaaren waagrecht in der Maltafel fortgesetzt: - die vorgegebene mit Start bei 2 x 5 und 1 x 6 (über die Maltafelgrenze hinaus!), - die mittlere mit vertauschten Faktoren beginnend mit 2 x 1 und 1 x 2 und - eine dritte beginnend mit 6 x 1 und 5 x 2. Simone stellt fest, dass die Ergebnisunterschiede der Aufgabenpaare immer gleich bleiben. Sie begründet zudem, weshalb die Ergebnisunterschiede in der ersten und der dritten Folge gleich sind, nämlich 4, weil sie gleich weit von der Mitte, das heisst gleich weit von den Aufgaben der Quadratzahlen entfernt sind. 4

5 Melanie gibt anhand von Punktfeldern, in denen sie die Aufgaben anmalt, eine Begründung, weshalb der Ergebnisunterschied übereinander liegender Aufgabenpaare immer 4 bleibt: Von 2 x 5 zu 1 x 6 fällt 1 x 5 weg, dafür kommt 1 hinzu, der Unterschied ist also 4. Von 3 x 6 zu 2 x 7 fällt 1 x 6 weg, dafür kommen 2 dazu, der Unterschied bleibt 4. Von 4 x 7 zu 3 x 8 fällt 1 x 7 weg, dafür kommen 3 hinzu, der Unterschied bleibt 4. Und das gilt auch für die weiteren Beispiele. 5

6 Aufgabe B: Folgen von Aufgabenpaaren (senkrecht in der Maltafel) Daniela hat drei Folgen von Aufgabenpaaren senkrecht in der Maltafel fortgesetzt: - die vorgegebene Folge, begonnen mit 1 x 8 und 2 x 9 (siehe die Pfeile), - eine zweite begonnen von oben mit 6 x 1 und 7 x 3 und - eine dritte Folge begonnen von oben mit 7 x 6 und 8 x 7. Sie stellt fest, dass die Ergebnisunterschiede zwischen Aufgabenpaaren nebeneinander in allen drei Folgen jeweils gleich bleiben. In der ersten Folge ist der Unterschied immer 10, in der zweiten immer 8 und in der dritten immer 14. 6

7 Simone gibt keinerlei Erläuterungen weder Feststellungen zu gleichen Abständen der Ergebnisse noch Begründungen. Aber sie hat entlang der strukturierten Aufgabenpäckchen fast die gesamte Einmaleinstafel gerechnet, insgesamt 80 Aufgaben. Und sie hat alle richtig gerechnet und nur eine einzige nicht der Struktur entsprechend bestimmt (2 x 4 = 8 statt 2 x 5 = 10). Es ist anzunehmen, dass auch sie auf die gleichen Abstände zwischen den Ergebnissen aufmerksam wurde. Ohne dieses Muster hätte sie kaum so viele Aufgaben gerechnet. 7

8 David hat ähnlich viele Aufgaben wie Simone gerechnet.. Von Anfang an gilt seine Aufmerksamkeit aber den gleich bleibenden Unterschieden zwischen den Aufgabenpaaren, die er vertikal fortsetzt: Von der 1. Reihe zur 2. Reihe ist immer ein gewisser Unterschied, z.b. 10, 17, 14, 18, 13, 11 und 11, schreibt er nach den ersten Erkundungen, welche er dann weiter fortsetzt mit Aufgabenpaaren mit Unterschied 4, 5 und 8. Er macht eine interessante Feststellung: : Desto weiter ich nach links gehe (gemeint: bei der Wahl der vertikal fortgesetzten Aufgabenpaare in der Maltafel), desto kleiner werden die Ergebnisse (gemeint: Ergebnisunterschiede). 1

9 Timo rechnet nach dem vorgegebenen Päckchen, von unten beginnend mit 1 x 8 und 2 x 9, zwei weitere Folgen (Päckchen) von Aufgabenpaaren, die er unmittelbar nach rechts anschliesst. Wie andere Kinder auch geht er über die Grenze der Maltafel hinaus und setzt die Struktur der Aufgabenfolge fort. Interessant ist Timos neue Fragestellung, wie sich denn die Aufgaben waagrecht auf jeder Zeile entwickeln. Er untersucht das an der obersten Zeile von 5 x 4, 6 x 5, 7 x 6, 8 x 7, 9 x 8 und 10 x 9 und schreibt dazu, dass beide Faktoren jeweils um 1 grösser werden: Von Rechnung zu Rechnung wächst die vordere Zahl und die hintere Zahl um eins. Und zu den Ergebnissen schreibt er: Von Resultat zu Resultat wachsen die Abstände immer um zwei in einer geraden Reihe. Gemeint ist: Sie wachsen immer um die nächste gerade Zahl, was der Bildungsregel der Fast-Quadratzahlen entspricht. 2

10 Robin begründet anhand von Punktefeldern, in denen er die Aufgaben des ersten vorgegebenen Päckchens anmalt, weshalb der Ergebnisunterschied nebeneinander liegender Aufgabenpaare immer 10 bleibt : Von 1 x 8 zu 2 x 9 kommen 8 hinzu plus 2 rechts vertikal. Von 2 x 7 zu 3 x 8 kommen 7 hinzu plus 3 rechts vertikal. Von 3 x 6 zu 4 x 7 kommen 6 hinzu plus 4 rechts vertikal. Von 4 x 5 zu 5 x 6 kommen 5 hinzu plus 5 rechts vertikal usw. 3

11 Kopiervorlage 2: Punktefelder zum Anmalen von Aufgabenpaaren 4

12 5

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe:

GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe: GLEICH WEIT WEG Thema: Sich orientieren und operieren an der Tausenderreihe Klasse: 3. Klasse (Zahlenbuch nach S. 26-27) Dauer: 3-4 Lektionen Material: Tausenderreihe, Arbeitsblatt, evt. Plättchen Bearbeitung:

Mehr

MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN

MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN MIT WÜRFELN BAUEN: ZAHLENFOLGEN ENTDECKEN Thema: Zahlenfolgen (Dreieckszahlen, Quadratzahlen,...) geometrisch darstellen und in Wertetabellen beschreiben. Klassen: 3. bis 5. Klasse (z.b. zu Zahlenbuch

Mehr

Zauberquadrate entdecken

Zauberquadrate entdecken Haus 7: Gute Aufgaben Zauberquadrate entdecken Von Mathematik kann man natürlich erst auf den höheren Stufen sprechen. In der Grundschule wird ja nur gerechnet (Moderator der Sendung Kulturzeit im 3sat,

Mehr

Automatisieren von Strategien, nicht von Einzelfakten!

Automatisieren von Strategien, nicht von Einzelfakten! Automatisierendes Üben mit "rechenschwachen" Kindern: Automatisieren von Strategien, nicht von Einzelfakten! 20. Symposion mathe 2000 Dortmund, 18. September 2010 Michael Gaidoschik, Wien michael.gaidoschik@chello.at

Mehr

Mathematische Strukturen entdecken, darstellen und erörtern

Mathematische Strukturen entdecken, darstellen und erörtern Mathematisches Denken hört nicht beim Ergebnis auf Mathematische Strukturen entdecken, darstellen und erörtern ein Thema für alle Kinder von Anfang an Marcus Nührenbörger Mathematische Strukturen entdecken,

Mehr

Liste der Kopiervorlagen

Liste der Kopiervorlagen Liste der Kopiervorlagen KV 1 Auf einen Blick: Anzahlen gliedern 1 Spielplan: Taler sammeln Gleich weit weg 1 2 KV 2 Gleich weit weg 1 KV 3 Gleich weit weg 2 KV 4 KV 5 KV 6 KV 6 KV 7 Zahlen und Ziffern

Mehr

Download. erarbeiten Mathematik 3. Mathematik 3. Multiplikation und Division. Nina Kostka. Lerninhalte selbstständig

Download. erarbeiten Mathematik 3. Mathematik 3. Multiplikation und Division. Nina Kostka. Lerninhalte selbstständig Download Nina Kostka Lerninhalte selbstständig erarbeiten Mathematik 3 Mit Tippkarten Schritt für Schritt zur richtigen Lösung Nina Kostka Lerninhalte selbstständig erarbeiten Mathematik 3 Grundschule

Mehr

Freiräume im Mathematikunterricht: Geschlossene Lehrmittelaufgaben öffnen

Freiräume im Mathematikunterricht: Geschlossene Lehrmittelaufgaben öffnen Freiräume im Mathematikunterricht: Geschlossene Lehrmittelaufgaben öffnen Nachfolgend werden die verschiedenen Wege, die von der geschlossenen zur offenen Aufgabe führen, aufgezeigt und mit Beispielen

Mehr

RLP Daten TransKiGs Unterrichtsbeispiele Grundschule. Daten und Zufall 2. Dr. Elke Warmuth. Sommersemester 2016 1 / 36

RLP Daten TransKiGs Unterrichtsbeispiele Grundschule. Daten und Zufall 2. Dr. Elke Warmuth. Sommersemester 2016 1 / 36 Daten und Zufall 2 Dr. Elke Warmuth Sommersemester 2016 1 / 36 Berliner Rahmenlehrplan ab 2017 Neuer RLP, Inhaltsbezogene Standards, S. 30 2 / 36 Berliner Rahmenlehrplan ab 2017 Neuer RLP, Inhaltsbezogene

Mehr

Was man mit Schönen Päckchen alles machen kann. Michael Link. Pädagogische Hochschule des Kantons St.Gallen

Was man mit Schönen Päckchen alles machen kann. Michael Link. Pädagogische Hochschule des Kantons St.Gallen Was man mit Schönen Päckchen alles machen kann Michael Link 1 Übersicht Einordnung: Strukturiertes Üben Einige Varianten der Schönen Päckchen Förderung der sprachlichen Ausdrucksfähigkeit Förderung des

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

Einmaleins-Tabelle ausfüllen

Einmaleins-Tabelle ausfüllen Einmaleins-Tabelle ausfüllen M0124 FRAGE Kannst du in die leere Einmaleins-Tabelle alle Ergebnisse eintragen? ZIEL über das Einmaleins geläufig verfügen MATERIAL Einmaleins-Tabelle (leer), Schreibzeug,

Mehr

SUDOKU. l l l l l l l l l l l l l l l l. l l l l l l l l l l l l l l l l. l l l l l l l l l l l l l l l l

SUDOKU. l l l l l l l l l l l l l l l l. l l l l l l l l l l l l l l l l. l l l l l l l l l l l l l l l l SUDOKU Ein Sudoku ist ein Gitter mit Kästchen. Die leeren Kästchen werden mit vier verschiedenen Zahlen, Bildern, Buchstaben oder Farben gefüllt. Ein kleines Sudoku hat vier waagrechte Zeilen und gleichzeitig

Mehr

Kopfrechenspiele (1)

Kopfrechenspiele (1) Kopfrechenspiele (1) Die folgenden Spiele sind jeweils für 2 4 Spieler geeignet. Vervielfältigen Sie die Spielanleitungen jeweils in der Anzahl der Spielgruppen. Außerdem benötigt jeder Spieler ein Exemplar

Mehr

Teil A - Einführung und Tipps für Lernbegleiter (Eltern, Pädagogen, Therapeuten, Lehrer)

Teil A - Einführung und Tipps für Lernbegleiter (Eltern, Pädagogen, Therapeuten, Lehrer) Teil A - Einführung und Tipps für Lernbegleiter (Eltern, Pädagogen, Therapeuten, Lehrer) Methode des Konzentrierten Einmaleins-Trainings Teil A Dieses Training baut auf den Teil des Konzentrierten Einmaleins-Kurses

Mehr

11. Akkorde und Harmonie

11. Akkorde und Harmonie 11. Akkorde und Harmonie Menschen haben die Fähigkeit, Töne nicht nur hintereinander als Melodie wahrzunehmen, sondern auch gleichzeitig in ihrem Zusammenwirken als Harmonie zu erfassen. Man spricht hier

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr

beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007

beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007 Der Autor: Matthias Nowak - geboren 1978 - arbeitet seit 2002 als Nachhilfelehrer beim Studienkreis in Schorndorf (mit dem Schwerpunkt Dyskalkulie). Seit 2007 arbeitet er zusätzlich freiberuflich als Autor

Mehr

Pentominos auf der Hundertertafel

Pentominos auf der Hundertertafel Pentominos auf der Hundertertafel Thema: Stufe: Dauer: Material: Addition, Rechengesetze 3. bis 5. Schuljahr 2 bis 4 Lektionen Pentomino-Schablonen aus Folie, Karton oder Holzwürfeln (falls die entsprechende

Mehr

Lösung zur Aufgabe Würfel färben von Heft 20

Lösung zur Aufgabe Würfel färben von Heft 20 Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein

Mehr

Gratis Excel SVERWEIS Funktions-Anleitung, Tutorial, ebook, PDF-E-Book

Gratis Excel SVERWEIS Funktions-Anleitung, Tutorial, ebook, PDF-E-Book Gratis Excel SVERWEIS Funktions-Anleitung, Tutorial, ebook, PDF-E-Book Wir wollen wissen wieviel Umsatz Vertreter Müller im Juni gemacht hat? Dazu klicken wir irgendwo in ein Feld und geben ein: =SVERWEIS

Mehr

(04) Zum Themengebiet Rationale Zahlen

(04) Zum Themengebiet Rationale Zahlen Materialien zum Modellversuch: Vorschläge und Anregungen zu einer veränderten Aufgabenkultur (04) Zum Themengebiet Rationale Zahlen (Jahrgangsstufe 7) Die Arbeit entstand im Rahmen des BLK-Modellversuchsprogramms

Mehr

Durch Wissen Millionär WerDen... Wer hat zuerst die Million erreicht? spielanleitung Zahl der spieler: alter: redaktion / autor: inhalt:

Durch Wissen Millionär WerDen... Wer hat zuerst die Million erreicht? spielanleitung Zahl der spieler: alter: redaktion / autor: inhalt: Spielanleitung Durch Wissen Millionär werden... Diesen Traum kann man sich in diesem beliebten Quiz-Spiel erfüllen. Ob allein oder in der geselligen Runde dieses Quiz enthält 330 Fragen und 1.320 Multiple-Choice-Antworten.

Mehr

Mathematikhaltige Situationen im Kindergarten vielfältig nutzen 34.01.01 Schuljahr: 15/16

Mathematikhaltige Situationen im Kindergarten vielfältig nutzen 34.01.01 Schuljahr: 15/16 Mathematikhaltige Situationen im Kindergarten vielfältig nutzen 34.01.01 Schuljahr: 15/16 Mathematikhaltige Situationen im Kindergarten gibt es viele. Entscheidend ist jedoch, wie diese aufgegriffen und

Mehr

Wo liegt der Fehler? Kopiervorlage 3-0

Wo liegt der Fehler? Kopiervorlage 3-0 Kopiervorlage 3-0 Wo liegt der Fehler? Schülerinnen und Schüler analysieren fehlerhafte Lösungswege beim Rechnen mit Brüchen und Dezimalzahlen Kathrin Winter, Gerald Wittmann Online-Ergänzungen zu dem

Mehr

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen.

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen. Box Mathematik 2 Begleitheft mit 20 Kopiervorlagen zur Lernstandskontrolle Beschreibung der Übungsschwerpunkte Beobachtungsbogen Lernbegleiter -Box Mathematik 2 Inhalt des Begleitheftes Zur Konzeption

Mehr

VERA 3. Grundschule an der Marie 2012 Lesen,Sprache,Mathe

VERA 3. Grundschule an der Marie 2012 Lesen,Sprache,Mathe VERA 3 Grundschule an der Marie 2012 Lesen,Sprache,Mathe LESEN Die Standards (rechts) beziehen sich auf das Ende der vierten Klasse und es kann nicht erwartet werden, dass sie vom überwiegenden Teil der

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt.

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Distanzen und Grössen im Planetenweg Arbeitsblatt 1 Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Anders gesagt: Der Massstab

Mehr

Sachinformation Haus 2.1: Summen aufeinander folgender Zahlen

Sachinformation Haus 2.1: Summen aufeinander folgender Zahlen Sachinformation Haus 2.1: Summen aufeinander folgender Zahlen Worum geht es? Die Auseinandersetzung mit Aufgabenstellungen aus dem mathematisch substanziellen Problemfeld Summen von aufeinander folgenden

Mehr

Vorschlag einer Jahresplanung zu Das Zahlenbuch 2

Vorschlag einer Jahresplanung zu Das Zahlenbuch 2 Vorschlag einer Jahresplanung zu Das Zahlenbuch 2 Inhaltsbereich 2 7 Wiederholung und Ausblick Vorschau auf das Schuljahr 4, 5 Rechnen in anderen Ländern 6, 7 3 Leerformate 1 und 2 6: AK 2.1.2 7: AK 2.1.2

Mehr

Russische Bauern- Multiplikation

Russische Bauern- Multiplikation Informationsblatt für die Lehrkraft Russische Bauern- Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Mittelschule, technische Berufsschule Binäre

Mehr

Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation

Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation Zur Behandlung der Multiplikation Konzept der Kernaufgaben bei der Multiplikation Wiederholung: Schriftliche Subtraktion Dana spart für ein neues Fahrrad, das 237 kostet. Sie hat schon 119. Dana rechnet

Mehr

Die Überlegung war, dass an allen Schulen Drucker zur Verfügung stehen, die DIN A4 Blätter drucken können.

Die Überlegung war, dass an allen Schulen Drucker zur Verfügung stehen, die DIN A4 Blätter drucken können. Microsoft Publisher Der Microsoft Publisher wird zwar im professionellen Bereich kaum verwendet, wenn man einen professionellen Druckerservice verwenden will, gibt es aber die Möglichkeit des Speicherns

Mehr

RECHNUNGEN ZU LIEBLINGSZAHLEN SCHREIBEN

RECHNUNGEN ZU LIEBLINGSZAHLEN SCHREIBEN RECHNUNGEN ZU LIEBLINGSZAHLEN SCHREIBEN Thema: Zahlen verschieden darstellen und in Zahlenhäusern Rechnungen dazu schreiben Stufe: 1 Klasse (Zahlenbuch S. 23) Material: Zahlenkarten 1 bis 20 und Legematerialien

Mehr

Blitzrechnen 4. Klasse Portfolio

Blitzrechnen 4. Klasse Portfolio Blitzrechnen 4. Klasse Portfolio 5 2 3 4 6 7 8a 8b 9 10+11 Gesamttest 4. Klasse Informationen an die Eltern Vers. 6.8.13 Es gibt gewisse mathematische Kompetenzen, die Voraussetzung für den Erwerb weiterer

Mehr

Haus 1: Entdecken, Beschreiben, Begründen. Üben und Entdecken

Haus 1: Entdecken, Beschreiben, Begründen. Üben und Entdecken Haus 1: Entdecken, Beschreiben, Begründen Üben und Entdecken Nicht zuletzt in Reaktion auf internationale Leistungsvergleiche wie TIMSS, PISA oder PIRLS/IGLU wird seit einigen Jahren vieler Ortens recht

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch

Hinweise zu den Quartalsplanungen für den Mathematikunterricht mit dem Zahlenbuch PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +41 31 309 27 11, F +41 31 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Fachteam Mathematik Hinweise zu den Quartalsplanungen

Mehr

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n.

Weiter im Einmaleins. 100 nur das Schaf schaut noch verwundert. bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Weiter im Einmaleins bellt der Dackel Heinz. pfeift das Murmeltier. Panda kann sich freu'n. Grabi kann das Jumbo frisst sie Biene Maja schlecht seh'n. und entspannt sich. rechnet fleißig. das Huhn meint

Mehr

Diktate. Texte erschließen

Diktate. Texte erschließen Diktate Jeden Tag ein bisschen besser Deutsch Übungsdiktate 5. Schuljahr Cornelsen Scriptor ISBN 13: 978-3-589-22350-3 ISBN 10: 3-589-22350-2 Jeden Tag ein bisschen besser Deutsch Übungsdiktate 6. Schuljahr

Mehr

1, 8. b) Welche Körper sind Kugeln? c) Welche Gegenstände bleiben übrig? 4, 7, 9 # ) Individuelle Lösungen

1, 8. b) Welche Körper sind Kugeln? c) Welche Gegenstände bleiben übrig? 4, 7, 9 # ) Individuelle Lösungen 00 Körper Was siehst du? a) d) b) Würfel e) Kugel c) Kugel Quader f) Quader anderer Körper Ich bin auch ein Quader, aber ein besonderer. Ich bin ein Würfel. Ich bin ein Quader. Mich kann man hinlegen,

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

In Tabellen hoch- und runterrechnen

In Tabellen hoch- und runterrechnen Vertiefen 1 In Tabellen hoch- und runterrechnen zu Aufgabe 1 Schulbuch, Seite 240 1 Übersicht durch Tabellen Pia, Till und Merve haben unterschiedliche Tabellen angelegt, um drei Hostels in Barcelona zu

Mehr

Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg

Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg Haus 3: Umgang mit Rechenschwierigkeiten, Modul 3.1 Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg Mit Nachbaraufgaben

Mehr

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Muster und Strukturen / Zahlen und Operationen

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Muster und Strukturen / Zahlen und Operationen Aufgabe 3.3 Idee und Aufgabenentwurf Günther Gerstner, Grundschule Eppelborn, Klassenstufe 3 (November 2012) 1. Lege einen Streifen auf die Hundertertafel und addiere die verdeckten Zahlen. 2. Verschiebe

Mehr

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung

Mehr

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf:

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf: 1. Maria stellt zwei Behauptungen auf: Teilbarkeit (a) Die Zahl 123456789 ist durch 9 teilbar. (b) Wenn man die Ziffern einer 53-stelligen Zahl, die durch 9 teilbar ist, auf irgend eine Weise vertauscht,

Mehr

Du darfst für jede erledigte Seite eine Sonne ausmalen und bekommst einen Fleißpunkt im neuen Schuljahr von mir! Name:

Du darfst für jede erledigte Seite eine Sonne ausmalen und bekommst einen Fleißpunkt im neuen Schuljahr von mir! Name: Ich komme In die 3.klasse! Du darfst für jede erledigte Seite eine Sonne ausmalen und bekommst einen Fleißpunkt im neuen Schuljahr von mir! 111111 111111 111111 111111 Name: Zahlen bis 100 Teil 1 1 1.

Mehr

Binnendifferenzierte Aufgaben: Subtrahieren von negativen Zahlen

Binnendifferenzierte Aufgaben: Subtrahieren von negativen Zahlen Binnendifferenzierte Subtrahieren von negativen Zahlen Mit Hilfe der von uns erstellten Arbeitsblätter sollen die Schülerinnen und Schüler selbstständig erarbeiten, wie man negative Zahlen subtrahiert.

Mehr

Aufbau von Hichert-Graphik Schritt für Schritt

Aufbau von Hichert-Graphik Schritt für Schritt Aufbau von Hichert-Graphik Schritt für Schritt Ausgangsdaten anlegen: o Sollte dann so aussehen: Umsatz Plan Ist Abweich. 60 40-20 o Details dazu: 4 Spaltenüberschriften eintragen: Plan, Ist, leer, Abweichung

Mehr

Apple IOS Apps. Mathematik

Apple IOS Apps. Mathematik Apple IOS Apps Einige der Apps sind gratis, andere wiederum kostenpflichtig. Bei gewissen Apps kann man Pakete für den KG, US usw. zusätzlich erwerben. Mathematik Name Zahl & Menge Herausgeber Appolino,

Mehr

Intelligentes Üben selbst gestalten! Erfahrungen aus dem Mathematikunterricht Timo Leuders

Intelligentes Üben selbst gestalten! Erfahrungen aus dem Mathematikunterricht Timo Leuders Vorabdruck eines Beitrags zum Heft Üben PÄDAGOGIK 4/05 Intelligentes Üben selbst gestalten! Erfahrungen aus dem Mathematikunterricht Timo Leuders Viel lieber als noch eine Einführungsstunde möchte ich

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 9 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Das unerschöpfliche Übungsangebot des Zahlenbuchs - und wie Kinder es selbständig nutzen können

Das unerschöpfliche Übungsangebot des Zahlenbuchs - und wie Kinder es selbständig nutzen können Das unerschöpfliche Übungsangebot des Zahlenbuchs - und wie Kinder es selbständig nutzen können Erich Ch. Wittmann Gibst du einem Menschen einen Fisch, hat er einmal zu essen. Lehrst du ihn fischen, kann

Mehr

Informationen des Beratungslehrers

Informationen des Beratungslehrers Sinnvolle Hilfe bei der Hausaufgabe (nach A. Geist, Schulpsychologe) Vorwort "Soll ich meinem Kind überhaupt bei den Hausaufgaben helfen? Und wenn ja, wie soll ich es sinnvoll tun?" Diese Fragen werden

Mehr

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen. Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt

Mehr

---------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------- Webauftritt meiner Schule via CMS System Joomla! Dieser Arbeitskatalog hilft dir notwendige Arbeiten zu strukturieren. Grundsätzliches Das CMS System Joomla trennt strikt Content (Inhalte, Fotos, ) und

Mehr

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik V e r l ä s s l i c h e G r u n d s c h u l e Hauptstraße 5 30952 Ronnenberg-Weetzen 05109-52980 Fax 05109-529822 2.Schuljahr Schuleigener Arbeitsplan für das Fach Mathematik Kompetenzbereiche, erwartete

Mehr

Geometrie in der Grundschule. Ein erster Überblick

Geometrie in der Grundschule. Ein erster Überblick Geometrie in der Grundschule Ein erster Überblick Elemente der Schulgeometrie - Organisatorisches Die Veranstaltung findet immer mittwochs 8-9.30 Uhr statt und (ca.) 14-täglich am Do 8-9.30 Uhr statt.

Mehr

Fermi-Aufgaben: Nicht nur Frage-Rechnung-Antwort!

Fermi-Aufgaben: Nicht nur Frage-Rechnung-Antwort! Haus 7: Gute Aufgaben Fermi-Aufgaben: Nicht nur Frage-Rechnung-Antwort! Abb.1: Aufgabe aus Welt der Zahl (2004), 3. Schuljahr Wie in der Abbildung in der Aufgabe 6a findet sich in vielen Mathematikbüchern

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium

Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Für einen effektiven Mathematikunterricht ist es unerlässlich, dass Schüler auf grundlegende Kenntnisse und Fertigkeiten zurückgreifen

Mehr

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation Informationsblatt für die Lehrkraft 8-Bit Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: 8-Bit Multiplikation (im Binärsystem) Mittelschule, technische

Mehr

Multiplikationstafeln

Multiplikationstafeln Multiplikationstafeln Rechenintensive Arbeiten in der Landesvermessung und Astronomie, sowie im Handel, machten es in früheren Jahrhunderten wünschenswert, höhere Rechenarten auf niedrigere zurück zu führen.

Mehr

Hilfe Bearbeitung von Rahmenleistungsverzeichnissen

Hilfe Bearbeitung von Rahmenleistungsverzeichnissen Hilfe Bearbeitung von Rahmenleistungsverzeichnissen Allgemeine Hinweise Inhaltsverzeichnis 1 Allgemeine Hinweise... 3 1.1 Grundlagen...3 1.2 Erstellen und Bearbeiten eines Rahmen-Leistungsverzeichnisses...

Mehr

Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Johannes Kühnel ( ) Anforderungsbereiche der Bildungsstandards

Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Johannes Kühnel ( ) Anforderungsbereiche der Bildungsstandards Überblick über das Fortbildungsmaterial Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Natürliche Differenzierung von Anfang an! Wie wird im Unterrichtsalltag auf die Heterogenität in den

Mehr

1 Ein Beispiel: Das Berechnen eines Schulzeugnisses

1 Ein Beispiel: Das Berechnen eines Schulzeugnisses Funktionen in Excel 1 Ein Beispiel: Das Berechnen eines Schulzeugnisses Jim hat die folgenden Noten im 1. Trimester: Fach Prüfung 1 Prüfung 2 Prüfung 3 Englisch 35 38 43 Deutsch 44 42 48 Französisch 28

Mehr

Legt die Zahlen. Findet verschiedene Möglichkeiten. 10. Wie viele Felder sind es? Schreibe auf und rechne. a) b) c) d) = = + = e) f) g) h) = =

Legt die Zahlen. Findet verschiedene Möglichkeiten. 10. Wie viele Felder sind es? Schreibe auf und rechne. a) b) c) d) = = + = e) f) g) h) = = Das Hunderterfeld Legt die Zahlen. Findet verschiedene Möglichkeiten. 0 0 40 Wie viele Felder sind es? Schreibe auf und rechne. a) b) c) d) = 0 = 0 e) f) g) h) i) Wie viel fehlt in den Aufgaben a) bis

Mehr

Buch-Seite 51 Gross wie klein

Buch-Seite 51 Gross wie klein IGEL 25 BIS 29.3 Aufgabennummerierung: x,y Igel: Igel-Heft Seite x, Aufgabe y Buch x.y = Aufgabe y auf Seite x Zahlenbuch Buch-Seite 51 Gross wie klein 25. Igel-Seite 25.1. Igel. Die + 60-Raupe ist das

Mehr

App mit InDesign Teil I

App mit InDesign Teil I App mit InDesign Teil I 1. Technische Voraussetzungen Hardware Apple Computer ipad Verbindungskabel ipad zu Computer Software Computer InDesign CS5.5, CS6 oder CC Software ipad App Adobe Content Viewer

Mehr

Der gelbe Weg. Gestaltungstechnik: Malen und kleben. Zeitaufwand: 4 Doppelstunden. Jahrgang: 6-8. Material:

Der gelbe Weg. Gestaltungstechnik: Malen und kleben. Zeitaufwand: 4 Doppelstunden. Jahrgang: 6-8. Material: Kurzbeschreibung: Entlang eines gelben Weges, der sich von einem zum nächsten Blatt fortsetzt, entwerfen die Schüler bunte Fantasiehäuser. Gestaltungstechnik: Malen und kleben Zeitaufwand: 4 Doppelstunden

Mehr

Das Schulsystem in Deutschland (Band 2, Lektion 1)

Das Schulsystem in Deutschland (Band 2, Lektion 1) Pluspunkt Deutsch Das Schulsystem in Deutschland (Band 2, Lektion 1) Übung 1 Lesen Sie den Text und kreuzen Sie an: Richtig oder falsch? In Deutschland können die Kinder mit 3 Jahren in den Kindergarten

Mehr

Selbstdiagnosebogen zu Exponentialfunktionen

Selbstdiagnosebogen zu Exponentialfunktionen Mathematik- Unterrichts- Einheiten- Datei e. V. www.mued.de Klasse 10 04/2009 Selbstdiagnosebogen zu Eponentialfunktionen A) Kreuze deine Einschätzung an. Ich kann 1. zu einem Wachstumsprozentsatz den

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014 Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen Rauter Bianca (101038) Graz, am 10. Dezember 014 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungen von Zahlen - Beweise durch Muster

Mehr

FTV 1. Semester. Spalte A Spalte B Spalte C Spalte D. Zeile 1 Zelle A1 Zelle B1 Zelle C1 Zelle D1. Zeile 3 Zelle A3 Zelle B3 Zelle C3 Zelle D3

FTV 1. Semester. Spalte A Spalte B Spalte C Spalte D. Zeile 1 Zelle A1 Zelle B1 Zelle C1 Zelle D1. Zeile 3 Zelle A3 Zelle B3 Zelle C3 Zelle D3 Eine besteht aus Zeilen und spalten von Zellen, die mit Text oder Grafik gefüllt werden können. Die wird standardmäßig mit einfachen Rahmenlinien versehen, die verändert oder entfernt werden können. Spalte

Mehr

Quelle: Medienkompass1, Lehrmittelverlag des Kantons Zürich, 1. Ausgabe 2008, Thema 13 Sicher ist sicher, S.58-61

Quelle: Medienkompass1, Lehrmittelverlag des Kantons Zürich, 1. Ausgabe 2008, Thema 13 Sicher ist sicher, S.58-61 Unterrichtseinheit Medienkompass 1 : Daten speichern und verwalten Quelle: Medienkompass1, Lehrmittelverlag des Kantons Zürich, 1. Ausgabe 2008, Thema 13 Sicher ist sicher, S.58-61 6 Daten speichern und

Mehr

Zählen oder rechnen? Kinder entwickeln Strategien zur strukturierten Anzahlerfassung. Ina Herklotz (GS Roßtal)

Zählen oder rechnen? Kinder entwickeln Strategien zur strukturierten Anzahlerfassung. Ina Herklotz (GS Roßtal) Kinder entwickeln Strategien zur strukturierten Anzahlerfassung Leitfaden Präzisierung der Fragestellung und Begrifflichkeit Tierkarten und Würfelbilder als Anschauungsmaterial Didaktische Aspekte Beispiele

Mehr

4 Leitidee Daten und Zufall Fundamentale Ideen aus Sicht der Statistik 69

4 Leitidee Daten und Zufall Fundamentale Ideen aus Sicht der Statistik 69 Helmut Linneweber-Lammerskitten 1 Mathematikdidaktik, Bildungsstandards und mathematische Kompetenz 9 1.1 Bildungsstandards für Mathematik 10 1.2 Mathematikstandards für Bildungssysteme 12 1.3 Ein Rahmenkonzept

Mehr

Übungsaufgaben zum Kapitel Protolysegleichgewichte mit Hilfe des Lernprogramms Titrierer 1/9

Übungsaufgaben zum Kapitel Protolysegleichgewichte mit Hilfe des Lernprogramms Titrierer 1/9 Lernprogramms Titrierer 1/9 Vorher sollten die Übungsaufgaben zu den drei Lernprogrammen Protonierer, Acidbaser und Wert vollständig bearbeitet und möglichst auch verstanden worden sein! 1 Neutralisation

Mehr

Motivationale und kognitive Variablen Schulleistungs-Variablen

Motivationale und kognitive Variablen Schulleistungs-Variablen MOBI Monolinguales und bilinguales Lernen in der Grundschule (Prof. Dr. Jens Möller & Dr. Anna Chr. M. Zaunbauer-Womelsdorf, Universität Kiel, Mai 28) Ergebnisse am Ende des ersten und zweiten Schuljahres

Mehr

Zahl der Spieler: Alter: Autor: Illustrationen: Inhalt: Vorwort für

Zahl der Spieler: Alter: Autor: Illustrationen: Inhalt: Vorwort für Spielanleitung Art.-Nr.: 607-6342 Zahl der Spieler: Alter: Autor: 1 bis 4 ab 7 Jahren Michael Rüttinger (unter Verwendung einer Idee von Josef Niebler) Heidemarie Rüttinger Spielplan Vorderseite und Rückseite

Mehr

Didaktik der Zahlbereichserweiterungen

Didaktik der Zahlbereichserweiterungen 3.1 vom Hofe, R.; Hattermann, M. (2014): Zugänge zu negativen Zahlen. mathematik lehren 183, S. 2-7 Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche 3.2 Inhaltsverzeichnis

Mehr

Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen

Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen von Frank Rothe Das vorliegende Übungsblatt ist als Anregung gedacht, die Sie in Ihrer Klasse in unterschiedlicher Weise umsetzen können. Entwickelt

Mehr

Word. Tabellen und Rahmen. Martina MÜLLER. Monika WEGERER. Zusammengestellt von. Überarbeitet von

Word. Tabellen und Rahmen. Martina MÜLLER. Monika WEGERER. Zusammengestellt von. Überarbeitet von Word Tabellen und Rahmen Zusammengestellt von Martina MÜLLER Überarbeitet von Monika WEGERER April 2002 Inhalt Tabellen erstellen...3 Erstellen einer einfachen Tabelle...3 Erstellen einer komplexen Tabelle...3

Mehr

Vorwort Konzept und Ziel

Vorwort Konzept und Ziel Vorwort Konzept und Ziel Schon lange bemühen wir uns, die für die mathematische Entwicklung so wichtigen und im Bildungsplan verankerten verlässlichen Kopfrechenzeiten 1 sinnvoll und Erfolg bringend im

Mehr

Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht

Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht 18. Symposium mathe 2000 Individuelle Förderung im Mathematikunterricht der Grundschule Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht Überblick über die nächsten ca. 70 Minuten: Tragfähige

Mehr

1.2 Einführung der Zahl Dominik Schomas Clemens Blank

1.2 Einführung der Zahl Dominik Schomas Clemens Blank 1.2 Einführung der Zahl Dominik Schomas Clemens Blank Die Zahl wird über den konstanten Quotienten eingeführt. Der Umfang sowie der Durchmesser werden von den Schülern experimentell gemessen mit und in

Mehr

Unterrichtseinheit 2.1

Unterrichtseinheit 2.1 Unterrichtseinheit 2.1 1 Unterrichtseinheit 2.1 Ca. 2 Schulstunden Aufgabenart Mathematischer Inhalt Materialien Zielsetzungen Wassersparen Wassersparen Unterbestimmt: beinhaltet weniger Annahmen als benötigt

Mehr

Inhalt. 1. Wiederholung von Inhalten des 1. Schuljahrs. 3. Addition und Subtraktion (1) 2. Die Zahlen bis Multiplikation und Division

Inhalt. 1. Wiederholung von Inhalten des 1. Schuljahrs. 3. Addition und Subtraktion (1) 2. Die Zahlen bis Multiplikation und Division Inhalt 1. Wiederholung von Inhalten des 1. Schuljahrs Lehrerteil................................. 6 Versteckte Zahlen........................... 11 Schöne Ziffern............................. 12 Die Zahlen

Mehr

Was war vor dem Startwert?

Was war vor dem Startwert? 63 Hans Walser Was war vor dem Startwert? Das mathematische Analogon zur Frage, was vor Adam und Eva war, ist die Frage, ob und wie Folgen und mathematische Strukturen, welche einen natürlichen Anfang

Mehr

Inhaltsübersicht Zahlenbuch 1 (CH 1995)

Inhaltsübersicht Zahlenbuch 1 (CH 1995) Inhaltsübersicht Zahlenbuch 1 (CH 1995) (Arithmetik (mit Blitzrechnen: Vorlagen im Förderkurs und auf CD-ROM) Geometrie und Sachrechnen; Kursive Seiten haben nicht Vorrang. Entwicklung des Zahlbegriffs

Mehr

Praktikumsplanung Primarstufe: Mathe

Praktikumsplanung Primarstufe: Mathe Institut Vorschulstufe und Primarstufe Fabrikstrasse 8, CH-3012 Bern T +41 31 309 23 11, info-ivp@phbern.ch, www.phbern.ch Praktikumsplanung Primarstufe: Mathe Praktikum 3 Studentin/Student Laura Blumenthal

Mehr

5. Lerntheken. Inhaltsverzeichnis

5. Lerntheken. Inhaltsverzeichnis 5. Lerntheken Inhaltsverzeichnis Allgemeines Seite Übersicht der Lerntheken Seite 3 0 Klassenarbeitsplan Seite Schülerarbeitsplan Seite Lerntheke Seite 3 6 Lerntheke Seite 7 0 Lerntheke 3 Seite 4 Lerntheke

Mehr

Microsoft Access 2010 Gruppierte Daten in Berichten

Microsoft Access 2010 Gruppierte Daten in Berichten Microsoft Access 2010 Gruppierte Daten in Berichten Berichte... zeigen Daten zum Lesen an. können Daten gruppieren und berechnen. beziehen die Daten aus einer Tabelle oder Abfrage / SQL- Anweisung. bereiten

Mehr

Dreiecksgrundformen Horizonterweiterung durch operatives, entdeckendes und produktives Üben

Dreiecksgrundformen Horizonterweiterung durch operatives, entdeckendes und produktives Üben Dreiecksgrundformen Horizonterweiterung durch operatives, entdeckendes und produktives Üben Damit Schülerinnen und Schüler die Fähigkeit entwickeln, mit den hier unter dem Stichwort Dreiecksgrundformen

Mehr