Statistische Eigenschaften der OLS-Schätzer, Residuen,

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistische Eigenschaften der OLS-Schätzer, Residuen,"

Transkript

1 Statistische Eigenschaften der OLS-Schätzer, Residuen, Bestimmtheitsmaß Stichwörter: Interpretation des OLS-Schätzers Momente des OLS-Schätzers Gauss-Markov Theorem Residuen Schätzung von σ 2 Bestimmtheitsmaß o1-03.tex/0

2 Interpretation der β i Das Regressionsmodell sei OLS-Anpassung ergibt Y t = β 1 + β 2 X 2t β k X kt + u t Ŷ t = b 1 + b 2 X 2t b k X kt b i : mittlere Änderung von Y, wenn X i = 1 (und X j, j i, unverändert) Beachte! Der OLS-Schätzer b i ist davon abhängig, welche andere Regressoren im Modell enthalten sind! o1-03.tex/1

3 Konsumfunktion mit und ohne Trend o1-03.tex/2

4 Konsumfunktion mit und ohne Trend Für β y aus erhalten wir C t = α + β y Y t + u t b cy = s cy s 2 y Für β y aus erhalten wir C t = α + β y Y t + β t T t + u t b cy.t = s cys 2 t s ct s ty s 2 ys 2 t s 2 yt = b cy b ct b ty 1 r 2 yt In allgemeinerer Notation gilt für die analogen Schätzer von β 2 aus Y t = β 1 + β 2 X 2t + β 3 X 3t + u t : b y2.3 = b y2 b y3 b 32 1 r 2 23 o1-03.tex/3

5 Die Beta-Koeffizienten Beta-Koeffizient oder standardisierter Regressionskoeffizient: b i = b i s i s y ergibt sich als OLS-Schätzer im Modell mit standardisierten Variablen Y t = β 1 + β 2X 2t β kx kt + u t mit Yt = (Y t Y )/s y und Xit = (X ti X i )/s i, wobei Y, X i (x y, s i ) die Mittelwerte (Standardabweichungen) der Y t, X it sind. mittlere Änderung von Y in Standardabweichungen der Y t bei Änderung von X i um s i o1-03.tex/4

6 Statistische Eigenschaften des KQ-Schätzers linear in u t, t = 1,..., n. Eigenschaften: (a) (b) b = (X X) 1 X y = (X X) 1 X (Xβ + u) = β + (X X) 1 X u E{b} = E{β+(X X) 1 X u} = β+(x X) 1 X E{u} = β wegen E{u} = 0 Var{b} = Var{β + (X X) 1 X u} = (X X) 1 X Var{u}X(X X) 1 = σ 2 (X X) 1 X X(X X) 1 = σ 2 (X X) 1 wegen Var{u} = σ 2 I (c) aus u N(0, σ 2 I) folgt b N[β, σ 2 (X X) 1 ] o1-03.tex/5

7 Beispiel: Einfache Regression Die OLS-Schätzer für die Regressionskoeffizienten von haben sich ergeben zu b = Invertieren der Matrix Y t = α + βx t + u t t (X t x)(y t ȳ) a = ȳ b x X X = ergibt die Diagonalelemente t (X t x) 2 n n x n x t Xt 2 Var{b} = σ 2 [(X X) 1 ] 22 = Var{a} = σ 2 [(X X) 1 ] 11 = σ 2 σ 2 t (X t x) 2 1 n + x2 Beachte! Die Standardabweichung von b (auch ihr Standardfehler genannt) hängt vom Design der Stichprobe ab! Die Schätzung ist umso genauer, je größer n je größer s x s 2 x o1-03.tex/6

8 Gauss-Markov Theorem Gelten für das Regressions-Modell y = Xβ + u die Standard-Annahmen ( klassisches Modell) (a) r(x) = k (b) X it fix für i = 1,..., k und t = 1,..., n (c) E{u} = 0 (d) Var{u} = σ 2 I dann ist der Kleinst-Quadrat Schätzer b = (X X) 1 X y der beste, lineare, erwartungstreue (BLU) Schätzer für β bester Schätzer b: für beliebiges b gilt Var{b } Var{b} 0 (p.s.) b ist effizient gegenüber allen linearen, erwartungstreuen Schätzern o1-03.tex/7

9 Beweis des Gauss-Markov Theorems Sei β = Cy ein linearer, erwartungstreuer Schätzer E{ β} = E{CXβ + Cu} = CXβ = β; daraus folgt CX = I. Wir erhalten Var{ β} = Var{CXβ + Cu} = Cσ 2 IC = CC σ 2. Wir suchen ein D so, daá C = (X X) 1 X + D; aus CX = I folgt wegen (X X) 1 X X + DX = I + DX = I, daß DX = 0. Aus CC = [(X X) 1 X + D][(X X) 1 X + D] = (X X) 1 X X(X X) 1 + DD = (X X) 1 + DD und der Positiv-semidefinitheit von DD ergibt sich, daß CC (X X) 1 positiv semidefinit ist; b hat minimale Varianz. o1-03.tex/8

10 Konsumfunktion für Österreich, Residuen o1-03.tex/9

11 Eigenschaften der Residuen y = Xβ + u = Xb + e = ŷ + e Vektor der Residuen e = y ŷ = y Xb Eigenschaften: (a) e und X sind orthogonal X e = X e cos(x, e) = 0 (b) e und ŷ sind orthogonal ŷ e = b X e = 0 (c) y y = (ŷ + e) (ŷ + e) = ŷ ŷ + e e + ŷ e + e ŷ = ŷ ŷ + e e t Y 2 t = t Ŷ 2 t + t e 2 t o1-03.tex/10

12 Für e gilt Schätzung der Varianz σ 2 e = y Xb = My = M(Xβ + u) = Mu wegen MX = (I X(X X) 1 X )X = X X(X X) 1 X X = 0. Damit ergibt sich e e = u M Mu = u Mu wegen der Idempotenz von M. Aus u N(0, σ 2 I) oder u/σ N(0, I) folgt T = e e σ 2 = 1 σ 2u Mu χ 2 (n k) da Aus r(m) = Sp(M) = Sp[I X(X X) 1 X ] = Sp I Sp[X(X X) 1 X ] = n k E{T } = 1 σ 2 E {e e} = n k folgt 1 n k E {e t e 2 t e} = E{ n k } = σ2 sodaß ˆσ 2 ein erwartungstreuer Schätzer von σ 2 ist: ˆσ 2 = 1 e 2 n k t. t o1-03.tex/11

13 Regression mit Interzept (inhomogenes Regressions-Modell) X e = t x te t = 0 mit x t = (X 1t,..., X kt ), oder t X it e t = 0, i = 1,..., k inhomogenes Regressions-Modell: X 1t = 1, Eigenschaften: t = 1,..., n (a) t e t = 0 (b) aus t Y t = t(ŷt + e t ) = t Ŷt folgt Y = Ŷ (c) Y = 1 n ( t i b i X it ) = i 1 b i X it = n t i b i X i = b 1 + b 2 X 2... b k X k mit X i = 1 n t X it, i = 1,..., k o1-03.tex/12

14 Erklärungsvermögen der linearen Regression (a) Y = i b i X i (b) Zerlegung der Variation der erklärten Variablen TSS = (Y t Y ) 2 = t t = ESS + RSS (Ŷt Y ) 2 + t e 2 t (c) TSS: total sum of squares, Gesamtvariation ESS: explained sum of squares, (durch die Regression) erklärte Variation (oft auch RSS (!) bezeichnet) RSS: residual sum of squares, residuale oder nicht erklärte Variation (oft auch ESS (!) bezeichnet) 0 RSS TSS 1 aus RSS 0 folgt: RSS TSS 0 aus ESS = TSS RSS 0 folgt: TSS RSS oder RSS TSS 1 o1-03.tex/13

15 Bestimmtheitsmaß R 2 = ESS TSS = 1 RSS TSS = 1 t e 2 t t (Y t Y ) 2 Eigenschaften: (a) 0 R 2 1 (b) R 2 ist das Quadrat der Korrelation r Y, Ŷ Ŷ : r Y, Ŷ = t (Y t Y )(Ŷt Y ) t (Y t Y ) 2 t (Ŷt Y ) 2 zwischen Y und = t (Ŷt Y ) 2 t (Y t Y ) 2 = R 2 (c) Achtung! Wenn β 1 = 0, gilt nicht notwendigerweise R 2 0; R 2 kann negativ sein! o1-03.tex/14

16 Bestimmtheitsmaß, Forts. (d) R 2 bleibt bei linearer Transformation von Y oder X unverändert. (A) Transformation der X x tβ = i β i X it = i γ i (r i X it + s i ) = i Xβ = Zγ = XDγ γ i Z it = z tγ = x tdγ ˆγ = (Z Z) 1 Z y = (D X XD) 1 D X y = D 1 (X X) 1 (D ) 1 D X y = D 1 (X X) 1 X y Zˆγ = XDˆγ = XDD 1 (X X) 1 X y = Xb (B) Transformation der Y z = ay = a(xβ + u) = Xγ + v ˆγ = (X X) 1 X (ay) = ab ˆv = z ẑ = ay X ˆγ = ay axb = ae o1-03.tex/15

17 Adjustiertes Bestimmtheitsmaß Das adjustiertes Bestimmtheitsmaß R 2 berücksichtigt die Zahl der erklärenden Variablen: R 2 = 1 n 1 n k t e 2 t t (Y t Y ) 2 = 1 n 1 n k (1 R2 ) ˆσ 2 : unverzerrter Schätzer von σ 2 s 2 y: unverzerrter Schätzer von σ 2 y = 1 ˆσ2 s 2 y Beim Vergleich des Erklärungsgrades zweier Modelle mit unterschiedlicher Zahl von erklärenden Variablen ist R 2 gegenüber R 2 vorzuziehen. o1-03.tex/16

18 Die Matrizen P (hat-matrix) und M ŷ = X(X X) 1 X y = P y e = y Xb = y X(X X) 1 X y = [I X(X X) 1 X ]y = My P = X(X X) 1 X und M = I X(X X) 1 X sind (a) symmetrisch: P = [X(X X) 1 X ] = X(X X) 1 X = P M = [I X(X X) 1 X ] = (I P ) = I P = M (b) idempotent: P P = [X(X X) 1 X ][X(X X) 1 X ] = X(X X) 1 X = P MM = (I P )(I P ) = I P P +P P = I P = M (c) wenn X vollen Rang hat: r(p ) = k r(m) = n k o1-03.tex/17

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Lineare Regression mit einem Regressor: Einführung

Lineare Regression mit einem Regressor: Einführung Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr

4. Das multiple lineare Regressionsmodell

4. Das multiple lineare Regressionsmodell 4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere

Mehr

Kapitel 2. OLS-Schätzung. 2.1 Methode der kleinsten Quadrate 12 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA)

Kapitel 2. OLS-Schätzung. 2.1 Methode der kleinsten Quadrate 12 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA) 2 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA) Kapitel 2 OLS-Schätzung 2. Methode der kleinsten Quadrate Einleitung OLS aus Sicht der linearen Algebra Die Methode der kleinsten Quadrate (OLS Ordinary least

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Mehrgleichungsmodelle

Mehrgleichungsmodelle Mehrgleichungsmodelle Stichwörter: Typen von Mehrgleichungsmodellen multivariates Regressionsmodell seemingly unrelated Modell interdependentes Modell Schätzen der Parameter Bestimmtheitsmass Spezifikationstests

Mehr

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik Demokurs Modul 3741 Vertiefung der Wirtschaftsmathematik und Statistik Kurs 41 Vertiefung der Statistik 15. Juli 010 Seite: 14 KAPITEL 4. ZUSAMMENHANGSANALYSE gegeben, wobei die Stichproben(ko)varianzen

Mehr

Das lineare Regressionsmodell

Das lineare Regressionsmodell Kapitel 2 Das lineare Regressionsmodell 2.1 Das statistische Modell 2.1.1 Schreibweise und Annahmen Die generische Form des univariaten Regressionsmodells ist durch y t = x t (β) + ε t (2.1) gegeben. Dabei

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Mikro-Ökonometrie: OLS-Schätzung. 1. Methode der kleinsten Quadrate aus geometrischer/algebraischer Sicht

Mikro-Ökonometrie: OLS-Schätzung. 1. Methode der kleinsten Quadrate aus geometrischer/algebraischer Sicht Mikro-Ökonometrie: OLS-Schätzung 23. Oktober 204 Inhalt:. OLS aus geometrischer/algebraischer Sicht; Exogenität (als Orthogonalität) 2. Bestimmtheitsmaß R 2 3. Erwartungswert der OLS-Schätzung (Erwartungstreue

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 40 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 2 Ökonometrie I Michael Hauser 2 / 40 Inhalt ANOVA, analysis of variance korrigiertes R 2, R 2 F-Test F-Test bei linearen Restriktionen Erwartungstreue,

Mehr

Ökonometrische Methoden III: Die lineare Regression

Ökonometrische Methoden III: Die lineare Regression Ökonometrische Methoden III: Die lineare Regression Vorlesung an der Ruprecht-Karls-Universität Heidelberg WS 006/007 Prof. Dr. Lars P. Feld Ruprecht-Karls-Universität Heidelberg, Universität St. Gallen

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Aufgaben zu Kapitel 41

Aufgaben zu Kapitel 41 Aufgaben zu Kapitel 41 1 Aufgaben zu Kapitel 41 Verständnisfragen Aufgabe 41.1 Zeigen Sie, dass die Normalgleichungen stets lösbar sind und bestimmen Sie die allgemeine Lösung. Aufgabe 41.2 Wieso gilt

Mehr

Einführung in die multiple Regression

Einführung in die multiple Regression Einführung in die multiple Regression Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@fh-heidelberg.de Bachelor S. Garbade (SRH Heidelberg) Multiple Regression Bachelor

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Ökonometrie. Hans Schneeweiß. 3., durchgesehene Auflage. Physica-Verlag Würzburg-Wien 1978 ISBN

Ökonometrie. Hans Schneeweiß. 3., durchgesehene Auflage. Physica-Verlag Würzburg-Wien 1978 ISBN 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Hans Schneeweiß Ökonometrie 3., durchgesehene Auflage Physica-Verlag

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen 4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.

Mehr

Bachelorprüfung WS 2012/13

Bachelorprüfung WS 2012/13 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13

Mehr

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr.

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr. Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof Dr Enno Mammen 0 Exkurs: Orthogonaltransformationen, Projektionen im R n In diesem

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Dabei bezeichnet x die Einflussgrösse (Regressor), y die Zielvariable (die eine Folge der Ursache x ist) und die Störung. Die n = 3 Beobachtungen

Dabei bezeichnet x die Einflussgrösse (Regressor), y die Zielvariable (die eine Folge der Ursache x ist) und die Störung. Die n = 3 Beobachtungen Lineare Regression und Matrizen. Einführendes Beispiel Der im Kapitel Skalarprodukt gewählte Lösungsweg für das Problem der linearen Regression kann auch mit Matrizen formuliert werden. Die Idee wird zunächst

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

Analyse von Querschnittsdaten. Heteroskedastizität

Analyse von Querschnittsdaten. Heteroskedastizität Analyse von Querschnittsdaten Heteroskedastizität Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004 03.11.2004

Mehr

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

STATISTIK 2 Teil 1 Regressionsanalyse Von: Anne Schmidt. Anordnung von Zahlen in Zeilen und Spalten (Tabelle)

STATISTIK 2 Teil 1 Regressionsanalyse Von: Anne Schmidt. Anordnung von Zahlen in Zeilen und Spalten (Tabelle) Kapitel 2 Deskriptive lineare Regression 2.1. Einführung Definition Regressionsanalyse Unterschied zu Varianzanalyse Matrix/ Matrizen Indices Vektor Decken Zusammenhänge zwischen Beobachtungsreihen auf,

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Wie hängen Löhne von Bildung ab? - Eine Einführung in die statistische Analyse von Zusammenhängen. Axel Werwatz Technische Universität Berlin

Wie hängen Löhne von Bildung ab? - Eine Einführung in die statistische Analyse von Zusammenhängen. Axel Werwatz Technische Universität Berlin Wie hängen Löhne von Bildung ab? - Eine Einführung in die statistische Analyse von Zusammenhängen Axel Werwatz Technische Universität Berlin Einleitung Löhne sind unsere wichtigste Einkommensquelle. Geringer

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) 8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

3.1 Modell und Statistik Zusammenhang zwischen einer Zielgrösse Y und mehreren Eingangsgrössen X (1), X (2),..., X (m)

3.1 Modell und Statistik Zusammenhang zwischen einer Zielgrösse Y und mehreren Eingangsgrössen X (1), X (2),..., X (m) 3.1. MODELL UND STATISTIK 32 3 Multiple lineare Regression a 3.1 Modell und Statistik Zusammenhang zwischen einer Zielgrösse Y und mehreren Eingangsgrössen X (1), X (2),..., X (m) Y i = β 0 + β 1 x (1)

Mehr

Fehler- und Ausgleichsrechnung

Fehler- und Ausgleichsrechnung Fehler- und Ausgleichsrechnung Daniel Gerth Daniel Gerth (JKU) Fehler- und Ausgleichsrechnung 1 / 12 Überblick Fehler- und Ausgleichsrechnung Dieses Kapitel erklärt: Wie man Ausgleichsrechnung betreibt

Mehr

Ziel der linearen Regression

Ziel der linearen Regression Regression 1 Ziel der linearen Regression Bei der linearen Regression wird untersucht, in welcher Weise eine abhängige metrische Variable durch eine oder mehrere unabhängige metrische Variablen durch eine

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Das klassische Regressionsmodell: Ein Beispiel

Das klassische Regressionsmodell: Ein Beispiel 1 / 43 Das klassische Regressionsmodell: Ein Beispiel Kapitel 2 Ökonometrie I Michael Hauser 2 / 43 Inhalt Ein Beispiel für das klassische, bivariate Regressionsmodell: Okun s Gesetz Das bivariate, lineare

Mehr

Sparse Hauptkomponentenanalyse

Sparse Hauptkomponentenanalyse Sparse Referent: Thomas Klein-Heßling LMU München 20. Januar 2017 1 / 36 1 Einführung 2 3 4 5 2 / 36 Einführung Ziel: vorhandene Datenmenge verstehen Daten komprimieren Bei der Sparse (SPCA) handelt es

Mehr

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Preismesszahl: Misst Preisveränderung eines einzelnen Gutes: Preis zum Zeitpunkt

Mehr

SBWL Tourismusanalyse und Freizeitmarketing

SBWL Tourismusanalyse und Freizeitmarketing Inhalt 3. Multiples Regressionsmodell 3.1. Das klassische lineare Regressionsmodell 3.2 Regressions- und lineares Modell 3.3. Die Standardannahmen im klassischen linearen Regressionsmodell 3.4 Kleinste

Mehr

Empirical Banking and Finance

Empirical Banking and Finance Empirical Banking and Finance Vorlesung zur Volkswirtschaftspolitik Prof. Dr. Isabel Schnabel Lehrstuhl für Volkswirtschaftslehre, insb. Financial Economics Johannes Gutenberg-Universität Mainz Wintersemester

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Lineare Regression Blockpraktikum zur Statistik mit R 28. März 2012 Sören Gröttrup Institut für Mathematische Statistik Universität Münster SS 2012

Lineare Regression Blockpraktikum zur Statistik mit R 28. März 2012 Sören Gröttrup Institut für Mathematische Statistik Universität Münster SS 2012 Lineare Regression Blockpraktikum zur Statistik mit R 28. März 2012 Sören Gröttrup Institut für Mathematische Statistik Universität Münster SS 2012 Beispiel: Ausgangsfrage Ziel: Wie wirkt sich die eingesetzte

Mehr

Einführung in die Ökonometrie

Einführung in die Ökonometrie Einführung in die Ökonometrie Peter Hackl ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Lineare Regression: Schätzverfahren

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j 1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Multivariate Lineare Modelle SS Varianzanalyse. 1. T -Statistiken. 2. ANOVA einfaktoriell. 3. ANOVA zweifaktoriell 4. MANOVA 5.

Multivariate Lineare Modelle SS Varianzanalyse. 1. T -Statistiken. 2. ANOVA einfaktoriell. 3. ANOVA zweifaktoriell 4. MANOVA 5. Multivariate Lineare Modelle SS 2010 3 Varianzanalyse 1. T -Statistiken 2. ANOVA einfaktoriell 3. ANOVA zweifaktoriell 4. MANOVA 5. ANCOVA 1 3.1 T -Statistiken Varianzanalyse kategorielle erklärende Variablen

Mehr

Einführung in die Methoden der Empirischen Wirtschaftsforschung

Einführung in die Methoden der Empirischen Wirtschaftsforschung Einführung in die Methoden der Empirischen Wirtschaftsforschung Prof. Dr. Dieter Nautz Einführung in die Methoden der Emp. WF 1 / 37 Übersicht 1 Einführung in die Ökonometrie 1.1 Was ist Ökonometrie? 1.2

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

Statistisches Lernen

Statistisches Lernen Statistisches Lernen Einheit 12: Modellwahl und Regularisierung Dr. rer. nat. Christine Pausch Institut für Medizinische Informatik, Statistik und Epidemiologie Universität Leipzig WS 2014/2015 1 / 28

Mehr

1 Inhaltsverzeichnis. 1 Einführung...1

1 Inhaltsverzeichnis. 1 Einführung...1 1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Dipl.-Math. oec. D. Engel Ergänzungsmaterial zur Vorlesung Statistik 2 Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Nachtrag Kapitel 3: Marginale Effekte

Nachtrag Kapitel 3: Marginale Effekte Tabelle 3.1: Preise von Gebrauchtautos. Abh.Var.: Preis (1) (2) (3) Const. 23183.613 23521.484 20460.096 (377.445) (385.394) (435.275) Alter 2202.768 2757.766 (217.994) (128.276) km 0.022 0.081 (0.007)

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

Einführung in die Empirische Wirtschaftsforschung

Einführung in die Empirische Wirtschaftsforschung Einführung in die Empirische Wirtschaftsforschung Basierend auf dem Textbuch von Ramanathan: Introductory Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Bachelorprüfung SS 2015

Bachelorprüfung SS 2015 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 205

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Nachschreibklausur im Anschluss an das SS 2009

Nachschreibklausur im Anschluss an das SS 2009 Nachschreibklausur im Anschluss an das SS 2009 08. Oktober 2009 Lehrstuhl: Prüfungsfach: Prüfer: Hilfsmittel: Klausurdauer: Wirtschaftspolitik Empirische Wirtschaftsforschung Prof. Dr. K. Kraft Nicht-programmierbarer

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr