Statistische Eigenschaften der OLS-Schätzer, Residuen,

Größe: px
Ab Seite anzeigen:

Download "Statistische Eigenschaften der OLS-Schätzer, Residuen,"

Transkript

1 Statistische Eigenschaften der OLS-Schätzer, Residuen, Bestimmtheitsmaß Stichwörter: Interpretation des OLS-Schätzers Momente des OLS-Schätzers Gauss-Markov Theorem Residuen Schätzung von σ 2 Bestimmtheitsmaß o1-03.tex/0

2 Interpretation der β i Das Regressionsmodell sei OLS-Anpassung ergibt Y t = β 1 + β 2 X 2t β k X kt + u t Ŷ t = b 1 + b 2 X 2t b k X kt b i : mittlere Änderung von Y, wenn X i = 1 (und X j, j i, unverändert) Beachte! Der OLS-Schätzer b i ist davon abhängig, welche andere Regressoren im Modell enthalten sind! o1-03.tex/1

3 Konsumfunktion mit und ohne Trend o1-03.tex/2

4 Konsumfunktion mit und ohne Trend Für β y aus erhalten wir C t = α + β y Y t + u t b cy = s cy s 2 y Für β y aus erhalten wir C t = α + β y Y t + β t T t + u t b cy.t = s cys 2 t s ct s ty s 2 ys 2 t s 2 yt = b cy b ct b ty 1 r 2 yt In allgemeinerer Notation gilt für die analogen Schätzer von β 2 aus Y t = β 1 + β 2 X 2t + β 3 X 3t + u t : b y2.3 = b y2 b y3 b 32 1 r 2 23 o1-03.tex/3

5 Die Beta-Koeffizienten Beta-Koeffizient oder standardisierter Regressionskoeffizient: b i = b i s i s y ergibt sich als OLS-Schätzer im Modell mit standardisierten Variablen Y t = β 1 + β 2X 2t β kx kt + u t mit Yt = (Y t Y )/s y und Xit = (X ti X i )/s i, wobei Y, X i (x y, s i ) die Mittelwerte (Standardabweichungen) der Y t, X it sind. mittlere Änderung von Y in Standardabweichungen der Y t bei Änderung von X i um s i o1-03.tex/4

6 Statistische Eigenschaften des KQ-Schätzers linear in u t, t = 1,..., n. Eigenschaften: (a) (b) b = (X X) 1 X y = (X X) 1 X (Xβ + u) = β + (X X) 1 X u E{b} = E{β+(X X) 1 X u} = β+(x X) 1 X E{u} = β wegen E{u} = 0 Var{b} = Var{β + (X X) 1 X u} = (X X) 1 X Var{u}X(X X) 1 = σ 2 (X X) 1 X X(X X) 1 = σ 2 (X X) 1 wegen Var{u} = σ 2 I (c) aus u N(0, σ 2 I) folgt b N[β, σ 2 (X X) 1 ] o1-03.tex/5

7 Beispiel: Einfache Regression Die OLS-Schätzer für die Regressionskoeffizienten von haben sich ergeben zu b = Invertieren der Matrix Y t = α + βx t + u t t (X t x)(y t ȳ) a = ȳ b x X X = ergibt die Diagonalelemente t (X t x) 2 n n x n x t Xt 2 Var{b} = σ 2 [(X X) 1 ] 22 = Var{a} = σ 2 [(X X) 1 ] 11 = σ 2 σ 2 t (X t x) 2 1 n + x2 Beachte! Die Standardabweichung von b (auch ihr Standardfehler genannt) hängt vom Design der Stichprobe ab! Die Schätzung ist umso genauer, je größer n je größer s x s 2 x o1-03.tex/6

8 Gauss-Markov Theorem Gelten für das Regressions-Modell y = Xβ + u die Standard-Annahmen ( klassisches Modell) (a) r(x) = k (b) X it fix für i = 1,..., k und t = 1,..., n (c) E{u} = 0 (d) Var{u} = σ 2 I dann ist der Kleinst-Quadrat Schätzer b = (X X) 1 X y der beste, lineare, erwartungstreue (BLU) Schätzer für β bester Schätzer b: für beliebiges b gilt Var{b } Var{b} 0 (p.s.) b ist effizient gegenüber allen linearen, erwartungstreuen Schätzern o1-03.tex/7

9 Beweis des Gauss-Markov Theorems Sei β = Cy ein linearer, erwartungstreuer Schätzer E{ β} = E{CXβ + Cu} = CXβ = β; daraus folgt CX = I. Wir erhalten Var{ β} = Var{CXβ + Cu} = Cσ 2 IC = CC σ 2. Wir suchen ein D so, daá C = (X X) 1 X + D; aus CX = I folgt wegen (X X) 1 X X + DX = I + DX = I, daß DX = 0. Aus CC = [(X X) 1 X + D][(X X) 1 X + D] = (X X) 1 X X(X X) 1 + DD = (X X) 1 + DD und der Positiv-semidefinitheit von DD ergibt sich, daß CC (X X) 1 positiv semidefinit ist; b hat minimale Varianz. o1-03.tex/8

10 Konsumfunktion für Österreich, Residuen o1-03.tex/9

11 Eigenschaften der Residuen y = Xβ + u = Xb + e = ŷ + e Vektor der Residuen e = y ŷ = y Xb Eigenschaften: (a) e und X sind orthogonal X e = X e cos(x, e) = 0 (b) e und ŷ sind orthogonal ŷ e = b X e = 0 (c) y y = (ŷ + e) (ŷ + e) = ŷ ŷ + e e + ŷ e + e ŷ = ŷ ŷ + e e t Y 2 t = t Ŷ 2 t + t e 2 t o1-03.tex/10

12 Für e gilt Schätzung der Varianz σ 2 e = y Xb = My = M(Xβ + u) = Mu wegen MX = (I X(X X) 1 X )X = X X(X X) 1 X X = 0. Damit ergibt sich e e = u M Mu = u Mu wegen der Idempotenz von M. Aus u N(0, σ 2 I) oder u/σ N(0, I) folgt T = e e σ 2 = 1 σ 2u Mu χ 2 (n k) da Aus r(m) = Sp(M) = Sp[I X(X X) 1 X ] = Sp I Sp[X(X X) 1 X ] = n k E{T } = 1 σ 2 E {e e} = n k folgt 1 n k E {e t e 2 t e} = E{ n k } = σ2 sodaß ˆσ 2 ein erwartungstreuer Schätzer von σ 2 ist: ˆσ 2 = 1 e 2 n k t. t o1-03.tex/11

13 Regression mit Interzept (inhomogenes Regressions-Modell) X e = t x te t = 0 mit x t = (X 1t,..., X kt ), oder t X it e t = 0, i = 1,..., k inhomogenes Regressions-Modell: X 1t = 1, Eigenschaften: t = 1,..., n (a) t e t = 0 (b) aus t Y t = t(ŷt + e t ) = t Ŷt folgt Y = Ŷ (c) Y = 1 n ( t i b i X it ) = i 1 b i X it = n t i b i X i = b 1 + b 2 X 2... b k X k mit X i = 1 n t X it, i = 1,..., k o1-03.tex/12

14 Erklärungsvermögen der linearen Regression (a) Y = i b i X i (b) Zerlegung der Variation der erklärten Variablen TSS = (Y t Y ) 2 = t t = ESS + RSS (Ŷt Y ) 2 + t e 2 t (c) TSS: total sum of squares, Gesamtvariation ESS: explained sum of squares, (durch die Regression) erklärte Variation (oft auch RSS (!) bezeichnet) RSS: residual sum of squares, residuale oder nicht erklärte Variation (oft auch ESS (!) bezeichnet) 0 RSS TSS 1 aus RSS 0 folgt: RSS TSS 0 aus ESS = TSS RSS 0 folgt: TSS RSS oder RSS TSS 1 o1-03.tex/13

15 Bestimmtheitsmaß R 2 = ESS TSS = 1 RSS TSS = 1 t e 2 t t (Y t Y ) 2 Eigenschaften: (a) 0 R 2 1 (b) R 2 ist das Quadrat der Korrelation r Y, Ŷ Ŷ : r Y, Ŷ = t (Y t Y )(Ŷt Y ) t (Y t Y ) 2 t (Ŷt Y ) 2 zwischen Y und = t (Ŷt Y ) 2 t (Y t Y ) 2 = R 2 (c) Achtung! Wenn β 1 = 0, gilt nicht notwendigerweise R 2 0; R 2 kann negativ sein! o1-03.tex/14

16 Bestimmtheitsmaß, Forts. (d) R 2 bleibt bei linearer Transformation von Y oder X unverändert. (A) Transformation der X x tβ = i β i X it = i γ i (r i X it + s i ) = i Xβ = Zγ = XDγ γ i Z it = z tγ = x tdγ ˆγ = (Z Z) 1 Z y = (D X XD) 1 D X y = D 1 (X X) 1 (D ) 1 D X y = D 1 (X X) 1 X y Zˆγ = XDˆγ = XDD 1 (X X) 1 X y = Xb (B) Transformation der Y z = ay = a(xβ + u) = Xγ + v ˆγ = (X X) 1 X (ay) = ab ˆv = z ẑ = ay X ˆγ = ay axb = ae o1-03.tex/15

17 Adjustiertes Bestimmtheitsmaß Das adjustiertes Bestimmtheitsmaß R 2 berücksichtigt die Zahl der erklärenden Variablen: R 2 = 1 n 1 n k t e 2 t t (Y t Y ) 2 = 1 n 1 n k (1 R2 ) ˆσ 2 : unverzerrter Schätzer von σ 2 s 2 y: unverzerrter Schätzer von σ 2 y = 1 ˆσ2 s 2 y Beim Vergleich des Erklärungsgrades zweier Modelle mit unterschiedlicher Zahl von erklärenden Variablen ist R 2 gegenüber R 2 vorzuziehen. o1-03.tex/16

18 Die Matrizen P (hat-matrix) und M ŷ = X(X X) 1 X y = P y e = y Xb = y X(X X) 1 X y = [I X(X X) 1 X ]y = My P = X(X X) 1 X und M = I X(X X) 1 X sind (a) symmetrisch: P = [X(X X) 1 X ] = X(X X) 1 X = P M = [I X(X X) 1 X ] = (I P ) = I P = M (b) idempotent: P P = [X(X X) 1 X ][X(X X) 1 X ] = X(X X) 1 X = P MM = (I P )(I P ) = I P P +P P = I P = M (c) wenn X vollen Rang hat: r(p ) = k r(m) = n k o1-03.tex/17

Schätzung im multiplen linearen Modell VI

Schätzung im multiplen linearen Modell VI Schätzung im multiplen linearen Modell VI Wie im einfachen linearen Regressionsmodell definiert man zu den KQ/OLS-geschätzten Parametern β = ( β 0, β 1,..., β K ) mit ŷ i := β 0 + β 1 x 1i +... β K x Ki,

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

Simultane Mehrgleichungssysteme: Parameterschätzung

Simultane Mehrgleichungssysteme: Parameterschätzung Simultane Mehrgleichungssysteme: Parameterschätzung Stichwörter: Eigenschaften des OLS-Schätzers Hilfsvariablenschätzer 2SLS limited information Methoden 3SLS FIML full information Methoden o1-21.tex/0

Mehr

Zusammenfassung: Einfache lineare Regression I

Zusammenfassung: Einfache lineare Regression I 4 Multiple lineare Regression Multiples lineares Modell 41 Zusammenfassung: Einfache lineare Regression I Bisher: Annahme der Gültigkeit eines einfachen linearen Modells y i = β 0 + β 1 x i + u i, i {1,,

Mehr

Kurs Empirische Wirtschaftsforschung

Kurs Empirische Wirtschaftsforschung Kurs Empirische Wirtschaftsforschung 5. Bivariates Regressionsmodell 1 Martin Halla Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz 1 Lehrbuch: Bauer/Fertig/Schmidt (2009), Empirische

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

LS-Schätzer. SSE(β) = (y µ) t (y µ) = y t y 2β t X t y + β t X t Xβ. Minimiere SSE(β) bzgl. β: Minimum definiert durch

LS-Schätzer. SSE(β) = (y µ) t (y µ) = y t y 2β t X t y + β t X t Xβ. Minimiere SSE(β) bzgl. β: Minimum definiert durch LS-Schätzer Sei µ = Xβ mit rg(x) = p und β = (β 1,..., β p ) t SSE(β) = (y µ) t (y µ) Minimiere SSE(β) bzgl. β: = y t y 2β t X t y + β t X t Xβ β SSE(β) = 2Xt y + 2X t Xβ. Minimum definiert durch X t X

Mehr

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen .1. Stochastische ökonometrische Modelle.1 Einführung Ziele: - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen - Numerische Konkretisierung ökonomischer Modelle und deren Analse. . Variierende

Mehr

Instrument zur Untersuchung eines linearen Zusammenhangs zwischen zwei (oder mehr) Merkmalen.

Instrument zur Untersuchung eines linearen Zusammenhangs zwischen zwei (oder mehr) Merkmalen. Gliederung Grundidee Einfaches lineares Modell KQ-Methode (Suche nach der besten Geraden) Einfluss von Ausreißern Güte des Modells (Bestimmtheitsmaß R²) Multiple Regression Noch Fragen? Lineare Regression

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

Lineare Regression mit einem Regressor: Einführung

Lineare Regression mit einem Regressor: Einführung Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,

Mehr

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3.

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3. Reparametrisierung des Modells Gegeben sei das Modell (2.1) mit (2.5) unter der linearen Restriktion Aβ = c mit A R a p, rg(a) = a, c R a. Wir betrachten die lineare Restriktion als Gleichungssystem. Die

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Mehrgleichungsmodelle: Schätzverfahren

Mehrgleichungsmodelle: Schätzverfahren 1 / 26 Mehrgleichungsmodelle: Schätzverfahren Kapitel 21 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 26 Inhalt SUR, seemingly unrelated regressions Systeme von interdependenten Gleichungen

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme)

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) 2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) Annahme A1: Im multiplen Regressionsmodell fehlen keine relevanten exogenen Variablen und die benutzten exogenen Variablen x 1,

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Einführung in die Induktive Statistik: Regressionsanalyse

Einführung in die Induktive Statistik: Regressionsanalyse Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität Kapitel 0 Multikollinearität Exakte Multikollinearität Beinahe Multikollinearität Exakte Multikollinearität Unser Modell lautet y = Xb + u, Dimension von X: n x k Annahme : rg(x) = k Wenn sich eine oder

Mehr

V. Das lineare Regressionsmodell

V. Das lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Tino Conrad, M.Sc. Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2016 Übung zur

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

y = b 0 + b 1 x 1 x 1 ε 1. ε n b + b 1 1 x n 2) Hat die Größe x einen Einfluss auf y, d.h. gilt die Hypothese: H : b 1 = 0

y = b 0 + b 1 x 1 x 1 ε 1. ε n b + b 1 1 x n 2) Hat die Größe x einen Einfluss auf y, d.h. gilt die Hypothese: H : b 1 = 0 8 Lineare Modelle In diesem Abschnitt betrachten wir eine spezielle Klasse von statistischen Modellen, in denen die Parameter linear auftauchen Wir beginnen mit zwei Beispielen Beispiel 8 (lineare Regression)

Mehr

Ökonometrische Modelle

Ökonometrische Modelle Ökonometrische Modelle Stichwörter: Dynamische Modelle Lagstrukturen Koyck sche Lagstruktur Zeitreihenmodelle Mehrgleichungsmodelle Strukturform reduzierte Form o1-13.tex/0 Lüdeke-Modell für die BRD C

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Breusch-Pagan-Test I Ein weiterer Test ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich, eine (einzelne) Quelle der Heteroskedastizität anzugeben bzw. zu vermuten.

Mehr

Lineare Regression (Ein bisschen) Theorie

Lineare Regression (Ein bisschen) Theorie Kap. 6: Lineare Regression (Ein bisschen) Theorie Lineare Regression in Matrixform Verteilung des KQ-Schätzers Standardfehler für OLS Der Satz von Gauss-Markov Das allgemeine lineare Regressionsmodell

Mehr

4 Einführung in die Theorie linearer Modelle

4 Einführung in die Theorie linearer Modelle 4 Einführung in die Theorie linearer Modelle Häufig werden mehrere erklärende Variablen bzw. Regressoren X,..., X p gleichzeitig betrachtet. Dafür benötigen wir eine Modellerweiterung. 4. Vorbemerkungen

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Philipps Universität Marburg FB 02: Wirtschaftswissenschaften Abteilung Statistik c Prof. Dr. Karlheinz Fleischer FORMELSAMMLUNG.

Philipps Universität Marburg FB 02: Wirtschaftswissenschaften Abteilung Statistik c Prof. Dr. Karlheinz Fleischer FORMELSAMMLUNG. Philipps Universität Marburg FB 0: Wirtschaftswissenschaften Abteilung Statistik c Prof. Dr. Karlheinz Fleischer FORMELSAMMLUNG Ökonometrie Stand: 14. März 006 Inhaltsverzeichnis 1 Klassisches lineares

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Stochastik Praktikum Parametrische Schätztheorie

Stochastik Praktikum Parametrische Schätztheorie Stochastik Praktikum Parametrische Schätztheorie Thorsten Dickhaus Humboldt-Universität zu Berlin 05.10.2010 Prolog Momentenmethode X : Ω 1 Ω Zufallsgröße, die Experiment beschreibt. Ein statistisches

Mehr

Regression. von Peter Pfaffelhuber Version: 31. Oktober 2015

Regression. von Peter Pfaffelhuber Version: 31. Oktober 2015 Regression von Peter Pfaffelhuber Version: 31. Oktober 2015 1 Einleitung Oftmals will man mit Daten Zusammenhänge bestimmen, etwa zwischen der Größe einer Wohnung und dem Mietpreis, oder der Verkehrsdichte

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

6. Heteroskedastizität (Verletzung der B2-Annahme)

6. Heteroskedastizität (Verletzung der B2-Annahme) 6. Heteroskedastizität (Verletzung der B2-Annahme) Annahme B2: Die Störgröße u i hat für i = 1,..., N eine konstante Varianz, d.h. V ar(u i ) = σ 2 Bezeichnungen: Konstante u i -Varianzen: Homoskedastizität

Mehr

Vorlesung: Lineare Modelle. Verschiedene Typen von Residuen. Probleme bei der Regression und Diagnose. Prof. Dr. Helmut Küchenhoff.

Vorlesung: Lineare Modelle. Verschiedene Typen von Residuen. Probleme bei der Regression und Diagnose. Prof. Dr. Helmut Küchenhoff. Vorlesung: Lineare Modelle Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München SoSe 205 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen.

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr

Goethe-Universität Frankfurt

Goethe-Universität Frankfurt Goethe-Universität Frankfurt Fachbereich Wirtschaftswissenschaft PD Dr. Martin Biewen Dr. Ralf Wilke Sommersemester 2006 Klausur Statistik II 1. Alle Aufgaben sind zu beantworten. 2. Bitte runden Sie Ihre

Mehr

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

Kapitel 2. OLS-Schätzung. 2.1 Methode der kleinsten Quadrate 12 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA)

Kapitel 2. OLS-Schätzung. 2.1 Methode der kleinsten Quadrate 12 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA) 2 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA) Kapitel 2 OLS-Schätzung 2. Methode der kleinsten Quadrate Einleitung OLS aus Sicht der linearen Algebra Die Methode der kleinsten Quadrate (OLS Ordinary least

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne).

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne). Aufgabe 1 (5 Punkte) Gegeben sei ein lineares Regressionsmodell in der Form. Dabei ist y t = x t1 β 1 + x t β + e t, t = 1,..., 10 (1) y t : x t1 : x t : Teekonsum in den USA (in 1000 Tonnen), Nimmt den

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2014 Mehrdimensionale Datensätze: Multivariate Statistik Multivariate Statistik Mehrdimensionale Datensätze:

Mehr

Appendix. Kapitel 2. Ökonometrie I Michael Hauser

Appendix. Kapitel 2. Ökonometrie I Michael Hauser 1 / 24 Appendix Kapitel 2 Ökonometrie I Michael Hauser 2 / 24 Inhalt Geometrie der Korrelation Freiheitsgrade Der OLS Schätzer: Details OLS Schätzer für Okuns s law nachgerechnet Anforderungen an Theorien

Mehr

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Statistik 7.1 Korrelationsanalyse Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Sommersemester 2012 7 Regressions- und Korrelationsanalyse Kovarianz Pearson-Korrelation Der (lineare)

Mehr

Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression

Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression Fragen Welche Unsicherheitsfaktoren beeinflussen die Schätzung einer Regressionsgeraden? Einführung in die induktive Statistik Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München

Mehr

ÜBUNGSSKRIPTUM zur VO Lineare Modelle

ÜBUNGSSKRIPTUM zur VO Lineare Modelle ÜBUNGSSKRIPTUM zur VO Lineare Modelle [Letztes Update: 20. Jänner 2010] I. Momente von Stichproben und Zufallsvariablen Verwenden Sie für die Lösung der folgenden Aufgaben das Handout Moments and Sample

Mehr

Interpretation von Testergebnissen I

Interpretation von Testergebnissen I 2 Wiederholung statistischer Grundlagen Schließende Statistik 2.3 Interpretation von Testergebnissen I Durch die Asymmetrie in den Fehlerwahrscheinlichkeiten 1. und 2. Art ist Vorsicht bei der Interpretation

Mehr

Stochastik Praktikum Lineare Modelle

Stochastik Praktikum Lineare Modelle Stochastik Praktikum Lineare Modelle Thorsten Dickhaus Humboldt-Universität zu Berlin 06.10.2010 Übersicht 1 Einfache lineare Regression 2 Multiple lineare Regression 3 Varianzanalyse 4 Verallgemeinerte

Mehr

Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation

Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation Bivariater Zusammenhang bei metrischen Variablen: Regression und Korrelation PEΣO 12. November 2001 Von der Tabellenanalyse zur Regression Die bivariate Verteilung zweier metrischer Variablen kann konzeptionell

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft

Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Prof. Dr. Marc Gürtler WS 015/016 Prof. Dr. Marc Gürtler Klausur zur 10/1 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Lösungsskizze Prof. Dr. Marc Gürtler WS 015/016 Aufgabe 1: (11+5+1+8=56

Mehr

4. Das multiple lineare Regressionsmodell

4. Das multiple lineare Regressionsmodell 4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere

Mehr

Mehrgleichungsmodelle

Mehrgleichungsmodelle 1 / 25 Mehrgleichungsmodelle Kapitel 20 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 25 Inhalt SUR, seemingly unrelated regressions Systeme von interdependenten Gleichungen Identifikation

Mehr

Methode der kleinsten Quadrate Prinzip. OLS-Schätzung linearer Regressionsmodelle. Methode der kleinsten Quadrate Geometrische

Methode der kleinsten Quadrate Prinzip. OLS-Schätzung linearer Regressionsmodelle. Methode der kleinsten Quadrate Geometrische OLS-Schätzung linearer Regressionsmodelle KH Schild 29 April 207 Agenda: OLS aus geometrischer/algebraischer Sicht (Exogenität als Orthogonalität) Bestimmtheitsmaß R 2 Erwartungswert der OLS-Schätzung

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

R E G R E S S I O N S A N A L Y S E Terminologie

R E G R E S S I O N S A N A L Y S E Terminologie Seite 1 von 40 R E G R E S S I O N S A N A L Y S E Terminologie Regression Statistische Regressionsmodelle dienen dazu, einen funktionalen Zusammenhang in einem Datensatz (x i, y i ), i = 1,, k zwischen

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

Das lineare Regressionsmodell

Das lineare Regressionsmodell Kapitel 2 Das lineare Regressionsmodell 2.1 Das statistische Modell 2.1.1 Schreibweise und Annahmen Die generische Form des univariaten Regressionsmodells ist durch y t = x t (β) + ε t (2.1) gegeben. Dabei

Mehr

5 Allgemeine Verfahren zum Testen von Hypothesen

5 Allgemeine Verfahren zum Testen von Hypothesen 5 Allgemeine Verfahren zum Testen von Hypothesen 5.1 Likelihood Schätzung für multivariate Daten Statistisches Modell: Einfache Zufallsstichprobe X 1,..., X n (unabhängige Wiederholungen von X IR d ).

Mehr

Als lineare Regressionsaufgabe, d. h., Regression von Y auf X, ergibt sich nun:

Als lineare Regressionsaufgabe, d. h., Regression von Y auf X, ergibt sich nun: 5 Regression Oft interessiert uns der Zusammenhang zwischen zwei Merkmalen X und Y einer Einheit, etwa, wie Gewicht und Größe von Menschen voneinander abhängen. Einfach zu sagen, je größer, desto schwerer

Mehr

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik Demokurs Modul 3741 Vertiefung der Wirtschaftsmathematik und Statistik Kurs 41 Vertiefung der Statistik 15. Juli 010 Seite: 14 KAPITEL 4. ZUSAMMENHANGSANALYSE gegeben, wobei die Stichproben(ko)varianzen

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

x t2 y t = 160, y = 8, y y = 3400 t=1

x t2 y t = 160, y = 8, y y = 3400 t=1 Aufgabe 1 (25 Punkte) 1. Eine Online Druckerei möchte die Abhängigkeit des Absatzes gedruckter Fotos vom Preis untersuchen. Dazu verwendet die Firma das folgende lineare Regressionsmodell: wobei y t =

Mehr

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen.

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen. Kapitel 3 Schließende lineare Regression 3.1. Einführung induktiv Fragestellungen Modell Statistisch bewerten, der vorher beschriebenen Zusammenhänge auf der Basis vorliegender Daten, ob die ermittelte

Mehr

Mehrgleichungsmodelle

Mehrgleichungsmodelle Mehrgleichungsmodelle Stichwörter: Typen von Mehrgleichungsmodellen multivariates Regressionsmodell seemingly unrelated Modell interdependentes Modell Schätzen der Parameter Bestimmtheitsmass Spezifikationstests

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Die Stochastischen Eigenschaften von OLS

Die Stochastischen Eigenschaften von OLS Die Stochastischen Eigenschaften von OLS Das Bivariate Modell Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Wiederholung

Mehr

Identifizierbarkeit von Modellen

Identifizierbarkeit von Modellen Identifizierbarkeit von Modellen Stichwörter: Simultanes Mehrgleichungsmodell Struktur- und reduzierte Form Vollständigkeit Identifizierbarkeit Abzählbedingung Rangbedingung o1-19.tex/0 Interdependente

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/

Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/ Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/2018 06.12.2018 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

6.2 Regressionsanalyse I: Die lineare Einfachregression

6.2 Regressionsanalyse I: Die lineare Einfachregression 6.2 Regressionsanalyse I: Die lineare Einfachregression 6.2.1 Grundbegriffe und Hintergrund Bedeutung der Regression: Eines der am häufigsten verwendeten statistischen Verfahren. Vielfache Anwendung in

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr in Quantitative Methoden- 2.VO 1/47 Historisches Regression geht auf Galton

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Kapitel 12. Autokorrelation in den Residuen

Kapitel 12. Autokorrelation in den Residuen Kapitel Autokorrelation in den Residuen Der Sachverhalt Modell y = Xb + u, Ordnung von X: n x k Annahme A6: Var{u} = s I Annahme 6 impliziert serielle Unkorreliertheit der Störgrößen: Var{u t, u t+i }

Mehr

1. Lösungen zu Kapitel 5

1. Lösungen zu Kapitel 5 . Lösungen zu Kapitel 5 Übungsaufgabe 5. a) Falsch! Die Varianz des geschätzten Koeffizienten ˆβ berechnet sich folgendermaßen: ) b) Falsch! Var(β ˆ ) = ˆσ2 ˆσ X 2 = = ( ˆεt 2 (K+) X 2 t X 2 5 5 2 0 8

Mehr

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Inferenzstatistik in Regressionsmodellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für

Mehr

3.3 Konfidenzintervalle für Regressionskoeffizienten

3.3 Konfidenzintervalle für Regressionskoeffizienten 3.3 Konfidenzintervalle für Regressionskoeffizienten Konfidenzintervall (Intervallschätzung): Angabe des Bereichs, in dem der "wahre" Regressionskoeffizient mit einer großen Wahrscheinlichkeit liegen wird

Mehr

Lineare Regression und Varianzanalyse

Lineare Regression und Varianzanalyse Lineare Regression und Varianzanalyse Von Prof. Dr. Fritz Pokropp Universität der Bundeswehr Hamburg R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1 Einleitung 1 1.1 Grundstruktur linearer Modelle

Mehr

Prof. Dr. Marc Gürtler WS 2014/2015. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft

Prof. Dr. Marc Gürtler WS 2014/2015. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Prof. Dr. Marc Gürtler WS 04/05 Prof. Dr. Marc Gürtler Klausur zur 0/ SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Lösungsskizze Prof. Dr. Marc Gürtler WS 04/05 Aufgabe : (37 Punkte) ) Die

Mehr

I.V. Methoden 4: Regressionsund Pfadanalyse WiSe 02/03

I.V. Methoden 4: Regressionsund Pfadanalyse WiSe 02/03 I.V. Methoden 4: Regressionsund Pfadanalyse WiSe 02/03 Vorlesung: 12.11.2002 He uses statistics as a drunken man use lampposts - for support rather than for illumination. Andrew Lang Dr. Wolfgang Langer

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Kurzfassung Empirische Wirtschaftsforschung Is it magic? [WS09/10 Prof. Urban] Die Zusammenfassung dient lediglich zur Klausurvorbereitung, kann jedoch nicht Vorlesung und Übung ersetzen. Es kann keine

Mehr