Identifizierbarkeit von Modellen

Größe: px
Ab Seite anzeigen:

Download "Identifizierbarkeit von Modellen"

Transkript

1 Identifizierbarkeit von Modellen Stichwörter: Simultanes Mehrgleichungsmodell Struktur- und reduzierte Form Vollständigkeit Identifizierbarkeit Abzählbedingung Rangbedingung o1-19.tex/0

2 Interdependente Mehrgleichungs-Modelle Beispiel: Marktmodell Das Marktmodell besteht aus folgenden Gleichungen: Q (n) t Q (a) t Q (n) = α 1 + α 2 P t + α 3 Y t + u 1t = β 1 + β 2 P t + β 3 Z t + u 2t = Q (a) = Q Q: nachgefragte bzw. angebotene Menge (endogen) P : Preis (endogen) Z: weitere Variable, z.b.: Arbeitskosten (exogen) oder Q t = α 1 + α 2 P t + α 3 Y t + u 1t Q t = β 1 + β 2 P t + β 3 Z t + u 2t Erklärende Variable sind zufällig! Kleinst-Quadrat Schätzer für α aus der ersten Gleichung Q t = x tα + u 1 : a = (X X) 1 X Q = α + (X X) 1 X u 1 ist konsistent, wenn plim(x X) 1 X u = 0 o1-19.tex/1

3 Endogene, exogene und vorherbestimmte Variable Exogene Variable: vorherbestimmt (predetermined): keine Korrelation mit aktuellen und künftigen Störgrößen u 2,t+i, i 0 strikt exogen: keine Korrelation mit Störgrößen u 2,t+i, i beliebig; als fixe Größen behandelt Endogene Variable: werden durch das Modell bestimmt (umgangssprachlich) In Mehrgleichungs-Modellen gilt für den Vektor der Störgrößen Dann gilt u t IID(0, Σ) plim X u 0, wenn eine Variable aus X endogen ist plim X u = 0, wenn alle Variablen in X vorherbestimmt sind o1-19.tex/2

4 Mehrgleichungs-Modell, Forts. Reduzierte Form (endogene Variablen als Funktion von exogenen und vorherbestimmten Variablen): Q t P t = π 11 + π 12 Y t + π 13 Z t + v 1t = π 21 + π 22 Y t + π 23 Z t + v 2t mit π 11 = α 1β 2 α 2 β 1 β 2 α 2. =. v 1t v 2t = β 2u 1t α 2 u 2t β 2 α 2 = u 1t u 2t β 2 α 2 Konsistente OLS-Schätzer sind möglich! o1-19.tex/3

5 Ein anderes Marktmodell Das Marktmodell besteht aus folgenden Gleichungen: Q (n) t Q (a) t Q (n) = α 1 + α 2 P t + α 3 Y t + u 1t = β 1 + β 2 P t 1 + β 3 Z t + u 2t = Q (a) = Q oder Q t = α 1 + α 2 P t + α 3 Y t + u 1t (1) Q t = β 1 + β 2 P t 1 + β 3 Z t + u 2t (2) (2) bestimmt Q; enthält nur vorherbestimmte Variable! (1) kann geschrieben werden als P t = γ 1 + γ 2 Q t + γ 3 Y t + u 3t wenn u 1t und u 2t unabhängig und nicht seriell korreliert sind, ist Q t unabhängig von u 3t ; dann ist Q t eine vorherbestimmte Variable; konsistente OLS-Schätzung ist möglich o1-19.tex/4

6 Klein s Modell 1 (1950) C t = α 1 + α 2 P t + α 3 P t 1 + α 4 (W p t + W g t ) + u 1t Konsum I t W p t = β 1 + β 2 P t + β 3 P t 1 + β 4 K t 1 + u 2t Investitionen = γ 1 + γ 2 X t + γ 3 X t 1 + γ 4 t + u 3t Nachfrage nach Arbeit Y t + T t = C t + I t + G t (gesamte Produktion) K t = I t + K t 1 (Kapitalbestand) Y t = Wt p + Wt g + P t (Einkommen) X t = Y t + T t Wt g (private Produktion) mit C: Ausgaben für Konsum, P : Gewinne, W p : private Löhne+Gehälter, W g : öffentliche Löhne+Gehälter, X: private Produktion, I: Investitionen, K: Kapitalbestand, Y : Einkommen nach Steuern, G: Ausgaben der öffentlichen Hand, T : Steuern, t: Zeit (Trend) endogen: C t, P t, W p t, I t, X t, K t, Y t exogen: 1, W g t, G t, T t, t vorherbestimmt: P t 1, K t 1, X t 1 o1-19.tex/5

7 Notation Strukturform: Darstellung der Beziehung zwischen endogenen und vorherbestimmten Variablen entsprechend der ökonomischen Theorie Ay t = Γz t + u t Beispiel: Strukturform des Marktmodells Q t = α 1 + α 2 P t + α 3 Y t + u 1t Q t = β 1 + β 2 P t + β 3 Z t + u 2t u t IID(0, Σ) In Matrixnotation lautet die Strukturform Ay t = Γz t + u t mit und y t = A = Q t P t, z t = 1 α 2 1 β 2 1 Y t Z t, Γ =, u t = u 1t u 2t α 1 α 3 0 β 1 0 β 3 o1-19.tex/6

8 Notation, Forts. Reduzierte Form: Darstellung der Abhängigkeit der endogenen von den vorherbestimmten Variablen y t = A 1 Γz t + A 1 u t = Πz t + v t mit Π = α 1 β 2 α 2 β 1 α 3 β 2 β 2 α 2 β 2 α 2 α 2β 3 β 2 α 2 α 1 β 1 α 3 β 2 α 2 β 2 α 2 β 3 β 2 α 2 Vollständigkeit eines Mehrgleichungsmodells: Zahl der Gleichungen ist gleich der Zahl der endogenen Variablen Vollständigkeit eines Mehrgleichungsmodells setzt Invertierbarkeit von A voraus o1-19.tex/7

9 Begriffliches Arten von Modellgleichungen Reaktionsgleichungen: beschreiben die Wirkungsweise der Variablen (Verhaltens-, technologische, institutionelle Gleichungen) definitorische Identitäten, Gleichgewichtsbedingungen Spezielle Modelltypen: rekursives Mehrgleichungsmodell (A hat Dreiecksform) SUR (A hat Diagonalform) Fragestellungen: Identifizierbarkeit: Weise schätzbar? sind die Parameter in eindeutiger Schätzverfahren o1-19.tex/8

10 Marktmodell A Q t Q t = α 1 + α 2 P t + α 3 Y t + u 1t = β 1 + β 2 P t + β 3 Z t + u 2t Matrix Π der reduzierten Form: Π = α 1 β 2 α 2 β 1 α 3 β 2 β 2 α 2 β 2 α 2 α 2β 3 β 2 α 2 α 1 β 1 α 3 β 2 α 2 β 2 α 2 β 3 β 2 α 2 Von gegebenen π ij kann man rückrechnen auf die Parameter der Strukturform: α 2 = π 13 π 23 β 2 = π 12 π 22 α 3 = π 22 (β 2 α 2 ) β 3 = π 23 (β 2 α 2 ) α 1 = π 11 π 21 α 2 β 1 = π 11 π 21 β 2 o1-19.tex/9

11 Marktmodell B Q t = α 1 + α 2 P t (Nachfrage) Q t = β 1 + β 2 P t + β 3 Z t (Angebot) Matrix Π der reduzierten Form: Π = α 1 β 2 α 2 β 1 α 2 β 3 β 2 α 2 β 2 α 2 α 1 β 1 β 3 β 2 α 2 β 2 α 2 liefert für die Nachfrage- Rückrechnen von gegebenen π ij funktion α 2 = π 12 π 22 α 1 = π 11 π 21 α 2 Zur Berechnung von 3 β i nur 2 Gleichungen: keine eindeutige Lösung; die Angebotsfunktion ist nicht identifizierbar o1-19.tex/10

12 Marktmodell C Q t = α 1 + α 2 P t + α 3 Y t + α 4 R t (Nachfrage) Q t = β 1 + β 2 P t (Angebot) Matrix Π der reduzierten Form: Π = α 1 β 2 α 2 β 1 α 3 β 2 α 4 β 2 β 2 α 2 β 2 α 2 β 2 α 2 α 1 β 1 α 3 α 4 β 2 α 2 β 2 α 2 β 2 α 2 Rückrechnen von gegebenen π ij liefert für die Angebotsfunktion β 2 = π 12 π 22 β 2 = π 13 π 23 β 1 = π 11 π 21 b 2 Angebotsfunktion ist überidentifiziert Zur Berechnung von 4 α i nur 3 Gleichungen: keine eindeutige Lösung; die Nachfragefunktion ist nicht identifizierbar o1-19.tex/11

13 Struktur eines Mehrgleichungsmodells Strukturform Ay t = Γz t + u t mit y t : m-vektor, u t : m-vektor, z t : K-Vektor, A: m m- Matrix; Γ: m K-Matrix reduzierte Form für y t = A 1 Γz t + A 1 u t = Πz t + v t Π = A 1 Γ muss A nicht-singulär sein (Vollständigkeit des Modells) Parameter der Störgrößen E{u t } = 0, Cov{u t } = Σ bzw. E{v t } = 0, Cov{v t } = A 1 Σ(A 1 ) = Ω Die Struktur des Mehrgleichungsmodells sind die Parameter (A, Γ, Σ). o1-19.tex/12

14 Zahl der Parameter Strukturform A: m(m 1) (Normalisierung: a ii = 1) Γ: mk Σ: m(m + 1)/2 reduzierte Form Π: Km Ω: m(m + 1)/2 Rückrechnen von gegebenen (mk) Parameter π ij auf (m(m 1 + K)) Parameter aus A und Γ: erfordert zusätzliche Information Ausschluss von Variablen aus einzelnen Gleichungen Identitäten lineare Restriktionen für Parameter etc. o1-19.tex/13

15 Beobachtungsäquivalenz Sei Ay t = Γz t + u t, u t = IID(0, Σ) Mit nichtsingulärem F hat Ãy t = Γz t + ũ t mit à = F A, Γ = F Γ und ũ t = F u t die gleiche reduzierte Form y t = Πz t + v t wie Ay t = Γz t + u t : und à 1 Γ = A 1 F 1 F Γ = A 1 Γ = Π Ã 1 ũ t = A 1 F 1 F u t = A 1 u t = v t Neben der Struktur (A, Γ, Σ) gibt es Strukturen (F A, F Γ, F ΣF ), die die gleiche reduzierte Form haben. Mehrere Strukturen entsprechen den gleichen Daten, sind beobachtungsequivalent. Beachte! Das Modell (und jede Gleichung) sind identifizierbar, wenn die einzige zulässige Wahl F = I ist. Gibt es für eine Gleichung eine Linearkombination der übrigen Gleichungen, die sich von ihr nicht unterscheidet, so ist die Gleichung nicht identifizierbar! o1-19.tex/14

16 Beispiel Q t = α 1 + α 2 P t + α 3 Y t (Nachfrage) Q t = β 1 + β 2 P t (Angebot) gibt mit Gewichten λ und 1 λ mit Q t = γ 1 + γ 2 P t + γ 3 Y t (3) γ 1 = λα 1 + (1 λ)β 1 γ 2 = λα 2 + (1 λ)β 2 γ 3 = λα 3 Nachfragefunktion: nicht von (3) unterscheidbar; Parameter nicht identifizierbar Angebotsfunktion: ist identifizierbar (λ = 0!) o1-19.tex/15

17 Kriterien der Identifizierbarkeit Für i-te Gleichung: Bilde (A.Γ ) durch Streichen der Spalten, die in i-ter Zeile von Null verschieden sind der i-ten Zeile Zahl der gestrichenen Spalten, d.h. ausgeschlossenen Variablen (m = m i m i, K = K i + K i ) Spalten aus A Γ Variable endogen exogen (prädet.) einbezogen m i K i gestrichen m i Ki Ordnungs- (Abzähl-)Bedingung: die i-te Gleichung ist identifizierbar, wenn K i m j ( oder K i + m i m 1) d.h., die Zahl der ausgeschlossenen exogenen oder prädeterminierten Variablen mindestens so gross ist wie die Zahl der als erklärende Variable einbezogenen endogenen Variablen o1-19.tex/16

18 Kriterien der Identifizierbarkeit, Forts. Zur Ordnungs- (Abzähl-)Bedingung: Ist die i-te Gleichung identifizierbar, so unterscheiden wir: (exakt) identifiziert, wenn überidentifiziert, wenn K i = m j K i > m j Rang-Bedingung: die i-te Gleichung ist identifizierbar, wenn r(a.γ ) = m 1 (dann kann man keine Linearkombination der übrigen Gleichungen finden, die von der i-ten Gleichung nicht unterschieden werden kann) Beachte! Die Ordnungsbedingung ist notwendig, nicht hinreichend! Ein Mehrgleichungsmodell nennen wir identifizierbar, wenn jede Gleichung identifizierbar ist. o1-19.tex/17

19 Restriktionen in Gleichungsform lineare Restriktionen für i-te Gleichung in Gleichungsform (Verallgemeinerung des Ausschließens) (A.Γ)H i = c i H i : n i (m + K)-Matrix, jede Spalte entspricht einer Restriktion Ordnungs- (Abzähl-)Bedingung: n i m 1 Rang-Bedingung: r((a.γ)h i ) = m 1 Rekursive Modelle sind immer identifizierbar o1-19.tex/18

20 Praxis der Identifizierbarkeitsprüfung Gleichungen, die die Ordnungs-Bedingung erfüllen, erfüllen meist auch die Rang-Bedingung Modelle mit kleinem m sind meist nach beiden Kriterien prüfbar; bei Modellen mit großem m ist Identifizierbarkeit kaum ein Problem Zweifelhafte Regressoren Nichtberücksichtigen führt eher zum Erfüllen der Identifizierbarkeitsbedingungen berücksichtigen kann fälschliche Identifizierbarkeit anderer Gleichungen zur Folge haben Erweitern eines identifizierbaren Modells um eine Gleichung: das neue Modell ist identifizierbar, wenn mindestens eine Variable verwendet wird, die bisher ncht im Modell vorkam o1-19.tex/19

21 IS-LM Modell C t = γ 11 α 14 Y t + u 1t (4) I t = γ 21 α 23 R t + u 2t (5) R t = α 34 Y t + γ 32 M t + u 3t (6) Y t = C t + I t + Z t (7) mit C: Ausgaben für Konsum, I: Brutto-Investitionen, R: Zinssatz, Y : Einkommen, M: Geldmenge, Z: autonome Ausgaben Gleichung C I R Y 1 M Z fehlend Rang (4) α 14 γ (5) 0 1 α 23 0 γ (6) α 34 0 γ (7) Beachte! Diese Kriterien gelten nur für lineare Gleichungen und ausschließende Bedingungen, nicht für allgemeinere Bedingungen für die Parameter oder für Bedingungen für Σ! o1-19.tex/20

Mehrgleichungsmodelle

Mehrgleichungsmodelle 1 / 25 Mehrgleichungsmodelle Kapitel 20 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 25 Inhalt SUR, seemingly unrelated regressions Systeme von interdependenten Gleichungen Identifikation

Mehr

Simultane Mehrgleichungssysteme: Parameterschätzung

Simultane Mehrgleichungssysteme: Parameterschätzung Simultane Mehrgleichungssysteme: Parameterschätzung Stichwörter: Eigenschaften des OLS-Schätzers Hilfsvariablenschätzer 2SLS limited information Methoden 3SLS FIML full information Methoden o1-21.tex/0

Mehr

Ökonometrische Modelle

Ökonometrische Modelle Ökonometrische Modelle Stichwörter: Dynamische Modelle Lagstrukturen Koyck sche Lagstruktur Zeitreihenmodelle Mehrgleichungsmodelle Strukturform reduzierte Form o1-13.tex/0 Lüdeke-Modell für die BRD C

Mehr

Das Identifikationsproblem

Das Identifikationsproblem Draft 1 Das Identifikationsproblem Simultane Strukturmodelle sind insbesondere in den Sozialwissenschaften wichtig, da dort Zusammenhänge sehr häufig interdependenter Natur sind. Dies wirft einige schwerwiegende

Mehr

Mehrgleichungsmodelle: Schätzverfahren

Mehrgleichungsmodelle: Schätzverfahren 1 / 26 Mehrgleichungsmodelle: Schätzverfahren Kapitel 21 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 26 Inhalt SUR, seemingly unrelated regressions Systeme von interdependenten Gleichungen

Mehr

Proxies, Endogenität, Instrumentvariablenschätzung

Proxies, Endogenität, Instrumentvariablenschätzung 1 4.2 Multivariate lineare Regression: Fehler in den Variablen, Proxies, Endogenität, Instrumentvariablenschätzung Literatur: Wooldridge, Kapitel 15, Appendix C.3 und Kapitel 9.4 Wahrscheinlichkeitslimes

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

VAR- und VEC-Modelle. Kapitel 22. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

VAR- und VEC-Modelle. Kapitel 22. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 42 VAR- und VEC-Modelle Kapitel 22 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 42 Inhalt VAR-Modelle, vector autoregressions VARX in Standardform und Strukturform VAR: Schätzung in

Mehr

Dynamische und simultane Modelle

Dynamische und simultane Modelle 1 / 38 Dynamische und simultane Modelle Kapitel 16 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 38 Inhalt Motivation für Dynamiken Erwartungen Dynamische Modelle Mehrgleichungsmodelle, Systeme

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

11. Simultane Gleichungssysteme

11. Simultane Gleichungssysteme 11. Simultane Gleichungssysteme Bisher: Schätzung und Inferenz einzelner Gleichungen Jetzt: Modellierung und Schätzung von Gleichungssystemen 329 Beispiel: [I] Untersuchung des Einflusses von Werbemaßnahmen

Mehr

Mehrgleichungsmodelle

Mehrgleichungsmodelle Mehrgleichungsmodelle Stichwörter: Typen von Mehrgleichungsmodellen multivariates Regressionsmodell seemingly unrelated Modell interdependentes Modell Schätzen der Parameter Bestimmtheitsmass Spezifikationstests

Mehr

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen .1. Stochastische ökonometrische Modelle.1 Einführung Ziele: - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen - Numerische Konkretisierung ökonomischer Modelle und deren Analse. . Variierende

Mehr

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität Kapitel 0 Multikollinearität Exakte Multikollinearität Beinahe Multikollinearität Exakte Multikollinearität Unser Modell lautet y = Xb + u, Dimension von X: n x k Annahme : rg(x) = k Wenn sich eine oder

Mehr

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min Klausur, Analyse mehrdimensionaler Daten, WS 2010/2011, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 21.02.2011 Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte,

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

Stochastische Trends und Unit root-tests

Stochastische Trends und Unit root-tests Stochastische Trends und Unit root-tests Stichwörter: Random walk stochastischer Trend unit root Trend-Stationarität Differenz-Stationarität Dickey-Fuller (DF-)Test Augmented Dickey-Fuller (ADF-)Test o1-15.tex/0

Mehr

Dynamische Systeme und Zeitreihenanalyse // Systeme von Differenzengleichungen 6 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Systeme von Differenzengleichungen 6 p.2/?? Dynamische Systeme und Zeitreihenanalyse Systeme von Differenzengleichungen Kapitel 6 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Systeme von Differenzengleichungen

Mehr

2 Anwendungen und Probleme

2 Anwendungen und Probleme Prof. Dr. Werner Smolny Sommersemester 2005 Abteilung Wirtschaftspolitik Helmholtzstr. 20, Raum E 05 Tel. 0731 50 24261 UNIVERSITÄT DOCENDO CURANDO ULM SCIENDO Fakultät für Mathematik und Wirtschaftswissenschaften

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

TEIL II LINEARE ALGEBRA

TEIL II LINEARE ALGEBRA TEIL II LINEARE ALGEBRA 1 Kapitel 10 Lineare Gleichungssysteme 101 Motivation Sei K ein fest gewählter Körper (zb K = R, C, Q, F p ) Betrachten das lineare Gleichungssystem (L) α 11 x 1 + α 12 x 2 + +

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeitreihenökonometrie Kapitel 8 Impuls-Antwort-Funktionen Interpretation eines VAR-Prozesses 2 Fall eines bivariaten Var(p)-Prozess mit 2 Variablen und ohne Konstante 1 1 p p 1,t α11 α 12 1,t-1 α11 α 12

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Statistische Eigenschaften der OLS-Schätzer, Residuen,

Statistische Eigenschaften der OLS-Schätzer, Residuen, Statistische Eigenschaften der OLS-Schätzer, Residuen, Bestimmtheitsmaß Stichwörter: Interpretation des OLS-Schätzers Momente des OLS-Schätzers Gauss-Markov Theorem Residuen Schätzung von σ 2 Bestimmtheitsmaß

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

1 Matrixdarstellung von Strukturgleichungsmodellen

1 Matrixdarstellung von Strukturgleichungsmodellen Matrixdarstellung von Strukturgleichungsmodellen. Einführung Ein in Mplus mit Hilfe der Syntax-Statements spezifiziertes Modell wird zur Modellschätzing in Matrizenform repräsentiert. Aus diesen Matrizen

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik =

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik = H 6. Die Matrizen A, B, C und D seien gegeben durch 5 A =, B =, C = 4 5 4, D =. 5 7 5 4 4 Berechnen Sie (sofern möglich) alle Matrizenprodukte X Y mit X, Y {A, B, C, D}. Zu zwei Matrizen A R m n und B

Mehr

Makroökonomie I/Grundlagen der Makroökonomie

Makroökonomie I/Grundlagen der Makroökonomie Makroökonomie I/Grundzüge der Makroökonomie Page 1 1 Makroökonomie I/Grundlagen der Makroökonomie Kapitel 3: Der Gütermarkt Günter W. Beck 1 Makroökonomie I/Grundzüge der Makroökonomie Page 2 2 Überblick

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle und Kalman Filter 15 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle und Kalman Filter 15 p.2/?? Dynamische Systeme und Zeitreihenanalyse Zustandsraummodelle und Kalman Filter Kapitel 15 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 212/13 Institut für Analysis 14.1.213 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Aufgabe 1 Höhere Mathematik I für die Fachrichtung Physik 12. Übungsblatt Sei

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@FU-Berlin.de FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.3 Ergänzungen

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.3 Ergänzungen Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 83 Ergänzungen wwwmathethzch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas

Mehr

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Bearbeiten

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Fortgeschrittene Ökonometrie: Maximum Likelihood

Fortgeschrittene Ökonometrie: Maximum Likelihood Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 202 Fortgeschrittene Ökonometrie: Maximum Likelihood Poissonverteilung Man betrachte die poisson-verteilten Zufallsvariablen y t, t =, 2,...,

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h.

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: gleich viel Zeilen wie Spalten dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. 'Identitätsabbildung':

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg. Übungsaufgaben 13. Übung: Woche vom 23. 1.-27. 1. 2017 (Lin.Alg. II): Heft Ü 3: 1.1.3; 1.1.7 (a,b); 1.1.8; 1.1.11; 3.4.3 (b); 1.3.3 (c); 1.2.3 (b,d); Hinweis 1: 3. Test (Integration, analyt. Geom.) ist

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Fortgeschrittene Ökonometrie: GLS

Fortgeschrittene Ökonometrie: GLS Universität Regensburg, Lehrstuhl für Ökonometrie Sommersemester 2012 Fortgeschrittene Ökonometrie: GLS 1 Verallgemeinerte Kleinst-Quadrate als Momentenschätzer Betrachten Sie das Modell y = Xβ + u, E(uu

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am 9. März 7 - Musterlösung Name Matr.-Nr. Vorname Unterschrift Aufgabe 4 5 6 7 Summe Note Punkte Die Klausur

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Zusammenfassung: Einfache lineare Regression I

Zusammenfassung: Einfache lineare Regression I 4 Multiple lineare Regression Multiples lineares Modell 41 Zusammenfassung: Einfache lineare Regression I Bisher: Annahme der Gültigkeit eines einfachen linearen Modells y i = β 0 + β 1 x i + u i, i {1,,

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

α i e i. v = α i σ(e i )+µ

α i e i. v = α i σ(e i )+µ Beweis: Der Einfachheit halber wollen wir annehmen, dass V ein endlich-dimensionaler Vektorraum mit Dimension n ist. Wir nehmen als Basis B {e 1,e 2,...e n }. Für beliebige Elemente v V gilt dann v α i

Mehr

6 Lineare Algebra. 6.1 Einführung

6 Lineare Algebra. 6.1 Einführung 6 Lineare Algebra 6.1 Einführung Die lineare Algebra ist für die Wirtschaftswissenschaften von zentraler Bedeutung. Einerseits liefert sie die theoretischen und praktischen Grundlagen für das Lösen linearer

Mehr

6.2 Die Varianzanalyse und das lineare Modell

6.2 Die Varianzanalyse und das lineare Modell 6.2 Die Varianzanalyse und das lineare Modell Man ann die Varianzanalyse auch in einem linearen Modell darstellen. Im univariaten einfatoriellen Fall lautet die Gleichung des linearen Modells in Komponentenschreibweise:

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Spline-Räume - B-Spline-Basen

Spline-Räume - B-Spline-Basen Spline-Räume - B-Spline-Basen René Janssens 4. November 2009 René Janssens () Spline-Räume - B-Spline-Basen 4. November 2009 1 / 56 Übersicht 1 Erster Abschnitt: Räume von Splinefunktionen Grundlegende

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 28 Kointegration Kapitel 19 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 28 Inhalt I(d), Trends, Beispiele Spurious Regression Kointegration, common trends Fehlerkorrektur-Modell Test

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

5 Multivariate stationäre Modelle

5 Multivariate stationäre Modelle 5 Multivariate stationäre Modelle 5.1 Autoregressive distributed lag (ADL) 5.1.1 Das Modell und dessen Schätzung Im vorangehenden Kapitel führten wir mit der endogenen verzögerten Variablen, y t 1, als

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am. September 5 (mit Lösungen) Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 5 7 Summe Note Punkte Die Klausur

Mehr

Lineare Regression (Ein bisschen) Theorie

Lineare Regression (Ein bisschen) Theorie Kap. 6: Lineare Regression (Ein bisschen) Theorie Lineare Regression in Matrixform Verteilung des KQ-Schätzers Standardfehler für OLS Der Satz von Gauss-Markov Das allgemeine lineare Regressionsmodell

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Für das Allgemeine lineare Gleichungssystem mit n linearen Gleichungen und n Unbekannten

Für das Allgemeine lineare Gleichungssystem mit n linearen Gleichungen und n Unbekannten Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 008 6. Januar.009 Kapitel 6 Leontieff Modell, Lineare

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Test 2, Musterlösung. Name, Klasse: Semester: 1 Datum: Teil ohne Matlab

Test 2, Musterlösung. Name, Klasse: Semester: 1 Datum: Teil ohne Matlab Test 2, Musterlösung Lineare Algebra donat.adams@fhnw.ch Institut für Mathematik und Physik Name, Klasse: Semester: Datum: 2..26. Teil ohne Matlab. Lineare Abbildungen Zeigen Sie, dass die folgenden Abbildungen

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 5 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64). Haupttest (FR,..5) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5 Musterlösungen zu Mathematik II (Elementare Lineare Algebra) Blatt Nathan Bowler A: Präsenzaufgaben. Zeilenstufenform und reduzierte Zeilenstufenform erkennen Welche der folgenden Matrizen sind in Zeilenstufenform?

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Ein Modell für den Weltmarkt von Kupfer

Ein Modell für den Weltmarkt von Kupfer Draft 1 Ein Modell für den Weltmarkt von Kupfer siehe Estimating and Forecasting Industry Demand for Price-Taking Firms, aus: Thomas, Maurice: Managerial Economics, 9/e http://highered.mcgraw-hill.com/sites/dl/free/0073402818/459485/tho02818_mod3_web.pdf

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrixgleichungen Eine lineare Gleichung mit einer Variablen x hat bei Zahlen a, b, x die Form ax = b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0, kann eindeutig

Mehr