Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente

Größe: px
Ab Seite anzeigen:

Download "Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente"

Transkript

1 Kursthemen 11. Sitzung Folie I Spezielle diskrete Verteilungen: Auswahlexperimente Spezielle diskrete Verteilungen: Auswahlexperimente A) Kombinatorik (Folien bis 5) A) Kombinatorik (Folien bis 5) B) Die diskrete Gleichverteilung (Folie 6) B) Die diskrete Gleichverteilung (Folie 6) C) Die Bernoulliverteilung (Folien 7 bis 9) C) Die Bernoulliverteilung (Folien 7 bis 9) D) Die Binomialverteilung (Folien 10 bis 19) D) Die Binomialverteilung (Folien 10 bis 19) E) Die Hypergeometrische Verteilung (Folien 0 bis 3)

2 Kombinatorik 1 / Folie I Gänsemarschproblem I: Wie viele Möglichkeiten gibt es, n Gänse in verschiedener Reihenfolge anzuordnen? Es gibt n! Möglichkeiten, n Gänse in verschiedener Reihenfolge anzuordnen. Definition: n! = 1... n, n N und 0! = 1 (sprich: "n Fakultät")

3 Kombinatorik 1 / Folie I Gänsemarschproblem II: Wie viele Möglichkeiten gibt es, n Gänse in verschiedener Reihenfolge anzuordnen, wenn jeweils n 1, n,..., n k nicht unterscheidbar sind (bzw. es auf ihre Reihenfolge nicht ankommt)? Nun gibt es nur noch n! n! n!... n! 1 k unterscheidbare Anordnungen.

4 Kombinatorik / Abgeleitete Regeln Folie I Es werden n Elemente aus N gezogen. Wie viele mögliche Ergebnisse kann dieser Auswahlprozess haben? Wenn es auf die Auswahlreihenfolge ankommt: - mit Zurücklegen (Bsp.: Lotto Super 6, Spiel 77): - ohne Zurücklegen (Bsp.: Platzwette, Toto): N n N! ( N n)! Wenn es auf die Auswahlreihenfolge nicht ankommt: - mit Zurücklegen: ( + ) n ( N 1) N + n 1! ( N + n 1) = :!! n - ohne Zurücklegen (Bsp.: Lotto 6 aus 49): N! n!( N n)! N = : n

5 Definition: Binomialkoeffizient Folie I n n! n ( n 1)... ( n k + 1) k = = ( n k)! k! 1... k (sprich: "n über k")

6 Die Gleichverteilung Folie I Ausgangssituation: Sie ziehen zufällig ein Objekte aus 1 bis n durchgehend numerierten Objekten heraus. Dann ist die Zufallsvariable X = "Nummer des gezogenen Objektes" gleichverteilt mit dem Parameter Mögliche Werte von X: k = 1,,..., n n, d. h. sie folgt der Verteilung GLV n. Häufigkeitsfunktion: Wie groß ist die Varianz von 1 Y? f ( k) = P( X = k) = n ( ) Erwartungswert von X: Varianz von X: n 1 Wie groß ist die Varianz + n 1 von Y? E( X ) = Var( X ) = 1

7 Das Urnenmodell 1 / 4 Folie I In einer Urne liegen: - 0 (N) Kugeln; - ein Anteil von 5% (p) ist schwarz, - ein Anteil von 75% (1-p) ist weiß. Die Urne enthält somit 5 (N p) schwarze und 15 (N (1-p)) weiße Kugeln Nehmen wir an, man zieht blind eine Kugel aus der Urne. Dann ist die Wahrscheinlichkeitsverteilung für die Anzahl der schwarzen Kugeln: 0,75 1-p=0,75 0,5 p=0,5 0 1 Anzahl schwarze Kugeln

8 Das Urnenmodell 1 / 4 Folie I ,75 1-p=0,75 0,5 p=0,5 0 1 Anzahl schwarze Kugeln Die Verteilung heißt Zweipunktverteilung mit dem Parameter p=0,5 oder Binomialverteilung B(n, p) mit den Parametern n=1 und p=0,5. Erwartungswert: Standardabweichung: µ = p = 0, 5 σ = p ( 1 p) = 0, 43

9 Die Zweipunktverteilung (Bernoulliverteilung) Folie I Ausgangssituation: Sie ziehen zufällig ein Objekt aus N Objekten heraus, die sich in bezug auf ein Merkmal mit zwei Ausprägungen A und A unterscheiden. Dann ist die ZV X = "Anzahl der gezogenen Objekte mit A" N A bernoulliverteilt mit dem Parameter p =, wobei N A die Anzahl der Objekte N mit A ist. D. h. die ZV folgt der Verteilung ZPV ( p). Mögliche Werte von X: k = 0, 1 Häufigkeitsfunktion: Wie groß ist die Varianz von Y? 1 ( ) ( ) k k f k = P X = k = p ( 1 p) = = = Erwartungswert von X: Varianz von X: Wie groß ist die Varianz von Y? E( X ) = p Var( X ) = p( 1 p)

10 Das Urnenmodell / 4 Folie I Nehmen wir an, man zieht blind eine Kugel, notiert die Farbe, legt die Kugel zurück, mischt und zieht ein zweites Mal. Mögliche Ergebnisse W-keit Anzahl schwarze K. WW (1 p) = 0,565 0 WS (1 p) p = 0, SW p (1 p) = 0, SS p = 0,065 W-keit (1 p) = 0,565 (1 p) p = 0,3750 p = 0,065

11 Das Urnenmodell / 4 Folie I Mögliche Ergebnisse W-keit Anzahl schwarze K. WW (1 p) = 0,565 0 WS (1 p) p = 0, SW p (1 p) = 0, SS p = 0,065 W-keit (1 p) = 0,565 (1 p) p = 0,3750 p = 0,065 0,75 ( 1 p) 0,5 p ( 1 p) p 0 1 Anzahl schwarze Kugeln µ = p = 0, 5 σ = p ( 1 p) = 0, 61

12 Das Urnenmodell 3 / 4 Folie I Nun wird dreimal mit Zurücklegen gezogen. Mögliche Ergebnisse W-keit Anzahl schwarze K. WWW 3 (1 p) = 0,40 0 WWS (1 p) p = 0,140 1 WSW (1 p) p = 0,140 1 SWW (1 p) p = 0,140 1 WSS (1 p) p = 0,047 SWS (1 p) p = 0,047 SSW (1 p) p = 0,047 SSS 3 3 p = 0,016 W-kei 3 (1 p) = 0,4 3 (1 p) p = 0,4 3 (1 p) p = 0,14 3 p = 0,0

13 Das Urnenmodell 3 / 4 Folie I Anzahl schwarze K. W-keit (1 p) = 0,4 3 (1 p) p = 0,4 3 (1 p) p = 0,14 3 p = 0,0 0,75 0,5 ( 1 ) 3 p 3 p ( 1 p) p 1 ( p) 3 p 3 Anzahl schwarze Kugeln µ = 3 p = 0, 75 σ = 3 p ( 1 p) = 0, 75

14 Das Urnenmodell 4 / 4 Die Binomialverteilung Folie I Verallgemeinerung: Es wird n-mal gezogen. Allgemeine Binomialverteilung: B(n,p) n k P( k) = p ( 1 p) k n k n n! n ( n 1)... ( n k + 1) mit (Binomialkoeffizient) k = = ( n k)! k! 1... k Erwartungswert: Standardabweichung: µ = n p σ = n p ( 1 p)

15 Die Binomialverteilung Folie I Ausgangssituation: Sie ziehen nacheinander zufällig n Objekte aus N Objekten heraus, die sich in bezug auf ein Merkmal mit zwei Ausprägungen A und A unterscheiden. Die Objekte werden zurückgelegt. Dann ist die ZV X = "Anzahl der gezogenen Objekte mit A" N A binomialverteilt mit den Parametern n und p =, wobei N A die N Anzahl der Objekte mit A ist. D. h. die ZV folgt der Verteilung BV n p. Mögliche Werte von X: Wie Häufigkeitsfunktion: groß ist die Varianz von Y? n k k = 0, 1,..., n P( k) = f ( k) = p ( 1 p) k Erwartungswert von X: Varianz Wie großvon ist X: die Varianz von Y? E( X ) = n p = Var( X ) = n p ( 1 p) (, ) n k

16 Aufgaben zur Binomialverteilung 1 / 4 Die Lostrommel Folie I Die Lostrommel... In einem Behälter befinden sich 0 Lose, von denen 5 Gewinne sind. Nach gutem Mischen wird ein Los gezogen, angeschaut und wieder zurückgelegt. a) Wie groß ist die Wahrscheinlichkeit, einen Gewinn zu ziehen? b) Wie groß ist die Wahrscheinlichkeit, dass drei nacheinander gezogene Lose Gewinne sind? c) Wie groß ist die Wahrscheinlichkeit, dass drei nacheinander gezogene Lose Nieten sind?

17 Folie I Aufgaben zur Binomialverteilung / 4 Mensch ärgere Dich nicht und Therapieversager Mensch ärgere Dich nicht... Sie würfeln 6 mal hintereinander mit einem fairen Würfel. Wie groß ist die Wahrscheinlichkeit, dass keine 6 dabei ist? Therapieversager... Sie behandeln 95 Patienten mit einem zu 95% sicheren Medikament. Wie groß ist die Wahrscheinlichkeit, keinen Therapieversager zu erleben?

18 Aufgaben zur Binomialverteilung 3 / 4 In der Manege Folie I Manege frei! Sie verteilen Handzettel an auf der Straße spielende Kinder, die zum Besuch Ihres Wanderzirkusses einladen. Aus Erfahrung wissen Sie, dass jedes 5. Kind kommt. Sie verteilen zufällig 50 Handzettel. a) Wie groß ist die Wahrscheinlichkeit, dass weniger als drei Kinder kommen (dann fällt die Vorstellung aus)? b) Wie groß ist die Wahrscheinlichkeit, dass mehr als 46 Kinder kommen (dann bricht das Zelt zusammen)? c) Wieviele Kinder werden im Schnitt zu erwarten sein?

19 Aufgaben zur Binomialverteilung 4 / 4 Die Schraubenfabrik Folie I In der Schraubenfabrik... Bei der Massenproduktion von Schrauben eines bestimmten Typs sei die Ausschussquote 10%. a) Wieviele defekte Schrauben sind in einem 50er-Pack zu erwarten? b) Wie groß ist jeweils die Wahrscheinlichkeit, dass in einem 4er-Pack i. keine defekte Schraube ist? ii. iii. eine defekte Schraube ist? zwei defekte Schrauben sind? c) Wieviele Schrauben muß man sicherheitshalber zum 4er-Pack dazugeben, damit die Wahrscheinlichkeit, dass mindestens 4 Schrauben in Ordnung sind, mehr als 95% beträgt?

20 Die hypergeometrische Verteilung Folie I Ausgangssituation: Sie ziehen nacheinander zufällig n Objekte aus N Objekten heraus, die sich in bezug auf ein Merkmal mit zwei Ausprägungen A und A unterscheiden. Die Objekte werden nicht zurückgelegt. Dann ist die ZV X = "Anzahl der Objekte mit A" ( ) hypergeometrisch verteilt mit den Parametern N, N A, n, wobei N A die Anzahl der Objekte mit A ist. D. h. die ZV folgt der Verteilung HV N N n. (,, ) A Mögliche Werte von X: ( ) k = 0, 1,...,min N, n A Wie Häufigkeitsfunktion: A groß ist die Varianz von Y? N N N k n k f ( k) = N n A Erwartungswert von X: Varianz Wie großvon ist X: die Varianz von Y? N N A N A N n A ( ) = Var( X ) = n 1 N N N 1 E X n N

21 Aufgabe zur hypergeometrischen Verteilung: Das Skat-Turnier Folie I Auf dem Skat-Turnier... Sie spielen Skat. Nach dem Geben haben Sie zwei Buben auf der Hand. a) Wie groß ist die Wahrscheinlichkeit, dass Ihr Mitspieler zur Linken zwei Buben dagegen hat? b) Wie groß ist die Wahrscheinlichkeit, dass einer Ihrer beiden Mitspieler zwei Buben dagegen hat?

22 Aufgabe: Das Capture-Recapture-Problem Folie I Um den Bestand in einem Fischteich zu schätzen, wurden außerhalb der Laichzeit 100 Fische gefangen und markiert (capture). Nach drei Tagen wurden wieder 100 Fische gefangen (recapture). Y sei die ZV Zahl der markierten Fische unter den wiedergefangenen Fischen. a) Welche Verteilung kann man für Y ansetzen, wenn in dem Teich 000 Fische leben und welche impliziten Annahmen trifft man dabei? b) Wieviele markierte Fische sind im zweiten Fang zu erwarten? c) Wie groß würden Sie den Fischbestand schätzen, wenn Sie im zweiten Fang markierte Fische finden?

23 Übersicht: Wichtige diskrete Verteilungen für Auswahlexperimente Folie I Gleichverteilung GLV ( n), n N Bernoulliverteilung (=Zweipunktverteilung) [ 0 1] ZPV ( p), p, Binomialverteilung [ 0 1] BV ( n, p), n N, p, Hypergeometrische Verteilung HV ( N, M, n), N, M, n N

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Wahrscheinlichkeitstheorie Klausurvorbereitung Lösungen

Wahrscheinlichkeitstheorie Klausurvorbereitung Lösungen Wahrscheinlichkeitstheorie Klausurvorbereitung Lösungen 1.) a) Ein Skatblatt besteht aus 32 Karten. Wieviele mögliche Anordnungen gibt es für den Kartenstapel nach dem Mischen? b) Jede Karte der 8 Symbole(7,8,9,10,B,D,K,A)

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen

Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen Vorlesung 2b Diskrete Zufallsvariable und ihre Verteilungen 1 1. Die Grundbegriffe 2 Bisher hatten wir uns (vor allem) mit Zufallsvariablen beschäftigt, deren Wertebereich S endlich war. Die (schon in

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Population und Stichprobe Wahrscheinlichkeitstheorie II

Population und Stichprobe Wahrscheinlichkeitstheorie II Population und Stichprobe Wahrscheinlichkeitstheorie II 5. Sitzung 1 S. Peter Schmidt 2003 1 Stichprobenziehung als Zufallsexperiment Definition Stichprobe: Teilmenge der Elemente der Grundgesamtheit bzw.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Diskrete Wa.verteilungen: Eine Zooführung. Statistik (Biol./Pharm./HST) FS 2015

Diskrete Wa.verteilungen: Eine Zooführung. Statistik (Biol./Pharm./HST) FS 2015 Diskrete Wa.verteilungen: Eine Zooführung Statistik (Biol./Pharm./HST) FS 2015 Admin: Übungsbetrieb & Quiz Gruppeneinteilung selbstständig via Webseite Eine e-mail mit Link für Einschreibung nur nach Belegung

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Laplacesche Wahrscheinlichkeitsräume Kombinatorik Allgemeine diskrete Wahrscheinlichkeitsräume Deskriptive

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 4. Vorlesung - 2017 Diskrete Zufallsgrößen X : Ω {x 1, x 2,..., x i,... } Wahrscheinlichkeitsverteilung von X ( ) x1 x X 2... x i... = p 1 p 2... p i... I N (Indexmenge) mit den Wahrscheinlichkeiten p

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen 0. Diskrete reellwertige Zufallsvariable X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) oder

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

Wieviele Frösche sind im Teich?

Wieviele Frösche sind im Teich? Wieviele Frösche sind im Teich? zählen, raten, schätzen? PD Dr. Sonja Kuhnt, Dipl. Stat. Viktoria Sander TU Dortmund 7. Februar 2012 TU Dortmund DOTS 2012 1 / 20 Ausgangssituation Teich mit einer unbekannten

Mehr

Vorlesung 3. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3 Der Erwartungswert von diskreten reellwertigen Zufallsvariablen 0. Diskrete reellwertige Zufallsvariable X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) oder

Mehr

2.4. Mehrstufige Zufallsexperimente

2.4. Mehrstufige Zufallsexperimente 2.4. Mehrstufige Zufallsexperimente Zufallsexperimente können einstufig, also einmalig, durchgeführt werden oder auch mehrstufig, also wiederholt. Wirft man einen Würfel z.b. nur einmal, dann ist das Zufallsexperiment

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen. Hypergeometrische Verteilung Poissonverteilung

Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen. Hypergeometrische Verteilung Poissonverteilung Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen Hypergeometrische Verteilung Approimationen Typisierung der diskreten theoretischen Verteilungen Bibliografie: Prof. Dr. Kück

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

2 Verteilungen. Zoltán Zomotor. Versionsstand: 1. April 2015, 10:29. Die nummerierten Felder bitte während der Vorlesung ausfüllen. Inhaltsverzeichnis

2 Verteilungen. Zoltán Zomotor. Versionsstand: 1. April 2015, 10:29. Die nummerierten Felder bitte während der Vorlesung ausfüllen. Inhaltsverzeichnis 2 Verteilungen Zoltán Zomotor Versionsstand: 1. April 2015, 10:29 Die nummerierten Felder bitte während der Vorlesung ausfüllen. This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

Mathematik IV: Statistik

Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS16 Sie hören Vitamin String Quartet Daniel Stekhoven 10.03.2016 1 Repetition Bedingte Wahrscheinlichkeit Kap. 2.3 Daniel Stekhoven 10.03.2016 2 Hinter einer der

Mehr

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Serie 11

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Serie 11 D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin Serie 11 1. Frau A und Herr B wollen sich treffen und verabreden sich für 16 Uhr in einem Café. Mit T A bzw. T B bezeichnen wir die

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k. -Wahrscheinlichkeitstheorie-

Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k. -Wahrscheinlichkeitstheorie- Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k -Wahrscheinlichkeitstheorie- Begriffsdefini=on Stochas=k altgriechisch stochas=kē technē, lateinisch ars conjectandi, Die Kunst des

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

Mathe K2 Stochastik Sj. 16/17

Mathe K2 Stochastik Sj. 16/17 Mathe K2 Stochastik Sj. 16/17 Bernoulli-Kette 1 Galtonbrett 1 Wir lassen eine Kugel auf ein Nagelbrett fallen: Galtonbrett\Galton.exe Zufallsexperiment: Eine Kugel fallen lassen und den Weg notieren. Ein

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG 7.2 - LÖSUNGEN POISSONVERTEILUNG. Fahrzeuge, die eine Brücke passieren Zufallsexperiment: Zeitpunkt des

Mehr

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen Kombinatorik Kombinatorik ist die Lehre vom Bestimmen der Anzahlen 1 Man benötigt Kombinatorik, um z.b. bei Laplace-Experimenten die große Anzahl von Ergebnissen zu bestimmen. Bsp: Beim Lotto 6 aus 49

Mehr

KOMPETENZHEFT ZUR STOCHASTIK II

KOMPETENZHEFT ZUR STOCHASTIK II KOMPETENZHEFT ZUR STOCHASTIK II Inhaltsverzeichnis 1. Aufgabenstellungen 1 2. Binomialverteilung 4 3. Erwartungswert und Standardabweichung 10 1. Aufgabenstellungen Aufgabe 1.1. Milchverpackungen werden

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Diskrete Zufallsvariable*

Diskrete Zufallsvariable* Diskrete Zufallsvariable* Aufgabennummer: 1_37 Aufgabentyp: Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: WS 3.1 Typ 1 T Typ Die unten stehende Abbildung zeigt die Wahrscheinlichkeitsverteilung

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 29. Oktober 2007 1. Statistik 1.1 Wahrscheinlichkeit Pragmatisch: p(e) = n(e) N für N sehr groß Kombination von Wahrscheinlichkeiten p(a oder B) =

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

1 Grundlagen Wahrscheinlichkeitsrechung

1 Grundlagen Wahrscheinlichkeitsrechung 1 Grundlagen Wahrscheinlichkeitsrechung 1.1 Grundbegriffe Alle möglichen Ereignisse eines Zufallsexperiments fassen wir in einer Ereignismenge Ω zusammen. Ereignisse sind Teilmengen von Ω. Umfasst das

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Level 1 Grundlagen Blatt 2

Level 1 Grundlagen Blatt 2 Level 1 Grundlagen Blatt 2 Dokument mit 1 Aufgaben Aufgabe A9 Ein Glücksrad besteht aus 3 Feldern, die folgendermaßen beschriftet sind: 1.Feld: 2,00 2. Feld: 5,00 3. Feld: 0,00 Das 1. Feld hat einen Mittelpunktswinkel

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Prüfung. Wahrscheinlichkeit und Statistik. ETH Zürich SS 2016 Prof. Dr. P. Embrechts August BSc INFK. Nachname. Vorname.

Prüfung. Wahrscheinlichkeit und Statistik. ETH Zürich SS 2016 Prof. Dr. P. Embrechts August BSc INFK. Nachname. Vorname. ETH Zürich SS 2016 Prof. Dr. P. Embrechts August 2016 Prüfung Wahrscheinlichkeit und Statistik BSc INFK Nachname Vorname Legi Nummer Das Folgende bitte nicht ausfüllen! Aufgabe Max. Punkte Summe Kontrolle

Mehr

Kombinatorik & Stochastik Übung im Sommersemester 2018

Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik Formeln & Begriffe Begrifflichkeiten Permutation = Anordnung in einer bestimmten Reihenfolge Kombination = Anordnung ohne bestimmte Reihenfolge

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

4 Diskrete Zufallsvariablen

4 Diskrete Zufallsvariablen 25 4 Diskrete Zufallsvariablen 4.1 Einleitung Die Ergebnisse von Zufallsvorgängen sind nicht notwendigerweise Zahlen. Oft ist es aber hilfreich diese durch Zahlen zu repräsentieren. Beispiel 4.1 (4-maliger

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt.

Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt. Statistik I Sommersemester 009 Aufgabenlösung Übung 4: Diskrete Zufallsvariablen Aufgabe 5.. (Blatt ) ine Zufallsvariable bildet den reignisraum eines Zufallsvorgangs ab. Dieser bestimmt den Definitionsbereich

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 10 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Abitur 2012 Mathematik Stochastik IV

Abitur 2012 Mathematik Stochastik IV Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2012 Mathematik Stochastik IV Nachdem die Verfilmung eines bekannten Romans erfolgreich in den Kinos gezeigt wurde, veröffentlicht eine Tageszeitung

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben Einleitung Dieses sind die kompletten Präsenzaufgaben, die bei der Übung zur Vorlesung Einführung in die Stochastik im Sommersemester 2007 gerechnet wurden. Bei Rückfragen und Anmerkungen bitte an brune(at)upb.de

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben Level 1 Grundlagen Blatt 1 Dokument mit 19 Aufgaben Aufgabe A1 Ein Glücksrad hat drei Sektoren mit den Farben Rot, Gelb und Grün. Das Rad bleibt mit einer Wahrscheinlichkeit von 0,1 so stehen, dass der

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017

Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017 Vorlesung Mathematische Strukturen Sommersemester 017 Prof. Janis Voigtländer Übungsleitung: Dennis Nolte Kombinatorik: Einführung Es folgt eine Einführung in die abzählende Kombinatorik. Dabei geht es

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

Vorlesung 5a. Varianz und Kovarianz

Vorlesung 5a. Varianz und Kovarianz Vorlesung 5a Varianz und Kovarianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 Aufgabe 1: Von den Ereignissen A, B und C trete a) nur A ein, b) genau eines ein, c) höchstens eines ein, d) mindestens eines ein, e) mindestens eines nicht ein,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Diskrete Verteilungen

Diskrete Verteilungen Diskrete Verteilungen Bernoulli-Verteilung: X Bernoulli( ) Symbol für «verteilt wie» «Eperiment» mit zwei Ausgängen: «Erfolg» (X 1) oder «Misserfolg» (X ). Die Erfolgswahrscheinlichkeit sei. Wertebereich:

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

W.12 Kombinatorik 1. vermischte Aufgaben zu Vertauschungsmöglichkeiten ( )

W.12 Kombinatorik 1. vermischte Aufgaben zu Vertauschungsmöglichkeiten ( ) 1 Die Kombinatorik ist die Lehre von den Vertauschungsmöglichkeiten. Da man eigentlich fast jede Wahrscheinlichkeit mit irgendwelchen Vertauschungsmöglichkeiten multiplizieren muss, ist es naheliegend,

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine diskrete reellwertige Zufallsvariable, d.h. eine ZV e mit Wertebereich R (oder einer Teilmenge davon), sodass eine

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr