Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente"

Transkript

1 Kursthemen 11. Sitzung Folie I Spezielle diskrete Verteilungen: Auswahlexperimente Spezielle diskrete Verteilungen: Auswahlexperimente A) Kombinatorik (Folien bis 5) A) Kombinatorik (Folien bis 5) B) Die diskrete Gleichverteilung (Folie 6) B) Die diskrete Gleichverteilung (Folie 6) C) Die Bernoulliverteilung (Folien 7 bis 9) C) Die Bernoulliverteilung (Folien 7 bis 9) D) Die Binomialverteilung (Folien 10 bis 19) D) Die Binomialverteilung (Folien 10 bis 19) E) Die Hypergeometrische Verteilung (Folien 0 bis 3)

2 Kombinatorik 1 / Folie I Gänsemarschproblem I: Wie viele Möglichkeiten gibt es, n Gänse in verschiedener Reihenfolge anzuordnen? Es gibt n! Möglichkeiten, n Gänse in verschiedener Reihenfolge anzuordnen. Definition: n! = 1... n, n N und 0! = 1 (sprich: "n Fakultät")

3 Kombinatorik 1 / Folie I Gänsemarschproblem II: Wie viele Möglichkeiten gibt es, n Gänse in verschiedener Reihenfolge anzuordnen, wenn jeweils n 1, n,..., n k nicht unterscheidbar sind (bzw. es auf ihre Reihenfolge nicht ankommt)? Nun gibt es nur noch n! n! n!... n! 1 k unterscheidbare Anordnungen.

4 Kombinatorik / Abgeleitete Regeln Folie I Es werden n Elemente aus N gezogen. Wie viele mögliche Ergebnisse kann dieser Auswahlprozess haben? Wenn es auf die Auswahlreihenfolge ankommt: - mit Zurücklegen (Bsp.: Lotto Super 6, Spiel 77): - ohne Zurücklegen (Bsp.: Platzwette, Toto): N n N! ( N n)! Wenn es auf die Auswahlreihenfolge nicht ankommt: - mit Zurücklegen: ( + ) n ( N 1) N + n 1! ( N + n 1) = :!! n - ohne Zurücklegen (Bsp.: Lotto 6 aus 49): N! n!( N n)! N = : n

5 Definition: Binomialkoeffizient Folie I n n! n ( n 1)... ( n k + 1) k = = ( n k)! k! 1... k (sprich: "n über k")

6 Die Gleichverteilung Folie I Ausgangssituation: Sie ziehen zufällig ein Objekte aus 1 bis n durchgehend numerierten Objekten heraus. Dann ist die Zufallsvariable X = "Nummer des gezogenen Objektes" gleichverteilt mit dem Parameter Mögliche Werte von X: k = 1,,..., n n, d. h. sie folgt der Verteilung GLV n. Häufigkeitsfunktion: Wie groß ist die Varianz von 1 Y? f ( k) = P( X = k) = n ( ) Erwartungswert von X: Varianz von X: n 1 Wie groß ist die Varianz + n 1 von Y? E( X ) = Var( X ) = 1

7 Das Urnenmodell 1 / 4 Folie I In einer Urne liegen: - 0 (N) Kugeln; - ein Anteil von 5% (p) ist schwarz, - ein Anteil von 75% (1-p) ist weiß. Die Urne enthält somit 5 (N p) schwarze und 15 (N (1-p)) weiße Kugeln Nehmen wir an, man zieht blind eine Kugel aus der Urne. Dann ist die Wahrscheinlichkeitsverteilung für die Anzahl der schwarzen Kugeln: 0,75 1-p=0,75 0,5 p=0,5 0 1 Anzahl schwarze Kugeln

8 Das Urnenmodell 1 / 4 Folie I ,75 1-p=0,75 0,5 p=0,5 0 1 Anzahl schwarze Kugeln Die Verteilung heißt Zweipunktverteilung mit dem Parameter p=0,5 oder Binomialverteilung B(n, p) mit den Parametern n=1 und p=0,5. Erwartungswert: Standardabweichung: µ = p = 0, 5 σ = p ( 1 p) = 0, 43

9 Die Zweipunktverteilung (Bernoulliverteilung) Folie I Ausgangssituation: Sie ziehen zufällig ein Objekt aus N Objekten heraus, die sich in bezug auf ein Merkmal mit zwei Ausprägungen A und A unterscheiden. Dann ist die ZV X = "Anzahl der gezogenen Objekte mit A" N A bernoulliverteilt mit dem Parameter p =, wobei N A die Anzahl der Objekte N mit A ist. D. h. die ZV folgt der Verteilung ZPV ( p). Mögliche Werte von X: k = 0, 1 Häufigkeitsfunktion: Wie groß ist die Varianz von Y? 1 ( ) ( ) k k f k = P X = k = p ( 1 p) = = = Erwartungswert von X: Varianz von X: Wie groß ist die Varianz von Y? E( X ) = p Var( X ) = p( 1 p)

10 Das Urnenmodell / 4 Folie I Nehmen wir an, man zieht blind eine Kugel, notiert die Farbe, legt die Kugel zurück, mischt und zieht ein zweites Mal. Mögliche Ergebnisse W-keit Anzahl schwarze K. WW (1 p) = 0,565 0 WS (1 p) p = 0, SW p (1 p) = 0, SS p = 0,065 W-keit (1 p) = 0,565 (1 p) p = 0,3750 p = 0,065

11 Das Urnenmodell / 4 Folie I Mögliche Ergebnisse W-keit Anzahl schwarze K. WW (1 p) = 0,565 0 WS (1 p) p = 0, SW p (1 p) = 0, SS p = 0,065 W-keit (1 p) = 0,565 (1 p) p = 0,3750 p = 0,065 0,75 ( 1 p) 0,5 p ( 1 p) p 0 1 Anzahl schwarze Kugeln µ = p = 0, 5 σ = p ( 1 p) = 0, 61

12 Das Urnenmodell 3 / 4 Folie I Nun wird dreimal mit Zurücklegen gezogen. Mögliche Ergebnisse W-keit Anzahl schwarze K. WWW 3 (1 p) = 0,40 0 WWS (1 p) p = 0,140 1 WSW (1 p) p = 0,140 1 SWW (1 p) p = 0,140 1 WSS (1 p) p = 0,047 SWS (1 p) p = 0,047 SSW (1 p) p = 0,047 SSS 3 3 p = 0,016 W-kei 3 (1 p) = 0,4 3 (1 p) p = 0,4 3 (1 p) p = 0,14 3 p = 0,0

13 Das Urnenmodell 3 / 4 Folie I Anzahl schwarze K. W-keit (1 p) = 0,4 3 (1 p) p = 0,4 3 (1 p) p = 0,14 3 p = 0,0 0,75 0,5 ( 1 ) 3 p 3 p ( 1 p) p 1 ( p) 3 p 3 Anzahl schwarze Kugeln µ = 3 p = 0, 75 σ = 3 p ( 1 p) = 0, 75

14 Das Urnenmodell 4 / 4 Die Binomialverteilung Folie I Verallgemeinerung: Es wird n-mal gezogen. Allgemeine Binomialverteilung: B(n,p) n k P( k) = p ( 1 p) k n k n n! n ( n 1)... ( n k + 1) mit (Binomialkoeffizient) k = = ( n k)! k! 1... k Erwartungswert: Standardabweichung: µ = n p σ = n p ( 1 p)

15 Die Binomialverteilung Folie I Ausgangssituation: Sie ziehen nacheinander zufällig n Objekte aus N Objekten heraus, die sich in bezug auf ein Merkmal mit zwei Ausprägungen A und A unterscheiden. Die Objekte werden zurückgelegt. Dann ist die ZV X = "Anzahl der gezogenen Objekte mit A" N A binomialverteilt mit den Parametern n und p =, wobei N A die N Anzahl der Objekte mit A ist. D. h. die ZV folgt der Verteilung BV n p. Mögliche Werte von X: Wie Häufigkeitsfunktion: groß ist die Varianz von Y? n k k = 0, 1,..., n P( k) = f ( k) = p ( 1 p) k Erwartungswert von X: Varianz Wie großvon ist X: die Varianz von Y? E( X ) = n p = Var( X ) = n p ( 1 p) (, ) n k

16 Aufgaben zur Binomialverteilung 1 / 4 Die Lostrommel Folie I Die Lostrommel... In einem Behälter befinden sich 0 Lose, von denen 5 Gewinne sind. Nach gutem Mischen wird ein Los gezogen, angeschaut und wieder zurückgelegt. a) Wie groß ist die Wahrscheinlichkeit, einen Gewinn zu ziehen? b) Wie groß ist die Wahrscheinlichkeit, dass drei nacheinander gezogene Lose Gewinne sind? c) Wie groß ist die Wahrscheinlichkeit, dass drei nacheinander gezogene Lose Nieten sind?

17 Folie I Aufgaben zur Binomialverteilung / 4 Mensch ärgere Dich nicht und Therapieversager Mensch ärgere Dich nicht... Sie würfeln 6 mal hintereinander mit einem fairen Würfel. Wie groß ist die Wahrscheinlichkeit, dass keine 6 dabei ist? Therapieversager... Sie behandeln 95 Patienten mit einem zu 95% sicheren Medikament. Wie groß ist die Wahrscheinlichkeit, keinen Therapieversager zu erleben?

18 Aufgaben zur Binomialverteilung 3 / 4 In der Manege Folie I Manege frei! Sie verteilen Handzettel an auf der Straße spielende Kinder, die zum Besuch Ihres Wanderzirkusses einladen. Aus Erfahrung wissen Sie, dass jedes 5. Kind kommt. Sie verteilen zufällig 50 Handzettel. a) Wie groß ist die Wahrscheinlichkeit, dass weniger als drei Kinder kommen (dann fällt die Vorstellung aus)? b) Wie groß ist die Wahrscheinlichkeit, dass mehr als 46 Kinder kommen (dann bricht das Zelt zusammen)? c) Wieviele Kinder werden im Schnitt zu erwarten sein?

19 Aufgaben zur Binomialverteilung 4 / 4 Die Schraubenfabrik Folie I In der Schraubenfabrik... Bei der Massenproduktion von Schrauben eines bestimmten Typs sei die Ausschussquote 10%. a) Wieviele defekte Schrauben sind in einem 50er-Pack zu erwarten? b) Wie groß ist jeweils die Wahrscheinlichkeit, dass in einem 4er-Pack i. keine defekte Schraube ist? ii. iii. eine defekte Schraube ist? zwei defekte Schrauben sind? c) Wieviele Schrauben muß man sicherheitshalber zum 4er-Pack dazugeben, damit die Wahrscheinlichkeit, dass mindestens 4 Schrauben in Ordnung sind, mehr als 95% beträgt?

20 Die hypergeometrische Verteilung Folie I Ausgangssituation: Sie ziehen nacheinander zufällig n Objekte aus N Objekten heraus, die sich in bezug auf ein Merkmal mit zwei Ausprägungen A und A unterscheiden. Die Objekte werden nicht zurückgelegt. Dann ist die ZV X = "Anzahl der Objekte mit A" ( ) hypergeometrisch verteilt mit den Parametern N, N A, n, wobei N A die Anzahl der Objekte mit A ist. D. h. die ZV folgt der Verteilung HV N N n. (,, ) A Mögliche Werte von X: ( ) k = 0, 1,...,min N, n A Wie Häufigkeitsfunktion: A groß ist die Varianz von Y? N N N k n k f ( k) = N n A Erwartungswert von X: Varianz Wie großvon ist X: die Varianz von Y? N N A N A N n A ( ) = Var( X ) = n 1 N N N 1 E X n N

21 Aufgabe zur hypergeometrischen Verteilung: Das Skat-Turnier Folie I Auf dem Skat-Turnier... Sie spielen Skat. Nach dem Geben haben Sie zwei Buben auf der Hand. a) Wie groß ist die Wahrscheinlichkeit, dass Ihr Mitspieler zur Linken zwei Buben dagegen hat? b) Wie groß ist die Wahrscheinlichkeit, dass einer Ihrer beiden Mitspieler zwei Buben dagegen hat?

22 Aufgabe: Das Capture-Recapture-Problem Folie I Um den Bestand in einem Fischteich zu schätzen, wurden außerhalb der Laichzeit 100 Fische gefangen und markiert (capture). Nach drei Tagen wurden wieder 100 Fische gefangen (recapture). Y sei die ZV Zahl der markierten Fische unter den wiedergefangenen Fischen. a) Welche Verteilung kann man für Y ansetzen, wenn in dem Teich 000 Fische leben und welche impliziten Annahmen trifft man dabei? b) Wieviele markierte Fische sind im zweiten Fang zu erwarten? c) Wie groß würden Sie den Fischbestand schätzen, wenn Sie im zweiten Fang markierte Fische finden?

23 Übersicht: Wichtige diskrete Verteilungen für Auswahlexperimente Folie I Gleichverteilung GLV ( n), n N Bernoulliverteilung (=Zweipunktverteilung) [ 0 1] ZPV ( p), p, Binomialverteilung [ 0 1] BV ( n, p), n N, p, Hypergeometrische Verteilung HV ( N, M, n), N, M, n N

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Population und Stichprobe Wahrscheinlichkeitstheorie II

Population und Stichprobe Wahrscheinlichkeitstheorie II Population und Stichprobe Wahrscheinlichkeitstheorie II 5. Sitzung 1 S. Peter Schmidt 2003 1 Stichprobenziehung als Zufallsexperiment Definition Stichprobe: Teilmenge der Elemente der Grundgesamtheit bzw.

Mehr

Diskrete Wa.verteilungen: Eine Zooführung. Statistik (Biol./Pharm./HST) FS 2015

Diskrete Wa.verteilungen: Eine Zooführung. Statistik (Biol./Pharm./HST) FS 2015 Diskrete Wa.verteilungen: Eine Zooführung Statistik (Biol./Pharm./HST) FS 2015 Admin: Übungsbetrieb & Quiz Gruppeneinteilung selbstständig via Webseite Eine e-mail mit Link für Einschreibung nur nach Belegung

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG 7.2 - LÖSUNGEN POISSONVERTEILUNG. Fahrzeuge, die eine Brücke passieren Zufallsexperiment: Zeitpunkt des

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen. Hypergeometrische Verteilung Poissonverteilung

Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen. Hypergeometrische Verteilung Poissonverteilung Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen Hypergeometrische Verteilung Approimationen Typisierung der diskreten theoretischen Verteilungen Bibliografie: Prof. Dr. Kück

Mehr

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Serie 11

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Serie 11 D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin Serie 11 1. Frau A und Herr B wollen sich treffen und verabreden sich für 16 Uhr in einem Café. Mit T A bzw. T B bezeichnen wir die

Mehr

Wieviele Frösche sind im Teich?

Wieviele Frösche sind im Teich? Wieviele Frösche sind im Teich? zählen, raten, schätzen? PD Dr. Sonja Kuhnt, Dipl. Stat. Viktoria Sander TU Dortmund 7. Februar 2012 TU Dortmund DOTS 2012 1 / 20 Ausgangssituation Teich mit einer unbekannten

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Level 1 Grundlagen Blatt 2

Level 1 Grundlagen Blatt 2 Level 1 Grundlagen Blatt 2 Dokument mit 1 Aufgaben Aufgabe A9 Ein Glücksrad besteht aus 3 Feldern, die folgendermaßen beschriftet sind: 1.Feld: 2,00 2. Feld: 5,00 3. Feld: 0,00 Das 1. Feld hat einen Mittelpunktswinkel

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

Mathematik IV: Statistik

Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS16 Sie hören Vitamin String Quartet Daniel Stekhoven 10.03.2016 1 Repetition Bedingte Wahrscheinlichkeit Kap. 2.3 Daniel Stekhoven 10.03.2016 2 Hinter einer der

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Mathe K2 Stochastik Sj. 16/17

Mathe K2 Stochastik Sj. 16/17 Mathe K2 Stochastik Sj. 16/17 Bernoulli-Kette 1 Galtonbrett 1 Wir lassen eine Kugel auf ein Nagelbrett fallen: Galtonbrett\Galton.exe Zufallsexperiment: Eine Kugel fallen lassen und den Weg notieren. Ein

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen

Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen Kombinatorik Kombinatorik ist die Lehre vom Bestimmen der Anzahlen 1 Man benötigt Kombinatorik, um z.b. bei Laplace-Experimenten die große Anzahl von Ergebnissen zu bestimmen. Bsp: Beim Lotto 6 aus 49

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.

Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer. R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 10 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt.

Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt. Statistik I Sommersemester 009 Aufgabenlösung Übung 4: Diskrete Zufallsvariablen Aufgabe 5.. (Blatt ) ine Zufallsvariable bildet den reignisraum eines Zufallsvorgangs ab. Dieser bestimmt den Definitionsbereich

Mehr

4 Diskrete Zufallsvariablen

4 Diskrete Zufallsvariablen 25 4 Diskrete Zufallsvariablen 4.1 Einleitung Die Ergebnisse von Zufallsvorgängen sind nicht notwendigerweise Zahlen. Oft ist es aber hilfreich diese durch Zahlen zu repräsentieren. Beispiel 4.1 (4-maliger

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben Level 1 Grundlagen Blatt 1 Dokument mit 19 Aufgaben Aufgabe A1 Ein Glücksrad hat drei Sektoren mit den Farben Rot, Gelb und Grün. Das Rad bleibt mit einer Wahrscheinlichkeit von 0,1 so stehen, dass der

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben Einleitung Dieses sind die kompletten Präsenzaufgaben, die bei der Übung zur Vorlesung Einführung in die Stochastik im Sommersemester 2007 gerechnet wurden. Bei Rückfragen und Anmerkungen bitte an brune(at)upb.de

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

Pfadwahrscheinlichkeiten

Pfadwahrscheinlichkeiten Pfadwahrscheinlichkeiten Die Wahrscheinlichkeit, beim zweimaligen Würfeln eine Doppelsechs zu erzielen, beträgt 6. Das Ergebnis legt die Vermutung nahe, dass wir lediglich, also die Wahrscheinlichkeit,

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs

Stochastik Lehr-und Aufgabenbuch. Skriptum zum Vorbereitungskurs Stochastik Lehr-und Aufgabenbuch Skriptum zum Vorbereitungskurs 1 WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

W.12 Kombinatorik 1. vermischte Aufgaben zu Vertauschungsmöglichkeiten ( )

W.12 Kombinatorik 1. vermischte Aufgaben zu Vertauschungsmöglichkeiten ( ) 1 Die Kombinatorik ist die Lehre von den Vertauschungsmöglichkeiten. Da man eigentlich fast jede Wahrscheinlichkeit mit irgendwelchen Vertauschungsmöglichkeiten multiplizieren muss, ist es naheliegend,

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK . Ordnen Sie die in den folgenden Bildern dargestellten Wahrscheinlichkeitsfunktionen nach den Erwartungswerten ihrer Zufallsgröße X mit x, 2,, 4, 5 größten Erwartungswert. i. Beginnen Sie mit dem Bild

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017

Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017 Vorlesung Mathematische Strukturen Sommersemester 017 Prof. Janis Voigtländer Übungsleitung: Dennis Nolte Kombinatorik: Einführung Es folgt eine Einführung in die abzählende Kombinatorik. Dabei geht es

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 Aufgabe 1: Von den Ereignissen A, B und C trete a) nur A ein, b) genau eines ein, c) höchstens eines ein, d) mindestens eines ein, e) mindestens eines nicht ein,

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Statistik Übungen WS 2017/18

Statistik Übungen WS 2017/18 Statistik Übungen WS 2017/18 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

K3 (Diskrete) Zufallsvariablen 3.1 Basis

K3 (Diskrete) Zufallsvariablen 3.1 Basis K3 (Diskrete) Zufallsvariablen 3.1 Basis Ω = {ω}, X(ω) ist eine Größe die durch ω bestimmt ist. Bei der zufälligen Auswahl von ω bekommen wir den Wert, X(ω). Definition: Ist (Ω, F, P) ein Wahrscheinlichkeitsraum

Mehr

Aufgabe 10 Die Zufallsvariable ist binomialverteilt mit

Aufgabe 10 Die Zufallsvariable ist binomialverteilt mit Level Grundlagen Blatt 2 Dokument mit 8 Aufgaben Aufgabe Die Zufallsvariable ist binomialverteilt mit und,3. Welches der beiden Histogramme zeigt die Wahrscheinlichkeitsverteilung von? Begründen Sie Ihre

Mehr

Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable.

Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable. Aufgabe 1 (5 + 2 + 1 Punkte) Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable. a) Wie lautet die Verteilungsfunktion von X? Zeichnen Sie diese! 0 x < 2 1 F (x) = x 0.5 2 x 6

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

3. Anwendungen aus der Kombinatorik

3. Anwendungen aus der Kombinatorik 3. Anwendungen aus der Kombinatorik 3.1. Ziehen mit Zurücklegen 1) Würfeln Wie gross ist die Wahrscheinlichkeit für genau 2 Sechser in 7 Würfen? 2) Glücksrad Ein Glücksrad zeigt "1" mit Wahrscheinlichkeit

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr