Diplomarbeit. Nadja Balzer. Betreuer: Prof. Dr. H. Maurer. Westfälische Wilhelms-Universität Münster

Größe: px
Ab Seite anzeigen:

Download "Diplomarbeit. Nadja Balzer. Betreuer: Prof. Dr. H. Maurer. Westfälische Wilhelms-Universität Münster"

Transkript

1 Westfälische Wilhelms-Universität Münster Institut für numerische und instrumentelle Mathematik Diplomarbeit Optimale Steuerung ökonomischer Prozesse am Beispiel eines komplexen Unternehmensmodells mit bang-bang, singulären Steuerungen und Zustandsbeschränkungen Nadja Balzer Betreuer: Prof. Dr. H. Maurer Februar 26

2 Inhaltsverzeichnis 1 Einleitung 1 2 Theorie der optimalen Steuerprozesse Formulierung optimaler Steuerprozesse Äquivalente Umformungen eines Steuerprozesses Transformation eines Bolza-Problems auf ein Mayer- Problem Transformation einer freien Endzeit auf eine feste Endzeit Transformation nicht-autonomer Probleme auf autonome Probleme Das Minimumprinzip von Pontryagin Probleme mit linear auftretender Steuerung - Bang-bang und singuläre Steuerungen Optimale Steuerprozesse mit reinen Zustandsbeschränkungen Grundbegriffe Direkte Methode - Direct adjoining approach Indirekte Methode - Indirect adjoining approach Hinreichende Optimalitätsbedingungen Exkurs in die nichtlineare Optimierung Konvexe Funktionen Hinreichende Optimalitätsbedingungen für unbeschränkte Steuerprozesse Hinreichende Optimalitätsbedingungen für OSP mit Zustandsbeschränkungen Numerische Lösung optimaler Steuerprozesse mittels direkter Verfahren Diskretisierung Vor- und Nachteile der direkten Verfahren ii

3 Inhaltsverzeichnis 6 Das modifizierte Modell von Lesourne und Leban Beschreibung des Modells von Lesourne und Leban Formulierung des modifizierten Steuerungsproblems Auswertung des Minimumprinzips Numerische Ergebnisse Überprüfung der hinreichenden Optimalitätsbedingungen Ein komplexes Unternehmensmodell Beschreibung des komplexen Unternehmensmodells Formulierung des komplexen Steuerungsproblems Auswertung des erweiterten Minimumprinzips Numerische Ergebnisse Optimale Steuerung des komplexen Unternehmensmodells bei variierendem Preis Optimale Steuerung des komplexen Unternehmensmodells bei konstantem Preis Optimale Steuerung des komplexen Unternehmensmodells bei Verdoppelung der Planungsperiode Schlussbemerkung 99 A Beispieldateien: AMPL-Code 1 A.1 Komplexes Modell beim variierenden Preis mit Heun-Verfahren... 1 A.2 Komplexes Modell beim variierenden Preis mit Euler-Verfahren B Eidesstattliche Erklärung 112 C Danksagung 113 D Literaturverzeichnis 114 iii

4 Abbildungsverzeichnis 3.1 Zustandsbeschränkung x min x(t) x max Die optimalen Steuerungen des modifizierten Modells Die optimalen Trajektorien des modifizierten Modells Die optimalen Adjungierten des modifizierten Modells Die Schaltfunktionen des modifizierten Modells Multiplikatorfunktion: (links) mittels IPOPT erhaltene µ(t), (rechts) theoretisch ausgerechnete µ(t) Die steigende Lohnkostenfunktion Veranschaulichung des komplexen Unternehmensmodells x 1 bei variierendem Preis x 3 bei variierendem Preis x 5 bei variierendem Preis x 2 bei variierendem Preis x 4 bei variierendem Preis x 6 bei variierendem Preis x 7 bei variierendem Preis λ 2 bei variierendem Preis λ 4 bei variierendem Preis λ 1 bei variierendem Preis λ 3 beim variierenden Preis λ 5 bei variierendem Preis λ 6 bei variierendem Preis u 1 bei variierendem Preis u 3 bei variierendem Preis λ 7 bei variierendem Preis u 2 bei variierendem Preis u 4 bei variierendem Preis Σ 1 bei variierendem Preis iv

5 Abbildungsverzeichnis 7.22 Σ 3 bei variierendem Preis µ 1 bei variierendem Preis Σ 2 bei variierendem Preis Σ 4 bei variierendem Preis µ 2 bei variierendem Preis Variierende Preisfunktion p 2 (t) Zinsfunktionen (links); Inflationsrate (rechts) x 1 bei konstantem Preis x 3 bei konstantem Preis x 5 bei konstantem Preis x 2 bei konstantem Preis x 4 bei konstantem Preis x 6 bei konstantem Preis x 7 bei konstantem Preis λ 2 bei konstantem Preis λ 4 bei konstantem Preis λ 1 bei konstantem Preis λ 3 bei konstantem Preis λ 5 bei konstantem Preis λ 6 bei konstantem Preis u 1 bei konstantem Preis u 3 bei konstantem Preis λ 7 bei konstantem Preis u 2 bei konstantem Preis u 4 bei konstantem Preis Σ 1 bei konstantem Preis Σ 3 bei konstantem Preis µ 1 bei konstantem Preis Σ 2 bei konstantem Preis Σ 4 bei konstantem Preis µ 2 bei konstantem Preis x 1 bei Verdoppelung der Planungsperiode x 3 bei Verdoppelung der Planungsperiode x 5 bei Verdoppelung der Planungsperiode x 2 bei Verdoppelung der Planungsperiode x 4 bei Verdoppelung der Planungsperiode x 6 bei Verdoppelung der Planungsperiode x 7 bei Verdoppelung der Planungsperiode v

6 Abbildungsverzeichnis 7.6 λ 2 bei Verdoppelung der Planungsperiode λ 4 bei Verdoppelung der Planungsperiode λ 1 bei Verdoppelung der Planungsperiode λ 3 bei Verdoppelung der Planungsperiode λ 5 bei Verdoppelung der Planungsperiode λ 6 bei Verdoppelung der Planungsperiode u 1 bei Verdoppelung der Planungsperiode u 3 bei Verdoppelung der Planungsperiode λ 7 bei Verdoppelung der Planungsperiode u 2 bei Verdoppelung der Planungsperiode u 4 bei Verdoppelung der Planungsperiode Σ 1 bei Verdoppelung der Planungsperiode Σ 3 bei Verdoppelung der Planungsperiode µ 1 bei Verdoppelung der Planungsperiode Σ 2 bei Verdoppelung der Planungsperiode Σ 4 bei Verdoppelung der Planungsperiode µ 2 bei Verdoppelung der Planungsperiode vi

7 Tabellenverzeichnis 6.1 Liste der gewählten Parameter für modifiziertes Modell Optimale Schaltstruktur des modifizierten Problems Schaltpunkte des modifizierten Problems Liste der Parameter des komplexen Unternehmensmodells Vergleich der Rechenzeiten für unterschiedliche Parameter bei 5 Diskretisierungspunkten Schaltstruktur der optimalen Steuerungen bei variierendem Preis Schaltstruktur der optimalen Steuerungen bei konstantem Preis Schaltstruktur der optimalen Steuerungen bei variierendem Preis.. 97 vii

8 1 Einleitung Die Theorie der optimalen Steuerprozesse kann dem Oberbegriff Optimierung untergeordnet werden, sie beschäftigt sich mit der Minimierung bzw. Maximierung eines Leistungsmaßes in einem Zeitintervall unter Berücksichtigung bestimmter Nebenbedingungen. Einen wichtigen Teil dieser Nebenbedingungen bildet das dynamische System, welches einen realen Vorgang meist durch gewöhnliche Differentialgleichungen beschreibt. Durch die Einführung einer so genannten Steuerfunktion kann auf die Dynamik des Prozesses von außen Einfluss genommen werden. Nicht zuletzt dank dieser Eigenschaften gewinnen die Steuerprozesse in den unterschiedlichsten Gebieten immer mehr an Bedeutung. Die Anwendung der Theorie der optimalen Steuerprozesse findet man heute sowohl in der Medizin, Physik, Chemie als auch in der Ökonomie. In den Wirtschaftswissenschaften ist die Optimierung ein fester Bestandteil der Lehre. Im Laufe der letzten Jahrzehnte hat sich unter dem Namen Operations Research ein eigenständiger Zweig, der sich unter anderem mit den Optimierungsproblemen befasst, entwickelt. Zu den Aufgaben des Operations Research gehören: die Ermittlung relevanter Einflussgrößen für ein reales Problem, die Erstellung eines (typischerweise mathematischen) Modells, das ein vereinfachtes Abbild der Realität darstellt, das Lösen des Problems, die anschließende Auswertung der Ergebnisse. Die meisten in Operations Research angewendeten Methoden sind statischer Art, d. h. der zugrunde liegende Sachverhalt wird nur zu einem Zeitpunkt oder während eines relativ kurzen Zeitintervalls ohne jegliche zeitliche Änderung betrachtet. Die Vernachlässigung des dynamischen Elements in der wirtschaftlichen Planung zählt jedoch zu den größten Nachteilen der besagten Methoden. Die Theorie der optimalen Steuerprozesse bietet dagegen das richtige Instrumentarium zur Behandlung der Probleme, bei denen die Veränderung des Systems im Zeitablauf eine signifikante Rolle spielt. In der Ökonomie beschränkten sich die Berechnungen der optimalen Steuerung lange Zeit auf vergleichsweise einfache Modelle, die man analytisch 1

9 1 Einleitung lösen konnte. Durch die Entwicklung leistungsfähigerer Verfahren, die auf modernen Rechnern Aufgaben mit einer Vielzahl von Variablen und Nebenbedingungen mit vertretbarem Aufwand lösen können, ist die Berechnung der optimalen Steuerung für komplexe Modelle ermöglicht worden. In dem hier behandelten Unternehmensmodell, das den Schwerpunkt der vorliegenden Arbeit bildet, geht es um solch einen komplexen optimalen Steuerprozess aus dem Bereich des Unternehmenswachstums. Das komplexe Unternehmensmodell wurde, ausgehend von dem Modell von Lesourne und Leban, von B. Koslik in ihrer Diplomarbeit im Jahre 1994 aufgestellt. Die Problematik besteht darin ein Unternehmen mithilfe von Investitionen, Kreditauf-/abbau, gegebenenfalls Änderung des Lagerbestandes und/oder der Anzahl der Beschäftigten so zu steuern, dass der Gewinn der Eigenkapitalgeber am Ende der Planungsperiode maximiert wird. Wie bei den meisten ökonomischen Modellen sind auch hier bestimmte Ressourcen nur beschränkt verfügbar, z. B. sind die Beschaffung des Kapitals sowie die Lagerung der Ware nur begrenzt möglich, außerdem dürfen die Zustandsvariablen nicht negativ werden. Somit handelt es sich hier also um einen optimalen Steuerprozess mit reinen Zustandsbeschränkungen. Doch bevor man mit der Bearbeitung ausgewählter praxisbezogener Beispiele aus der Wirtschaft beginnt, ist eine theoretische Basis der optimalen Steuerprozesse nötig. Im zweiten Kapitel werden alle zur Formulierung und Lösung der unbeschränkten Steuerprozesse benötigten Definitionen und Sätze vorgestellt. Diese beinhalten das Pontryaginsche Minimumprinzip, welches die notwendigen Optimalitätsbedingungen der optimalen Steuerprozesse darstellt. Darüber hinaus wird in Abschnitt 2.4 näher auf die Prozesse mit linear auftretender Steuerung eingegangen. Bei solchen Problemen können zwei verschieden Arten der Steuerung vorkommen, nämlich bang-bang Steuerungen und die singulären Steuerungen. Die bang-bang Steuerungen sind unstetig, sie nehmen nur Werte auf dem Rand des Steuerbereiches an. Die singulären Steuerungen dagegen können einen beliebigen Verlauf innerhalb des zulässigen Steuerbereiches aufzeigen und sind schwerer zu bestimmen. Die Bearbeitung von Steuerprozessen mit Zustandsbeschränkungen bedarf einiger Erweiterungen der notwendigen Optimalitätsbedingungen der unbeschränkten Prozesse. Dabei spielt der Begriff der Ordnung einer Beschränkung eine wichtige Rolle. In Rahmen dieser Arbeit werden zwei verschiedene Methoden zur Behandlung von optimalen Steuerprozessen mit reinen Zustandsbeschränkungen beschrieben: die direkte und die indirekte Methode. Beide Verfahren führen auf die Begriffsbildung der erweiterten Hamiltonfunktion zurück. Die direkte Methode ist dadurch gekennzeichnet, dass die Zustandsbeschränkung mit einem Multiplikator direkt an die Hamiltonfunktion angehängt wird. Bei der indirekten Methode wird erst die Beschränkung 2

10 1 Einleitung solange total differenziert bis die Steuerungsvariable explizit in der Ableitung auftaucht und diesen Term koppelt man dann an die Hamiltonfunktion an. Die indirekte Methode wird in der vorliegenden Arbeit hauptsächlich der Vollständigkeit halber vorgestellt, zur Behandlung der praktischen Beispiele wird ausschließlich die direkte Methode verwendet. Mittels der notwendigen Optimalitätsbedingungen werden nur Kandidaten für das Vorliegen eines Optimums bestimmt. Um sicher zu stellen, dass es sich bei der berechneten Lösung tatsächlich um eine Minimal- bzw. Maximalstelle handelt, ist man auf hinreichenden Optimalitätsbedingungen angewiesen. Für viele Probleme wurde jedoch bis heute noch keine umfassende Theorie der hinreichenden Bedingungen entwickelt. So gibt es z. B. auch keine hinreichenden Kriterien, um die Lösung des komplexen Unternehmensmodells prüfen zu können. Es existiert aber eine sehr große Klasse der optimalen Steuerprozesse, bei denen gezeigt werden kann, dass die notwendigen Optimalitätsbedingungen auch hinreichend sind. Dabei handelt es sich, falls die Minimierung eines Zielfunktionals gefordert wird, um die so genannten konvexen Probleme. Diese sind in den ökonomischen Anwendungen besonders oft vertreten, dazu zählt z. B. auch das modifizierte Modell. Aus diesem Grund wird in Kapitel 4 erst der Begriff der Konvexität definiert und näher erläutert. Anschließend werden die Beweise der hinreichenden Optimalitätsbedingungen unter zusätzlichen Konvexitätsannahmen für unbeschränkte und zustandsbeschränkte Steuerprozesse durchgeführt. Aufgrund der Komplexität sind viele praktische Probleme analytisch nicht mehr lösbar, wie z. B. komplexes Unternehmensmodell, welches in Kapitel 7 behandelt wird. Deshalb wird in Kapitel 5 kurz die Vorgehnsweise bei numerischer Bearbeitung der optimalen Steuerprozesse erläutert. Im Kapitel 6 wird zuerst ein von Lesourne und Leban (1978) entwickeltes Modell vorgestellt. Dieses, aus dem Bereich des Firmenwachstums stammende Modell, verfolgt das Ziel den diskontierten Zahlungsstrom an Dividenden zu minimieren. Der Zustand des Unternehmens wird durch das Eigenkapital und das Fremdkapital beschrieben. Dabei kann das dynamische System durch die Steuerungen, wie Beschäftigungsänderung, Investitionen und Dividendenzahlungen, beeinflusst werden. Den Kern der vorliegenden Arbeit bilden die optimalen Steuerprozesse mit Zustandsbeschränkungen und linear eingehenden Steuerungen. Da aber eine der genannten Steuerungen, nämlich die Beschäftigungsänderung im Ursprungsmodell von Lesourne und Leban nicht linear auftritt, wird das Beispiel in Abschnitt 6.2 ein wenig verändert. In den nachfolgenden Abschnitten 6.3, 6.4 werden die notwendigen Optimalitätsbedingungen diskutiert und die optimale Lösung des modifizierten Problems vorgestellt. Zudem wird in Abschnitt 6.5 gezeigt, dass dieses Beispiel die zusätzlichen 3

11 1 Einleitung Konvexitätsannahmen erfüllt. Somit erweisen sich hier die notwendigen Bedingungen für ein Minimum als hinreichend. Schließlich wird in Kapitel 7 das oben angesprochene komplexe Unternehmensmodell bearbeitet. Hier wird zunächst eine Lösung des Modells mit einem variierenden Produktpreis bei zehnjähriger Planung, inklusive einer ausführlichen Diskussion der Theorie, vorgestellt. Anschließend wird die Lösung bei konstantem Preis angegeben und beide optimalen Strategien miteinander verglichen. Als Letztes wird geprüft wie empfindlich die optimalen Trajektorien (am Beispiel mit variierendem Preis) gegenüber einer Änderung der Planungszeitdauer sind. Anhand einer Analyse der erhaltenen Ergebnisse wird veranschaulicht, dass dieses komplexe Unternehmensmodell sehr realitätsnahe und aussagekräftig ist. Alle Beispiele in dieser Arbeit wurden mithilfe der beiden Optimierungssolver LO- QO von Prof. R. J. Vanderbei und/oder IPOPT von A. Wächter und L. T. Biegler bearbeitet. Eine CD mit den Kopien der entsprechenden Eingabedateien ist am Ende der Arbeit beigefügt, außerdem findet man zwei ausgewählte Beispiele im Anhang. 4

12 2 Theorie der optimalen Steuerprozesse In diesem einführenden Kapitel werden in Anlehnung an Maurer [1] die wesentlichen Definitionen und Sätze der unbeschränkten optimalen Steuerprozesse bereitgestellt. Eine zentrale Rolle dabei spielt das Minimumprinzip von Pontryagin, welches die notwendigen Optimalitätsbedingungen für eine optimale Steuerung angibt. Außerdem wird ein besonderer Schwerpunkt auf Probleme mit linear auftretender Steuerung gelegt. 2.1 Formulierung optimaler Steuerprozesse Betrachtet wird ein System, das durch n Differentialgleichungen erster Ordnung bestimmt ist. Der Zustandsvektor x(t) = (x 1 (t),...,x n (t)) T R n des Systems beinhaltet alle Variablen, welche das Verhalten des Systems auf dem Zeitintervall [,t f ] beschreiben. Die Endzeit t f wird, je nach Problemstellung, entweder fest vorgegeben oder fungiert als eine freie zusätzliche Variable. Durch den Steuervektor u(t) = (u 1 (t),...,u m (t)) T R m kann der Zustand zu jedem Zeitpunkt t beeinflusst werden. Definition Das System von Differentialgleichungen ẋ(t) = dx(t) dt = f (t,x(t),u(t)) (2.1) wird als Dynamik des Systems bezeichnet. Hierbei sei f : [,t f ] R n R m R n stetige und bzgl. x R n, u R m stetig partiell differenzierbare Funktion. 5

13 2 Theorie der optimalen Steuerprozesse Definition Ein Funktionenpaar (x,u) mit x : [,t f ] R n stückweise stetig differenzierbar und u : [,t f ] R m stückweise stetig heißt Lösung von (2.1), falls gilt ẋ(t) = dx(t) = f (t,x(t),u(t)) dt für alle Stetigkeitsstellen t [,t f ] von u(t). In der Regel muss der Zustandsvektor x(t) an bestimmten Stellen gewisse Nebenbedingungen, etwa x(t i ) M ti, t i [,t f ], i = 1,...,k (2.2) mit abgeschlossenen Mengen M ti R n, erfüllen. In den praktischen Beispielen sind diese häufig nur für den Anfangszustand x() und den Endzustand x(t f ) in der Form von Gleichungen M := {x R n ϕ(x) = } M tf := {x R n ψ(x) = } mit den stetig differenzierbaren Funktionen ϕ : R n R s, ψ : R n R r, s,r n vorgegeben. Die Randbedingungen (2.2) bedeuten demnach: ϕ(x()) =, ψ(x(t f )) = (2.3) Für den Fall s =, bzw. r = ergibt sich dann M = R n, bzw. M tf = R n, dass also x() bzw. x(t f ) frei ist. In den meisten Anwendungen treten jedoch die Randbedingungen in einer einfacheren Struktur auf, als so genannte Standard-Randbedingungen. Definition Die Randbedingungen der Form x() = x, ψ(x(t f )) = (2.4) mit x R n fest, ψ : R n R r wie oben, nennt man Standard-Randbedingungen. Eine weitere wichtige Komponente eines optimalen Steuerprozesses bildet der Steuerbereich U, durch den für die Steuerung u der zulässige Wertebereich festgelegt wird. Definition Eine nichtleere, konvexe und abgeschlossene Teilmenge U R m, die die zulässige Wertemenge für den Steuervektor u(t) U t [,t f ] (2.5) enthält, nennt man Steuerbereich. Definition Ein Funktionenpaar (x( ),u( )) heißt zulässig zur Endzeit t f >, wenn die Nebenbedingungen (2.1)-(2.5) erfüllt sind. 6

14 2 Theorie der optimalen Steuerprozesse Schließlich wird durch das Zielfunktional die zu optimierende Größe eines optimalen Steuerprozesses gegeben. Dabei wird in der Literatur je nach Verfasser unter optimiere entweder minimiere oder auch maximiere verstanden. In der vorliegenden Arbeit handelt es sich jedoch stets um die Minimierung einer Funktion. Definition Die Funktion F(x,u) := g (x(t f )) + tf f (t,x(t),u(t))dt (2.6) wird als Zielfunktional bezeichnet. Hierbei seien g : R n R stetig differenzierbar und f : [,t f ] R n R m R n stetige und bzgl. x R n, u R m stetig partiell differenzierbare Funktionen. Mit den obigen Bezeichnungen und Definitionen kann man nun einen optimalen Steuerprozess in eine Kurzform zusammenfassen. Definition Kompakte Form eines Optimalen Steuerprozesses: Minimiere F(x,u) := g (x(t f )) + tf f (t,x(t),u(t)) dt unter ẋ(t) = dx(t) = f (t,x(t),u(t)) dt x() = x, ψ(x(t f )) = (2.7) u(t) U t [,t f ]. Definition Ein zulässiges Paar (x,u ) zur einer festen Endzeit t f > heißt optimale Lösung bzw. globale Minimalstelle von (2.7), wenn F(x,u ) F(x,u) für alle zulässigen Paare (x,u) zur Endzeit t f gilt. Ein zulässiges Paar (x,u ) zur einer freien Endzeit t f bzw. globale Minimalstelle von (2.7), wenn > heißt optimale Lösung F(x,u ) F(x,u) für alle zulässigen Paare (x,u) zu einer beliebigen Endzeit t f > gilt. Hier ist t f eine zusätzliche Optimierungsvariable. Die Funktion x (t) heißt optimale Trajektorie und die Funktion u (t) optimale Steuerung des Steuerprozesses (2.7). 7

15 2 Theorie der optimalen Steuerprozesse 2.2 Äquivalente Umformungen eines Steuerprozesses In den bisherigen Betrachtungen wurden die Steuerprozesse in der so genannten Bolza-Form eingeführt. In diesem Fall besteht das Zielfunktional aus zwei Komponenten: der Funktion g und dem Integral. Es gibt jedoch viele verschiedene Möglichkeiten zur Formulierung eines optimalen Steuerprozesses. Z. B. kann erreicht werden, dass in dem Zielfunktional nur das Integral bzw. nur die Funktion g vorkommt. Dabei spricht man von einem Lagrange-Problem bzw. von einem Mayer-Problem. Außerdem können Probleme mit freier Endzeit auf Probleme mit fester Endzeit zurückgeführt werden. Letztendlich kann jedes Steuerproblem in ein autonomes Problem transformiert werden. Hierbei werden mit autonom diejenigen Prozesse bezeichnet, die nicht explizit von der Zeit t abhängen. Häufig kann es von großem Nutzen sein, ein Steuerproblem in eine andere Form zu transformieren. Aus diesem Grund werden im Nachfolgenden einige Möglichkeiten zur Überführung eines optimalen Steuerprozesses in eine andere Darstellungsform aufgezeigt Transformation eines Bolza-Problems auf ein Mayer- Problem Bei der Mayer-Form besteht das Zielfunktional nur aus dem Term g(x(t f )). Um diese Konstruktion zu bekommen muss demnach das Integral im Funktional eliminiert werden. Dies erreicht man durch die Definition einer neuen Zustandsvariablen. Gegeben sei also der optimale Steuerprozess (2.7). Man definiere: x (t) := t f (s,x(s),u(s))ds, t t f, und erweitere den Zustandsvektor zu: ( ) x(t) := x (t) x(t) R n+1. Das transformierte Problem lässt sich damit folgendermaßen in der gewünschten Mayer-Form formulieren: Minimiere g( x(t f )) = g(x(t f )) + x (t f ) unter d x(t) = dt x(t),u(t)), t [,t f ], (2.8) x() = x, ψ( x(tf )) =, u(t) U t [,t f ]. 8

16 2 Theorie der optimalen Steuerprozesse Dabei gilt ( ) f (t,x,u) f(t, x(t),u(t)) :=, f(t,x,u) ( ) x := und ψ( x(t f )) := ψ(x(t f )). x Transformation einer freien Endzeit auf eine feste Endzeit Gegeben sei ein optimaler Steuerprozess der Form (2.7) mit freier Endzeit t f. Mit der Einführung einer neuen Zeitvariablen s [, 1] durch: t = s t f, s t f. werden die Zustands- und Steuervariablen in der Abhängigkeit von s folgendermaßen definiert: x(s) := x(s t f ) = x(t) und ū(s) := u(s t f ) = u(t). Für die Dynamik des Systems erhält man daraus: d x ds = dx dt dt ds = f(s t f, x(s),ū(s)) t f und für das Zielfunktional: g(x(t f )) + tf f (t,x(t),u(t))dt = g( x(1)) + 1 f (s t f, x(s),ū(s))t f ds. Zudem wird die freie Endzeit t f als zusätzliche Zustandsvariable durch x n+1 (s) := t f mit in die Dynamik aufgenommen. Für den erweiterten Zustandsvektor ergibt sich: ( ) x(s) x(s) := R n+1. t f Insgesamt kann nun folgender optimaler Steuerprozess mit fester Endzeit s f = 1 formuliert werden: 1 Minimiere F( x,ũ) = g( x(1)) + f (s, x(s),ũ(s)) ds d x(s) unter = ds f(s, x(s),ũ(s)), s [, 1], (2.9) x() = x, ψ( x(1)) =, ũ(s) U s [, 1]. 9

17 2 Theorie der optimalen Steuerprozesse Mit den Bezeichnungen ũ(s) := ū(s), g( x(1)) := g( x(1)), f (s, x(s),ũ(s)) := t f f (s t f, x(s),ū(s)), ( ) ( ) t f f(s t f, x(s),ū(s)) x f(s, x(s),ũ(s)) :=, x :=,ξ frei ξ ψ( x) := ψ( x) Transformation nicht-autonomer Probleme auf autonome Probleme Ein nicht-autonomer Steuerprozess läßt sich in ein autonomes Problem umwandeln, indem man die Zeitvariable t, die explizit in f oder f auftaucht, als zusätzliche Zustandsvariable einführt. Mit dem neuen erweiterten Zustandsvektor ( ) x(t) x(t) := R n+1 t erhält man folgenden autonomen Steuerprozess: Minimiere F( x,ũ) = g( x(tf )) + unter mit tf f (t, x(t),u(t)) dt d x(t) = dt f(t, x(t),u(t)), t [,t f ], (2.1) x() = x, ψ( x(tf )) =, u(t) U t [,t f ] g( x) := g(x), f ( x,u) := f ( x n+1, x,u), ( ) ( ) f( x n+1, x,u) x f( x,u) :=, x :=, 1 ψ( x) := ψ(x). x n Das Minimumprinzip von Pontryagin Nachdem nun alle wichtigen Grundbegriffe und Bezeichnungen aufgelistet worden sind, kann das Minimumprinzip von Pontryagin formuliert werden. Doch zuvor wird noch folgende Definition benötigt. Definition Sei das Steuerproblem (2.7) gegeben. Des Weiteren sei λ R und λ : [,t f ] R n ein Zeilenvektor. Die Funktion H (t,x(t),λ(t),u(t)) = λ f (t,x(t),u(t)) + λf (t,x(t),u(t)) (2.11) 1

18 2 Theorie der optimalen Steuerprozesse wird als Hamilton-Funktion des Steuerprozesses (2.7) bezeichnet. Die Variablen λ i, i = 1,...,n werden als adjungierte Variablen oder Kozustand bezeichnet. Bemerkung Im Falle eines Steuerprozesses in Mayer-Form vereinfacht sich die Hamilton-Funktion zu: H (t,x(t),λ(t),u(t)) = λf (t,x(t),u(t)). (2.12) Satz (Minimumprinzip von Pontryagin) Sei (x*,u*) eine optimale Lösung von (2.7). Dann gibt es eine Zahl λ, eine stetige und stückweise stetig differenzierbare Funktion λ : [,t f ] R n und einen Zeilenvektor ν R r mit (λ,λ(t),ν) für alle t [,t f ], so dass die folgenden Aussagen gelten: (i) An allen Stetigkeitsstellen t [,t f ] von u (t) gilt die Minimumbedingung: H (t,x (t),λ(t),u (t)) = min u U H (t,x (t),λ(t),u) und die adjungierten Differentialgleichungen: λ(t) = H x (t,x (t),λ(t),u (t)). (ii) Im Endzeitpunkt t f gilt die Transversalitätsbedingung: λ(t f ) = λ g x (x (t f )) + νψ x (x (t f )). (iii) Im Falle einer freien Endzeit t f gilt für die optimale Endzeit t f : H (t f,x (t f ),λ (t f ),u (t f )) =. (iv) Für autonome Probleme gilt außerdem: H (x (t),λ(t),u (t)) const. Für λ unterscheidet man zwischen λ =, dem so genannten abnormalen Fall und λ >. Man rechnet leicht nach, dass in dem normalen Fall λ > eine Skalierung des Vektors (λ,λ) der Form (λ,λ) (1, λ λ ) keine Auswirkung auf die Aussagen des Minimumprinzips hat. Man kann also, sofern λ > gilt, die Bedingungen aus Satz (2.3.3) durch Setzen von λ = 1 vereinfachen. Außerdem kann für den Fall λ = 1 unter zusätzlichen Konvexitätsannahmen gezeigt werden, dass durch das Pontryaginsche-Minimumprinzip auch eine hinreichende Bedingung für die Existenz einer optimalen Lösung gegeben ist. Allerdings stellt sich der Nachweis von λ > im Allgemeinen als problematisch dar. In einigen konkreten Anwendungen ist das folgende Lemma vom großen Nutzen. Lemma Bei freiem Endzustand x(t f ), d.h., wenn formal ψ gilt, ist λ >, d.h. im Pontryaginschen Minimumprinzip kann λ = 1 gesetzt werden. 11

19 2 Theorie der optimalen Steuerprozesse 2.4 Probleme mit linear auftretender Steuerung - Bang-bang und singuläre Steuerungen Im Allgemeinen unterscheidet man in der Theorie der optimalen Steuerprozesse zwischen Problemen mit linear und nichtlinear auftretender Steuerung. Während bei den Problemen mit linearer Steuerung diese häufig in einigen Punkten unstetig ist, ist die optimale Steuerung bei nichtlinearen Prozessen stetig und für U = R m sogar eine C k -Funktion. Den Schwerpunkt der vorliegenden Arbeit bilden die Probleme mit linear eingehender Steuerung (d. h. die Steuerung tritt sowohl in der Dynamik als auch im Zielfunktional linear auf). Deshalb werden diese im nachfolgenden Abschnitt näher behandelt. Es liegt also ein Problem der Form Minimiere F(x,u) := g (x(t f )) + tf unter ẋ(t) = dx(t) = a(t,x) + b(t,x)u dt x(t ) = x, ψ(x(t f )) = u(t) U t [t,t f ] (a (t,x) + b (t,x)u) dt vor. Hierbei seien a ein Skalar, b R m ein Zeilenvektor, a R n, b eine (n m) Matrix und U R m konvex und kompakt. Für die zugehörige Hamiltonfunktion mit λ = 1 ergibt sich dann: H (t,x(t),λ(t),u(t)) = λ (a (t,x) + b (t,x)u) + λ(t)(a(t,x) + b(t,x)u) = λ a (t,x) + λ(t)a(t,x) + [λ b (t,x) + λ(t)b(t,x)]u. Eine bedeutende Rolle bei der Behandlung von optimalen Steuerprozessen mit linear eingehender Steuerung spielt der Begriff der Schaltfunktion. Definition Die Funktion heißt Schaltfunktion. Σ(t) := H u (t,x(t),u(t),λ(t)) = λ b (t,x) + λ(t)b(t,x) (2.13) Insbesondere kann man somit die Hamiltonfunktion folgendermaßen zusammenfassen H(t,x(t),u(t),λ(t)) = λ a (t,x) + λ(t)a(t,x) + Σ(t)u (2.14) und man sieht, dass diese Funktion genau dann minimal bezüglich u wird, wenn Σ(t)u minimal wird. Die Minimumbedingung H (t,x (t),λ(t),u (t)) = min u U H (t,x (t),λ(t),u) 12

20 2 Theorie der optimalen Steuerprozesse ist somit äquivalent zu dem linearen Optimierungsproblem: minimiere {Σ(t)u u U} t [,t f ]. (2.15) Aus Gründen der Vereinfachung beschränken sich alle weiteren Betrachtungen auf den skalaren Fall m = 1, U = [u min,u max ] R (im Falle einer vektorwertigen Steuerfunktion erfolgt die Auswertung komponentenweise). Die optimale Steuerung kann direkt an der Schaltfunktion abgelesen werden, es gilt: u min, Σ(t) > u (t) = u max, Σ(t) <. (2.16) unbestimmt, Σ(t) = Definition Sei [t 1,t 2 ] [,t f ] mit t 1 < t 2 (i) Die Steuerung u(t) heißt bang-bang in [t 1,t 2 ], wenn Σ(t) nur isolierte Nullstellen in [t 1,t 2 ] hat, d.h. u(t) {u min,u max }. Die Nullstellen von Σ(t) heißen Schaltpunkte. (ii) Die Steuerung u(t) heißt singulär in [t 1,t 2 ], wenn Σ(t) auf dem gesamten Intervall [t 1,t 2 ] gilt. Für Σ(t) liegt demnach eine bang-bang Steuerung vor, die gemäß (2.16) angegeben werden kann. Sobald jedoch singuläre Stücke auftreten, bedarf es weiterführender nachfolgender Überlegungen. Es sei Σ(t) für t [t 1,t 2 ]. Man definiere rekursiv die Funktionen Σ (k) (t,x,λ,u), k durch: Σ () (t,x,λ,u) := Σ(t,x,λ), Σ (k+1) (t,x,λ,u) := t Σ(k) (t,x,λ,u) + x Σ(k) (t,x,λ,u) t + λ Σ(k) (t,x,λ,u) t. Entweder gilt dann u Σ(k) (t,x,λ,u) für alle k, k oder es existiert ein k > mit u Σ(k) (t,x,λ,u), für k =,...,k 1 u Σ(k) (t,x,λ,u). Aufgrund der Linearität der Steuerung u gibt es für u Σ(k) (t,x,λ,u) eine Darstellung der Form: u Σ(k) (t,x,λ,u) = A(t,x(t),λ(t)) + B(t,x(t),λ(t))u mit geeigneten Funktionen A : [t 1,t 2 ] R n R n R und B : [t 1,t 2 ] R n R n R. Außerdem gilt wegen Σ(t,x,λ,u) 13

21 2 Theorie der optimalen Steuerprozesse offensichtlich Σ (k) (t,x,λ,u). Somit ergibt sich für die singuläre Steuerung: für alle t [t 1,t 2 ] mit B(t,x(t),λ(t)). u sing = A(t,x(t),λ(t)) B(t,x(t),λ(t)) Satz (Ordnung einer singulären Steuerung) 1. Gilt k <, so ist k = 2q, q N + eine gerade Zahl. Die Zahl q 1 heißt die Ordnung der singulären Steuerung. 2. Für eine optimale Lösung (x(t),u sing (t),λ(t)) gilt die verallgemeinerte Legendre- Clebsch-Bedingung: ( 1) q B(t,x(t),λ(t)) = ( 1) q u Einen Beweis dieses Satzes findet man z.b. in Knobloch [6]. [ ] d 2q dt 2qH u(t,x(t),u sing (t),λ(t)). (2.17) 14

22 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen Bisher wurden allgemeine Steuerprozesse und notwendige Optimalitätsbedingungen für Probleme ohne Beschränkungen betrachtet. Doch in den meisten praktischen Anwendungen treten solche öfters im Zustandsbereich sowie in der gemischten Form, im Zustands-Steuerbereich auf. Man unterscheidet demnach zwischen reinen Zustandsbeschränkungen und gemischten Beschränkungen. Für die vorliegende Arbeit und die hier behandelten Beispiele aus der Unternehmenspolitik ist jedoch nur der erste Typ der besagten Beschränkungen von Interesse. Bei solchen Steuerprozessen können die Beschränkungen einen entscheidenden Einfluss auf die Optimalitätsbedingungen ausüben. Außerdem ist die Struktur der Lösung in der Regel komplexer. Zur Bearbeitung der zustandsbeschränkten Steuerprozesse bedarf es des erweiterten Pontryaginschen Minimumprinzips, welches in den Abschnitten 3.2 und 3.3 formuliert wird. 3.1 Grundbegriffe Zunächst werden in diesem Abschnitt die Grundbegriffe und wichtige Definitionen der optimalen Steuerprozesse mit reinen Zustandsbeschränkungen bereitgestellt. Gegeben sei also ein optimaler Steuerprozess: Minimiere F(x,u) := g (x(t f )) + tf f (t,x(t),u(t)) dt unter ẋ(t) = dx(t) = f (t,x(t),u(t)) dt (3.1) x() = x, ψ(x(t f )) = u(t) U t [,t f ] mit der reinen Zustandsbeschränkung S(x(t)), t [,t f ]. (3.2) Dabei sei S : R n R k, k N + eine hinreichend oft stetig differenzierbare Funktion. 15

23 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen x(t) x max Kontaktpunkt Eintrittspunkt Austrittspunkt Verbindungspunkte x min Randstück inneres Teilstück t i t i+1 t i+2 t i+3 t i+4 t i+5 t i+6 t Abbildung 3.1: Zustandsbeschränkung x min x(t) x max Bei der Lösung solcher Steuerprozesse unterscheidet man zwischen inneren Teilstücken und Randstücken. Definition Ein Intervall [t i,t i+1 ] [,t f ] wird inneres Teilstück genannt, wenn S(x(t)) < t [,t f ] (3.3) gilt. Per Definition ist die Zustandsbeschränkung auf inneren Teilstücken im gesamten Zeitintervall nicht aktiv, daher gelten für die optimale Lösung die notwendigen Bedingungen von Satz (2.3.3). Wirklich interessant für dieses Kapitel sind also nur die Probleme, in denen die Beschränkung (3.2) aktiv wird. Definition Die abgeschlossene Menge heißt Menge der aktiven Zeitpunkte. I := { t [,t f ] S(x(t)) = } (3.4) Definition Ein Intervall [t e,t a ] [,t f ] wird Randstück genannt, wenn gilt. Der Zeitpunkt t e heißt Eintrittspunkt, falls gilt S(x(t)) t [t e,t a ] (3.5) S(x(t e ε)) < für ε > hinreichend klein. 16

24 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen Der Zeitpunkt t a heißt Austrittspunkt, falls gilt S(x(t a + ε)) < für ε > hinreichend klein. Ein Punkt τ [,t f ] heißt Kontaktpunkt, falls gilt S(x(τ)) =, S(x(τ ± ε)) < für ε > hinreichend klein. Definition Ein Eintritts- bzw. Austrittspunkt heißt Verbindungspunkt zwischen dem inneren Teilstück und dem Randstück. Definition Die Steuerung auf einem Randstück [t e,t a ] wird als Randsteuerung bezeichnet. Im Folgenden soll die Randsteuerung für den skalaren Fall m = 1 genauer untersucht werden. Eine wichtige Rolle hierbei spielt die Ordnung der Zustandsbeschränkung. Man definiere rekursiv die Funktionen S i, i N durch: S := S, S i+1 := (S i ) x f. (3.6) Definition Die Zustandsbeschränkung S(x(t)) heißt p-ter Ordnung falls gilt: (S i ) u = Si u (S p ) u = Sp u. für i =,...,p 1 und Anders ausgedrückt enthalten die ersten p 1 totalen Ableitungen nach der Zeit t keine Steuervariable, die Steuerung u tritt erstmals in der p-ten Ableitung explizit auf, d. h.: S i = S i (x) S p = S p (x,u). (3.7) Daher gilt auf einem Randstück für alle t [t e,t a ]: S i (x(t)) =, i =,...,p 1 S p (x(t)) =. (3.8) Diese Bedingungen sind aufgrund des Eindeutigkeitssatzes für Differentialgleichungen äquivalent zu: S i (x(t e )) =, i =,...,p 1 S p (x(t)) =, t [t e,t a ]. (3.9) 17

25 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen Bevor nun die notwendigen Optimalitätsbedingungen für Steuerprozesse mit reinen Zustandsbeschränkungen im nächsten Abschnitt formuliert werden, wird noch folgende Voraussetzung benötigt. Voraussetzung Die Gleichung S p (x,u) = ist eindeutig auflösbar nach u = u(x) mit einer C p+1 -Funktion u(x). 2. Auf jedem Randstück [t e,t a ] gelte: S p u (x,u), t [t e,t a ]. 3. Die Randsteuerung liege echt im Inneren des Steuerbereiches, d.h.: u(t) int U, t [t e,t a ]. Demnach gilt auf einem Randstück [t e,t a ] eine eindeutige Beziehung u(t) = u(x(t)). 3.2 Direkte Methode - Direct adjoining approach Zur Behandlung von Problemen mit reinen Zustandsbeschränkungen existieren mehrere verschiedene Verfahren. Eine der meist angewandten Methoden, die in diesem Abschnitt erläutert werden soll, ist die direkte Methode. Hierbei wird die Funktion S(x(t)) mit einem Multiplikator versehen und direkt zur Hamiltonfunktion adjungiert. Definition Es seien das Steuerproblem (5.1), λ : [,t f ] R n, λ R und µ : [,t f ] R k gegeben. Die Funktion H (t,x,λ,µ,u) = λ f (t,x,u) + λf (t,x,u) + µs(x) (3.1) H (t,x,λ,µ,u) = H (t,x,λ,u) + µs(x) heißt die erweiterte Hamilton-Funktion zum Steuerprozess (5.1). Satz (erweitertes Minimumprinzip) Sei (x*,u*) eine optimale Lösung des zustandsbeschränkten Steuerprozesses (5.1). Außerdem erfülle das Paar (x*,u*) die Voraussetzung (3.1.7). Dann existieren 1. eine Konstante λ R, λ, 2. stückweise stetige und stückweise stetig differenzierbare Funktion λ : [,t f ] R n, 18

26 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen 3. ein Zeilenvektor ρ R r, 4. eine stückweise stetige Multiplikator-Funktion µ : [,t f ] R k, 5. in jedem Verbindungs- und Kontaktpunkt Multiplikatoren ν(t i ) R, ν(t i ), sodass folgende Aussagen gelten: (i) An allen Stetigkeitsstellen t [,t f ] von u (t) gilt die Minimumbedingung: H (t,x (t),λ(t),µ(t),u (t)) = min u U und die adjungierten Differentialgleichungen: H (t,x (t),λ(t),µ(t),u) λ(t) = H x (t,x (t),λ(t),µ(t),u (t)). (ii) Im Endzeitpunkt t f gilt die Transversalitätsbedingung: λ(t f ) = λ g x (x (t f )) + ρψ x (x (t f )) + γs x (x (t f )), γ, γs(x (t f )) =. (iii) Für alle t [,t f ] gilt die Vorzeichenbedingung: µ(t) und die Komplementaritätsbedingung: µ(t)s(x (t)). (iv) In jedem Verbindungs- und Kontaktpunkt gelten die Sprungbedingungen: λ(t + i ) = λ(t i ) ν(t i)s x (x (t i )). (v) Im Falle einer freien Endzeit t f gilt für die optimale Endzeit t f : H (t f,x (t f ),λ (t f ),µ (t f ),u (t f )) =. Einen Beweis findet man in [11]. Für Probleme mit linear eingehender Steuerung lässt sich die optimale Steuerung formal wie folgt berechnen: Auf einem Randstück [t e,t a ] [,t f ] gilt nach Definition: S(x(t)) =, t [t e,t a ]. 19

27 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen Da S p (x,u) affin-linear in u ist, existiert eine Darstellung der Form: S p (x,u) = α(x) + β(x)u mit geeigneten Funktionen α(x) und β(x). Außerdem gilt auf dem Randstück [t e,t a ] nach Voraussetzung (3.1.7): S p u (x,u), t [t e,t a ] und die Randsteuerung u rand kann in Abhängigkeit von x ermittelt werden: u rand (x) = α(x) β(x). In dem Minimumprinzip wird vorausgesetzt, dass die optimale Steuerung auf einem Randstück echt im Inneren des Steuerbereiches U liegt: u(t) int U, t [t e,t a ]. Nach der Minimumbedingung wird die Hamiltonfunktion im Optimum bezüglich der Steuerung u minimiert. Dies impliziert: = H(t) = Σ(t). (3.11) Die Randsteuerung verhält sich somit formal wie eine singuläre Steuerung. Im Gegensatz zu unbeschränkten Problemen können bei den Steuerprozessen mit Zustandsbeschränkungen Unstetigkeiten in den adjungierten Variablen auftreten. Bei linear auftretender Steuerung kann der folgende Satz eine wichtige Rolle spielen. Satz Sei p = 1 und u(t) unstetig in einem Verbindungspunkt t i, dann gilt ν(t i ) =. λ(t) ist also stetig in t i und es gilt Σ(t i ) =. Einen Beweis findet man in Maurer [12]. 3.3 Indirekte Methode - Indirect adjoining approach Eine weitere Möglichkeit zur Auswertung zustandsbeschränkter Steuerprozesse bietet die indirekte Methode. Bei diesem Ansatz, der historisch gesehen älter als der Direkte ist, wird nicht die reine Beschränkung S(x(t)) an die Hamilton-Funktion angekoppelt, sondern die p-te Ableitung der Zustandsbeschränkung nach der Zeit t, wobei p der Ordnung der Beschränkung entspricht. In dieser Arbeit werden die notwendigen Bedingungen der indirekten Methode nur für den Fall p = 1 formuliert, 2

28 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen außerdem soll zur Vereinfachung die Steuerung u wieder skalar vorliegen. Zunächst wird der in eingeführte Begriff der erweiterten Hamilton-Funktion modifiziert. Definition Es sei das Steuerproblem (5.1) mit der Zustandsbeschränkung (3.2) der Ordnung p = 1 gegeben. Die Funktion H ( 1 t,x,λ 1,µ 1,u ) = λ 1 f (t,x,u) + λ 1 f (t,x,u) + µ 1 S 1 (x) (3.12) H ( 1 t,x,λ 1,µ 1,u ) = H ( t,x,λ 1,u ) + µ 1 S 1 (x) heißt die erweiterte Hamilton-Funktion der indirekten Methode zum Steuerprozess (5.1). Hierbei sind λ 1 : [,t f ] R n und µ 1 : [,t f ] R k. Um den Zusammenhang zwischen den beiden Verfahren herzustellen, muss man folgende Beziehungen zwischen den verwendeten Multiplikatoren beachten. 1. Die Multiplikatoren λ 1, µ 1 aus 3.3 werden durch Integration der Multiplikatoren λ := λ und µ := µ aus dem Abschnitt 3.2 erzeugt. 2. Der Multiplikator λ 1 (t) ist definiert durch: λ 1 (t) = λ (t) µ 1 (t)(s ) x (x(t)). (3.13) 3. Für den Multiplikator µ 1 gilt: { µ 1 ν(t a ) + t a µ (s)ds, für t [t t e,t a ] (t) =, sonst. (3.14) 4. Für den Multiplikator ν 1 gilt: ν 1 (t e ) = ν (t e ) + µ 1 (t e ). (3.15) Man beachte, dass hier angeführten Beziehungen zwischen den Multiplikatoren in beide Richtungen gelten, d. h. wenn die Multiplikatoren der indirekten Methode hinreichend glatt sind, können aus ihnen mittels der obigen Gleichungen die Multiplikatoren der direkten Methode gewonnen werden. Mit den Bezeichnungen aus der Definition (3.3.1) lauten die notwendigen Optimalitätsbedingungen: Satz (erweitertes Minimumprinzip der indirekten Methode) Sei (x*,u*) eine optimale Lösung des zustandsbeschränkten Steuerprozesses (5.1) mit der Zustandsbeschränkung S(x(t) der Ordnung p=1. Außerdem seien f und S C 2 -Funktionen und die beiden folgenden Bedingungen erfüllt: 21

29 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen 1. Auf jedem Randstück [t e,t a ] gelte: S 1 u (x,u ), t [t e,t a ]. 2. Die Randsteuerung liege echt im Inneren des Steuerbereichs, d.h.: u(t) int U, t [t e,t a ]. Dann existieren 1. eine Konstante λ R, λ, 2. stückweise stetige und stückweise stetig differenzierbare Funktion λ 1 : [,t f ] R n, 3. ein Zeilenvektor ρ 1 R r, 4. eine stückweise stetige Multiplikator-Funktion µ 1 : [,t f ] R, 5. in jedem Verbindungs- und Kontaktpunkt Multiplikatoren ν 1 (t i ) R, ν 1 (t i ), sodass folgende Aussagen gelten: (i) An allen Stetigkeitsstellen t [,t f ] von u (t) gelten die Minimumbedingung: H 1 ( t,x (t),λ 1 (t),µ 1 (t),u (t) ) = min u U H1 ( t,x (t),λ 1 (t),µ 1 (t),u ) und die adjungierten Differentialgleichungen: ( λ 1 (t) = Hx 1 t,x (t),λ(t) 1,µ 1 (t),u (t) ). (ii) Im Endzeitpunkt t f gilt die Transversalitätsbedingung: λ 1 (t f ) = λ 1 g x (x (t f )) + ρ 1 ψ x (x (t f )), (falls S(x (t f )) < ) (iii) Für alle t [,t f ] gilt die Komplementaritätsbedingung: µ 1 (t), µ(t) 1 S(x (t)) und für alle t [t e,t a ] die Vorzeichenbedingung: µ 1 (t) t [t e,t a ]. (iv) In jedem Eintrittspunkt gilt die Sprungbedingung: λ 1 (t + e ) = λ 1 (t e ) ν 1 (t e )S x (x (t i )). 22

30 3 Optimale Steuerprozesse mit reinen Zustandsbeschränkungen (v) In jedem Kontaktpunkt gilt: λ 1 (τ + ) = λ 1 (τ ) ν 1 ks x (x (τ)), ν 1 k. (vi) In jedem Austrittspunkt gilt die Stetigkeitsbedingung: λ 1 (t + a ) = λ 1 (t a ). (vii) Im Falle einer freien Endzeit t f gilt für die optimale Endzeit t f : H 1 ( t f,x (t f ),λ 1 (t f ),µ 1 (t f ),u (t f ) ) =. Einen Beweis hierzu findet man in Maurer [11] und Hartl, Sethi und Vickson [4]. Im Gegensatz zum direkten Ansatz gilt die Sprungbedingung für die adjungierten Variablen beim indirekten Ansatz nur in den Eintrittspunkten. Demnach ist die adjungierte Funktion λ 1 (t) bei der Anwendung der indirekten Methode in den Austrittspunkten stetig. 23

31 4 Hinreichende Optimalitätsbedingungen Durch das Minimumprinzip von Pontryagin und dessen Erweiterung auf die Probleme mit Beschränkungen werden notwendige Optimalitätsbedingungen für das Vorliegen einer Extremalstelle gegeben. Um nachweisen zu können, dass es sich bei der berechneten Lösung tatsächlich um ein Optimum handelt, werden die hinreichenden Bedingungen benötigt. In einigen Fällen kann jedoch gezeigt werden, dass unter zusätzlichen Konvexitätsannahmen durch das Pontryaginsche Minimumprinzip auch hinreichende Optimalitätsbedingungen gegeben sind. Diese Tatsache erweist sich besonders für ökonomische Probleme als sehr hilfreich. Denn in den meisten wirtschaftlichen Modellen geht man von einer Maximierung des Zielfunktionals aus und somit werden für hinreichende Bedingungen zusätzliche Konkavitätsannahmen gefordert. Diese Voraussetzung wird, da viele ökonomische Funktionen einen konkaven Verlauf aufweisen, sehr häufig erfüllt. Als ein Beispiel wäre z.b. die Nutzenfunktion 1, die in zahlreichen Problemen eine wichtige Rolle spielt, zu nennen. 4.1 Exkurs in die nichtlineare Optimierung Um zu beweisen, dass die notwendigen Bedingungen unter zusätzlichen Konvexitätsannahmen auch hinreichend sind, werden die Kuhn-Tucker-Bedingungen der nichtlinearen Optimierung benötigt. Aus diesem Grunde wird zunächst ein kleiner Rückblick auf die nichtlineare Optimierung gegeben. Definition Gegeben seien die differenzierbare Abbildung f : R n R und die stetig differenzierbare Abbildung g : R n R m. Dann lautet das Standardproblem der nichtlinearen Optimierung: Minimiere f(x) unter g i (x), i = 1,...,k, (4.1) g i (x) =, i = k + 1,...,m. 1 Die Nutzenfunktion ist in der Volkswirtschaftslehre eine häufig gewählte Modellierung der Präferenzen einzelner Wirtschaftssubjekte. 24

32 4 Hinreichende Optimalitätsbedingungen Definition Erfüllt ein Punkt x R n die Bedingungen: g i (x) für i = 1,...,k g i (x) = für i = k + 1,...,m, so heißt er zulässig für das Optimierungsproblem (4.1). Definition Die Mengen I( x) := {i {1,...,k} g i ( x) = } J( x) := I( x) {k + 1,...,m} werden als Mengen der aktiven Indizies bezeichnet. Definition Ein zulässiger Punkt x des Standardproblems (4.1) heißt regulär, wenn gilt: (a) Die Gradienten (g k+1 ) x ( x),..., (g m ) x ( x) sind linear unabhängig, (b) v R n mit : (g i ) x ( x)v < für i I( x), (g i ) x ( x)v = für i {k + 1,...,m}. Definition Ein zulässiger Punkt x des Standardproblems (4.1) heißt normal, wenn gilt: Die Gradienten (g i ) x ( x), i J( x) sind linear unabhängig. Mit den obigen Definitionen können nun die notwendigen Optimalitätsbedingungen der nichtlinearen Optimierung angegeben werden. Satz (Satz von John und Karush-Kuhn-Tucker) Sei x eine lokale Minimalstelle des Optimierungsproblems (4.1). Dann gilt: (i) Es existiert ein Zeilenvektor (λ,λ) R R m \ {, m } mit: λ f x ( x) + λ i (g i ) x ( x) =, i J( x) λ, λ i für i I( x), λ i = für i / J( x). (ii) Ist x regulär, d. h. es gelte: (a) Die Gradienten (g k+1 ) x ( x),..., (g m ) x ( x) sind linear unabhängig, (b) v R n mit : (g i ) x ( x)v < für i I( x), (g i ) x ( x)v = für i {k + 1,...,m}, so kann λ = 1 gesetzt werden. 25

33 4 Hinreichende Optimalitätsbedingungen (iii) Ist x normal, d.h. die Gradienten (g i ) x ( x), i J( x) sind linear unabhängig, so ist λ R m mit λ = 1 eindeutig bestimmt. Einen Beweis dieses Satzes findet man z. B. in Luenberger [9]. Definition Die Komponenten λ i, i =, 1,...,m aus den Bedingungen des Satzes (4.1.6) heißen Lagrange-Multiplikatoren und die Funktion L(x,λ,λ) := λ f(x) + λg(x), (4.2) mit λ R m Zeilenvektor, λ R heißt Lagrange-Funktion. 4.2 Konvexe Funktionen Im folgenden Abschnitt werden zunächst die Begriffe der Konvexität und der Quasi- Konvexität, die in diesem Kapitel eine sehr wichtige Rolle spielen, vorgestellt. Es werden einige Sätze formuliert, die zum Beweis der hinreichenden Bedingungen notwendig sind. Zum Schluss wird ein ausgewähltes Kriterium zur Überprüfung der Konvexität eingeführt. Dieses wird zur Behandlung des modifizierten Modells von Lesourne und Leban in Kapitel 5 verwendet. Definition Eine nicht-leere Teilmenge D R n heißt konvex, wenn für alle α mit α 1 und für alle x 1,x 2 D gilt: αx 1 + (1 α)x 2 D. Definition Sei D eine konvexe Teilmenge des R n. Eine auf D definierte Funktion f : D R heißt konvex, wenn für alle x 1, x 2 aus ihrem Definitionsbereich D und für alle α [, 1] gilt: f(αx 1 + (1 α)x 2 ) αf(x 1 ) + (1 α)f(x 2 )). Falls f differenzierbar ist, so ist ihre Konvexität äquivalent zu: f x (x 1 )(x 2 x 1 ) f(x 2 ) f(x 1 ). Gilt in diesen Ungleichungen anstelle von das Zeichen, so ist die Funktion f konkav. Definition Eine Funktion f : R n R heißt quasi-konvex auf dem konvexen Definitionsbereich D R n, wenn für alle x 1,x 2 D und für alle ζ [, 1] gilt: f(ζx 1 + (1 ζ)x 2 ) min {f(x 1 ),f(x 2 )} Gilt in diesen Ungleichungen anstelle von das Zeichen, so ist die Funktion f quasi-konkav. 26

34 4 Hinreichende Optimalitätsbedingungen Bemerkung Jede konvexe Funktion ist auch quasi-konvex. Bemerkung Eine lineare Funktion f : D R ist auf jeder konvexen Menge D R n sowohl konvex als auch konkav. Satz Sei f : D R quasi-konvex und differenzierbar auf der konvexen Menge D R n. Dann gilt für alle x,x D mit f(x) f(x ): f x (x )(x x ). (4.3) Satz Sei f : D R quasi-konvex und differenzierbar auf der konvexen Menge D R n. Ferner existiere ein Vektor x und ein Skalar γ mit f(x ), γ, f(x )γ =. (4.4) Dann gilt für alle x D mit f(x) : γf x (x )(x x ). (4.5) Ein Beweis des Satzes (4.2.6) folgt unmittelbar aus der Definition einer quasikonvexen Funktion. Die Behauptung des Satzes (4.2.7) kann mittels des Satzes (4.2.6) direkt nachvollzogen werden. Des Weiteren werden einige Sätze über konvexe und quasi-konvexe Funktionen angegeben, deren Beweise sich direkt aus den jeweiligen Definitionen ergeben. Satz f(x) ist genau dann quasi-konvex, wenn die Menge A α = {x f(x) α} für jedes α R n konvex ist. Satz Seien K R n eine konvexe Menge und f 1,...,f m : K R n konvexe Funktionen. Dann ist auch jede nichtnegative Linearkombination der Funktionen: f := m α i f i, α i i = 1,...,m i=1 eine konvexe Funktion. Satz Sind D 1,...,D k R n konvexe Mengen, so ist deren Durchschnitt D 1,..., Dk ebenfalls konvex. Schließlich wird für den Beweis der hinreichenden Optimalitätsbedingungen noch folgendes Resultat, entnommen aus Rockafellar [15], verwendet. 27

Zeitoptimale und singuläre Steuerungen in einem mechatronischen System mit Coulomb-Reibung

Zeitoptimale und singuläre Steuerungen in einem mechatronischen System mit Coulomb-Reibung Zeitoptimale und singuläre Steuerungen in einem mechatronischen System mit Coulomb-Reibung Diplomarbeit Andreas Ott 27. Juni 27 Diplomarbeitsbetreuer: Prof. Dr. Helmut Maurer Institut für Numerische und

Mehr

Optimale Steuerung eines linearen Servomotors

Optimale Steuerung eines linearen Servomotors mit Coulomb-Reibung und Zustandsbeschränkungen Bahne Christiansen, Helmut Maurer Oliver Zirn Universität Münster Institut für Numerische Mathematik University of Applied Sciences Giessen Kleinwalsertal,

Mehr

14. Das Minimumprinzip

14. Das Minimumprinzip H.J. Oberle Variationsrechnung u. Optimale Steuerung SoSe 2008 14. Das Minimumprinzip In diesem Abschnitt behandeln wir die Idee der dynamischen Programmierung, die auf Bellmann 31 (1957) zurückgeht und

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Optimale Steuerung eines mechatronischen. Systems mit Coulomb-Reibung. und Zustandsbeschränkungen

Optimale Steuerung eines mechatronischen. Systems mit Coulomb-Reibung. und Zustandsbeschränkungen Westfälische Wilhelms- Universität zu Münster Diplomarbeit Optimale Steuerung eines mechatronischen Systems mit Coulomb-Reibung und Zustandsbeschränkungen Bahne Christiansen 17. April 27 Themensteller

Mehr

Hinreichende Bedingungen für Optimalsteuerungsprobleme mit nichtglatten Zuständen

Hinreichende Bedingungen für Optimalsteuerungsprobleme mit nichtglatten Zuständen Hinreichende Bedingungen für Optimalsteuerungsprobleme mit nichtglatten Zuständen Ricki Rosendahl Schwerpunkt Optimierung und Approximation Department Mathematik - Universität Hamburg Hamburg, 10. April

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

Kapitel 15. Kontrolltheorie. Josef Leydold Mathematik für VW WS 2017/18 15 Kontrolltheorie 1 / 19. T (1 s(t)) f (k(t)) dt

Kapitel 15. Kontrolltheorie. Josef Leydold Mathematik für VW WS 2017/18 15 Kontrolltheorie 1 / 19. T (1 s(t)) f (k(t)) dt Kapitel 15 Kontrolltheorie Josef Leydold Mathematik für VW WS 217/18 15 Kontrolltheorie 1 / 19 Wirtschaftswachstum Aufgabe: Maximiere Konsum im Zeitraum [, T]: max s(t) 1 (1 s(t)) f (k(t)) dt f (k)...

Mehr

2.4 Verallgemeinerte Ungleichungen

2.4 Verallgemeinerte Ungleichungen 2.4 Verallgemeinerte Ungleichungen 2.4.1 Eigentliche Kegel und verallgemeinerte Ungleichungen Ein Kegel K R heißt eigentlicher Kegel, wenn er die folgenden Bedingungen erfüllt: K ist konvex K ist abgeschlossen

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Gliederung 1 : Einführung 2 Differenzieren 2 3 Deskriptive 4 Wahrscheinlichkeitstheorie

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf )

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf ) Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 65 (das agraökonomische Schaf ) Sascha Kurz Jörg Rambau 25 November 2009 2 66 Die Karush-Kuhn-Tucker-Methode Die Erkenntnisse

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Konvexe Mengen und Funktionen

Konvexe Mengen und Funktionen Konvexe Mengen und Funktionen von Corinna Alber Seminararbeit Leiter: Prof. Jarre im Rahmen des Seminars Optimierung III am Lehrstuhl für Mathematische Optimierung an der Heinrich-Heine-Universität Düsseldorf

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 19 8. Juli 2010 Kapitel 14. Gewöhnliche Differentialgleichungen zweiter Ordnung 14.1 Systeme gewöhnlicher linearer Differentialgleichungen erster

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

2. Quasilineare PDG erster Ordnung

2. Quasilineare PDG erster Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 2. Quasilineare PDG erster Ordnung Eine skalare PDG erster Ordnung hat die allgemeine Form F (x, u(x), u x (x)) = 0. (2.1) Dabei ist u : R n G R die gesuchte

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler Ein Buch Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler (Aber bei der Mathematik ein bisschen aufpassen!) 4 Extremstellen

Mehr

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung) (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis Innere-Punkte-Verfahren 3 1 Theoretische Grundlagen 3 1.1 Die KKT-Bedingungen........................... 3 1.2 Der zentrale Pfad.............................. 4

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006 Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Nichtlineare Optimierung

Nichtlineare Optimierung Nichtlineare Optimierung Roland Griesse Numerische Mathematik Chemnitzer Skiseminar Gerlosberg, 07. 14. März 2009 Gliederung Konvexe Optimierung 1 Konvexe Optimierung Bedeutung Beispiele Charakterisierung

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

KAPITEL 10 DIE INNERE-PUNKTE-METHODE

KAPITEL 10 DIE INNERE-PUNKTE-METHODE KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach

Mehr

Hamilton-Systeme. J. Struckmeier

Hamilton-Systeme. J. Struckmeier Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf d Gewöhnliche Differentialgleichungen Woche 6 Existenz nach Picard-Lindelöf 6.1 Vorbereitung für den Existenzsatz 6.1.1 Stetigkeit und Lipschitz-Stetigkeit Definition 6.1 Seien (V 1, 1 und (V 2, 2 zwei

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN 204 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Ansätze zur Lösung von NMPC Problemen

Ansätze zur Lösung von NMPC Problemen Ansätze zur Lösung von NMPC Problemen Jürgen Pannek 12. Juni 2006 Seminar Modellprädiktive Regelung Gliederung 1 Problemstellung Lösungsansätze 2 Direkte Verfahren Diskretisierung Konvergenzanalyse 3 Nichtlineare

Mehr

7 Anwendungen der Linearen Algebra

7 Anwendungen der Linearen Algebra 7 Anwenungen er Linearen Algebra 7.1 Extremwertaufgaben mit Nebenbeingungen Bemerkung 7.1. Wir behaneln as Problem: Gegeben ist eine zweimal stetig ifferenzierbare Funktion f : R n R un ein stetig ifferenzierbares

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Kreistreue der Möbius-Transformationen

Kreistreue der Möbius-Transformationen Kreistreue der Möbiustransformationen Satz Möbius Transformationen sind kreistreu. Beweis Verwende eine geeignete Zerlegung für c 0: a az + b cz + d = c (cz + d) ad c + b cz + d = a c ad bc c cz + d. Wir

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Regularitätsbedingungen

Regularitätsbedingungen Kapitel 5 Regularitätsbedingungen 5.1 Eine notwendige und hinreichende Regularitätsbedingung Beim Studium Lagrangescher Multiplikatorenregeln in ihrer Grundform, bestehend aus Stationaritäts und Komplementaritätsbedingung,

Mehr

Zusatzmaterial zu Kapitel 6

Zusatzmaterial zu Kapitel 6 ZU KAPITEL 62: METHODEN ZUR STABILITÄTSPRÜFUNG Zusatzmaterial zu Kapitel 6 Zu Kapitel 62: Methoden zur Stabilitätsprüfung Einleitung Bei der Feststellung der asymptotischen Stabilität (siehe Kapitel 63)

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn Optimierung Vorlesung 5 Optimierung mit Nebenbedingungen 1 Minimierung mit Gleichheitsrestriktionen Gegeben: Funktion,,,, : Ziel:,,, Unrestringierter Fall: Notwendige Bedingung für lokales Minimum keine

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

Dualität bei konvexer Optimierung

Dualität bei konvexer Optimierung Dualität bei konvexer Optimierung Seminar zur Numerik I im SS 2016 Laslo Hunhold 10. Mai 2016 Ausarbeitung zum Seminarvortrag vom 2. Mai 2016 Mathematisches Institut Mathematisch-Naturwissenschaftliche

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Optimale Steuerung chemischer Batch-Reaktoren Praktikum Nichtlineare Modellierung in den Naturwissenschaften im WS 2012/13

Optimale Steuerung chemischer Batch-Reaktoren Praktikum Nichtlineare Modellierung in den Naturwissenschaften im WS 2012/13 MÜNSTER Optimale Steuerung chemischer Batch-Reaktoren Praktikum Nichtlineare Modellierung in den Naturwissenschaften im WS 2012/13 Karoline Pelka Christian Schmidt Christoph Große Kracht 5. Februar 2013

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

zul. Kurve g 1 C zul dθ (0) y = dϕ dθ (0) =

zul. Kurve g 1 C zul dθ (0) y = dϕ dθ (0) = 2. Grundlagen der nicht-linearen konvexen Optimierung 2.1. Die Karush-Kuhn-Tucker Bedingungen. Unser Basisproblem (NLO) sei geben durch min f(x) NLO g i (x) 0, i I = {1,..., m} x R n f, g i stetig differenzierbar.

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden Kapitel 4 Das Dirichlet Prinzip Bevor wir uns der Lösung von Randwertproblemen mithilfe der eben entwickelten Techniken zuwenden, wollen wir uns einer Idee zur Lösung widmen, die einige Elemente dieser

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr