Ausdrucksstärke von monadischem Datalog auf Bäumen

Größe: px
Ab Seite anzeigen:

Download "Ausdrucksstärke von monadischem Datalog auf Bäumen"

Transkript

1 Ausdrucksstärke von monadischem Datalog auf Bäumen RWTH Aachen Seminar über Automaten für XML (WS 2005/06) 06. Dezember 2005 Druckversion

2 Worum es geht... Aufgabe: Selektieren von Knoten in Bäumen Anfragesprache: Monadisches Datalog

3 Gliederung 1 Einleitung 2 Monadisches Datalog auf Bäumen 3 Ausdrucksstärke 4 Zusammenfassung

4 Literatur Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power of languages for web information extraction. JACM: Journal of the ACM, 51, Frank Neven and Thomas Schwentick. Query automata over finite trees. TCS: Theoretical Computer Science, 275, 2002.

5 Motivation Anfragemechanismen mit der Ausdrucksstärke von MSO-Anfragen: Anfrageautomaten [Neven, Schwentick] Boolesche Attributgrammatiken [Neven, van den Bussche] Nachteile: Keine Programmiersprachen für Anfragen Modellierung des gesamten Dokuments (Baums) notwendig Monadisches Datalog als Anfragesprache Arbeitet auf Relationen Effiziente Anfrageberechnung Core XPath kann effizient auf monadisches Datalog abgebildet werden

6 Bäume Annahme: Ein Baum t ist gegeben als relationale Struktur: t beschränkt (Baum t rk über der Signatur τ rk ): t rk = dom, root, leaf, (child k ) k K, (label a ) a Σ t unbeschränkt (Baum t ur über der Signatur τ ur ): t rk = dom, root, leaf, firstchild, nextsibling, lastsibling, (label a ) a Σ Folie 1

7 Monadisches Datalog - Syntax (1) Datalog-Ausdrücke Monadisches Datalog arbeitet auf Prädikaten (Relationen) Atomare Bausteine sind Datalog-Ausdrücke n-stelliger Datalog-Ausdruck: p(a 1,..., a n ) p: Prädikat a i : Variablen und Konstanten über dom (d. h. Wertebereich ist die Menge aller Baumknoten) Datalog-Fakt: variablenfreier Datalog-Ausdruck Unterscheide zwei Arten von Prädikaten (extensionale und intensionale Prädikate) Extensionale Prädikate: Prädikate über der Signatur τ rk bzw. τ ur bereits interpretiert durch gegebenen Baum t

8 Monadisches Datalog - Syntax (2) Monadische Datalog-Programme Monadisches Datalog-Programm P: Menge von Datalog-Regeln der Form h(x) b 1,..., b n. 1 h ist kein extensionales Prädikat 2 b i ist entweder ein extensionales Prädikat oder es gibt eine Regel der Form b i... P. 3 Für jede Regel mit Kopf h(x) tritt die Variable x auch im Rumpf in einem b i auf Regel mit Kopf h(x) definiert ein zusätzliches einstelliges Prädikat (intensionales Prädikat) Einstellige Prädikate entsprechen Markierungen von Baumknoten

9 Monadisches Datalog - Syntax (3) Anfragen Auszeichung eines intensionalen Prädikats q als Anfrageprädikat: Interpretation von q(x) ist die durch P bestimmte Auswahl von Baumknoten Beispiel Selektiere in einem binären Baum alle Knoten, die... mindestens einen mit a beschrifteten Knoten in ihrem linken Teilbaum haben und mindestens einen mit b beschrifteten Knoten in ihrem rechten Teilbaum haben. Folie 2

10 Fixpunktsemantik (1) Gegeben: monadisches Datalog-Programm P mit intensionalen Prädikaten p 1,..., p n T i p j : Menge der Baumknoten, die nach der i-ten Ausführung von P mit p j markiert sind T 0 p 1,..., T 0 p n := T i P := {p j(v) p j intensionales Präd., v T i p j } {p(a 1,..., a n ) t rk/ur } T i+1 p j := trans i p j (T i P )

11 Fixpunktsemantik (2) Auswertung: Funktion φ: Belegung der Variablen erweitert ϕ(a) = a für alle Konstanten a Auf Datalog-Ausdrücken: φ(p(a 1,..., a m )) := p(φ(a 1 ),..., φ(a m )). Transformationen: trans i p j : 2 Prim 2 dom trans i p j (X) = Tp i j {φ(x) dom t es gibt eine Regel p j (x) b 1,..., b n. P, so dass φ(b 1 ),..., φ(b n ) X} Folgen T 0 p j, T 1 p j, T 2 p j,... Fixpunkte T n p j = T n+1 p j Folge T 0 P, T 1 P, T 2 P,... Fixpunkt T n P = T n+1 P Es existiert stets kleinster Fixpunkt T ω P =: T ω p j =: T ω P

12 Zusammenfassung: Monadisches Datalog Monadisches Datalog: Praktische Anfragesprache über Bäumen Fixpunkt T ω P existiert und lässt sich effizient berechnen Auswertung möglich in O( P dom ) Ausdrucksstärke von MSO-definierbaren Anfragen Satz (Monadisches Datalog MSO) Eine einstellige Anfrage über Bäumen ist MSO-definierbar gdw. ein monadisches Datalog-Programm über τ rk bzw. τ ur existiert, das die selbe Anfrage definiert.

13 Monadisches Datalog MSO Satz (Monadisches Datalog Π 1 -MSO) Jede monadische Datalog Anfrage über Bäumen ist Π 1 -MSO-definierbar. Beweis. Gegeben: monadisches Datalog-Programm P, intensionale Präd. P 1,..., P n, Anfrageprädikat P 1. Konstruiere Π 1 -MSO-Formel ϕ(x) := P 1... P n ( SAT(P 1,..., P n ) x P 1 ) SAT(P 1,..., P n ): Konjunktion aller Formeln, die Regeln aus P entsprechen. h b 1,..., b m. wird zu z 1... z k (b 1... b m h) mit FO-Variablen z 1,..., z k.

14 MSO Monadisches Datalog Satz Wir wissen bereits: Eine einstellige Anfrage über Bäumen ist MSO-definierbar genau dann, wenn ein QA r bzw. SQA u existiert, der diese Anfrage berechnet. Konstruiere zu einem Anfrageautomaten ein monadisches Datalog-Programm, das die gleiche Anfrage berechnet Hier: Nur Beweis für beschränkte Bäume

15 Anfrageautomaten Monadisches Datalog Beschränkte Anfrageautomaten Erinnerung: Ein beschränkter Anfrageautomat (QA r ) (engl. ranked query automaton) ist ein Tupel A = Q, Σ, F, s, δ, δ, δ root, δ leaf, λ Anfrageautomaten arbeiten deterministisch Satz (QA r Monadisches Datalog) Zu jedem QA r A existiert ein monadisches Datalog-Programm P, das eine zu A äquivalente Anfrage definiert.

16 Idee Modellierung von Konfigurationen zu aufwändig Lauf deterministisch: Codierung der Zustandszuweisungen im Lauf von A Zustandszuweisung: Paar (q, v) (im Lauf von A besuchter Knoten v bekommt Zustand q zugewiesen) Menge dieser Zustandszuweisungen ( History ): H = {(q, v) v C i und c i (v) = q für ein i}, Charakterisierung eines deterministischen Laufs in A Wenn Zustandszuweisung (q, v) im Lauf auftritt, soll Prädikat q(v) beweisbar sein

17 Simulation Übersicht 1 Anfangszustand 2 Aufwärtstransition 3 Abwärtstransition 4 Wurzeltransition 5 Blatttransition 6 Akzeptanzbedingung 7 Auswahlfunktion

18 1. Anfangszustand Wenn s der Anfangszustand von A ist, enthält P die Regel s(x) root(x).

19 2. Aufwärtstransition Wenn δ ( q 1, a 1,..., q n, a n ) = q, enthält P die Regel q (x) child 1 (x, x 1 ),..., child n (x, x n ), q 1 (x 1 ),..., q n (x n ), label a1 (x 1 ),..., label an (x n ).

20 3. Abwärtstransition Wenn δ (q, a, n) = q 1... q n, enthält P die Regeln q i (x i ) q(x), child i (x, x i ), label a (x).

21 4. Wurzeltransition Wenn δ root (q, a) = q, enthält P die Regel q (x) q(x), label a (x), root(x).

22 5. Blatttransition Wenn δ leaf (q, a) = q, enthält P die Regel q (x) q(x), label a (x), leaf(x). Folie 3

23 Akzeptanz und Anfragemarkierungen Bisher: Zu tun: Simulation von Transitionen Markierungen für auftretende Zustandszuweisungen Anfragemarkierungen query(x) entsprechend Auswahlfunktion λ : Q Σ {, }. Dazu notwendig: Prädikat accept für die Akzeptanz des Automaten

24 6. Akzeptanzbedingung Wenn q f F, enthält P die Regel accept(x) root(x), q f (x).

25 7. Auswahlfunktion Wenn λ(q, a) =, enthält P die Regel query(x) q(x), label a (x), accept(y).

26 Beispiel (1) Beispiel Betrachte QA r mit Q = {q 0, q 1, q 2, q 3, q f, q + }, F = {q f } und folgenden Transitionen: 1 δ (q 0,, 2) = q 1, q 1 2 δ ( q 1,, q 1, ) = q 2 3 δ (q 2,, 2) = q 3, q 3 4 δ ( q 3,, q 3, ) = q f 5 für alle anderen (q, ) Q Σ : δ ( q,, q, ) = q + { falls q = q f Auswahlfunktion: λ(q, ) = sonst Folie 4

27 Beispiel (2) Beispiel q 0 (x) root(x). q 1 (x 1 ) q 0 (x), child 1 (x, x 1 ), label a (x). q 1 (x 2 ) q 0 (x), child 2 (x, x 2 ), label a (x). q 2 (x) child 1 (x, x 1 ), child 2 (x, x 2 ), q 1 (x 1 ), q 1 (x 2 ), label a (x 1 ), label a (x 2 ). q 3 (x 1 ) q 2 (x), child 1 (x, x 1 ), label a (x). q 3 (x 2 ) q 2 (x), child 2 (x, x 2 ), label a (x). q 0 (v 0 ) TP ω q 1 (v 1 ) TP ω q 1 (v 2 ) TP ω q 2 (v 0 ) TP ω q 3 (v 1 ) TP ω q 3 (v 2 ) TP ω

28 Beispiel (3) Beispiel q f (x) child 1 (x, x 1 ), child 2 (x, x 2 ), q 3 (x 1 ), q 3 (x 2 ), label a (x 1 ), label a (x 2 ). accept(x) root(x), q f (x). query(x) q f (x), label a (x), accept(y). q + (x) child 1 (x, x 1 ), child 2 (x, x 2 ), q 1 (x 1 ), q 3 (x 2 ), label a (x 1 ), label a (x 2 ). q f (v 0 ) TP ω accept(v 0 ) TP ω query(v 0 ) TP ω q + (v 0 ) TP ω

29 Problem des naiven Ansatzes Problem: Aufwärtstransitionen hängen von mehreren Knoten und deren Zuständen ab Sicherstellen, dass Zustandszuweisungen der Kinder auch wirklich in in der gleichen Konfiguration auftreten Trick: Speichere zusätzlich die letzte Zustandszuweisung des Elternknotens

30 Erweiterte Zustandszuweisungen Lemma Erweitere Zustandszuweisungen (q, v) zu Tupeln (q 0, q, v) (q 0 letzter Zustand des Elternknotens von v) Seien q 0 Q, v dom. Falls q, label(v) U, dann gibt es höchstens einen Zustand q, so dass (q 0, q, v) eine erweiterte Zustandszuweisung ist. (q, x) q(x) (q 0, q, x) q 0, q (x) Zusätzlicher Dummy-Zustand:

31 Aufwärtstransition (angepasste Simulation) Wenn δ ( q 1, a 1,..., q n, a n ) = q, enthält P die Regeln q 0, q (x) q 0, q (x), für alle q Q, q 0 (Q { }). child 1 (x, x 1 ),..., child n (x, x n ), q, q 1 (x 1 ),..., q, q n (x n ), label a1 (x 1 ),..., label an (x n ). Folie 5

32 Korrektheit und Vollständigkeit der Konstruktion Erinnerung ( History ): H = {(q, v) v C i und c i (v) = q für ein i} Für eine Menge X TP ω definieren wir π(x) := {(q, v) q 0 q 0, q (v) X} Zu zeigen ist π(t ω P ) = H Vollständigkeit (π(t ω P ) H): Klar per Konstruktion, denn alle Transitionen in A werden auch in P kodiert Korrektheit (π(t ω P ) H): Induktion über die Berechnung des Fixpunktes T ω P Skip

33 Identität der selektierten Knotenmengen Noch zu zeigen: Durch P definierte Anfrage ist zu der durch A definierten Anfrage äquivalent {v A selektiert v in t} {v A akzeptiert t, (q, v) H und λ(q, label(v)) = } {v query(v) T ω P }

34 Mögliche Vereinfachung des Beweises Ist die Erweiterung der Zustandszuweisungen von (q, v) zu (q 0, q, v) immer notwendig? Wir wissen: L( DTA) = L(2DTA) Für Berechnung ist ein Bottom-Up Durchlauf ausreichend Mit dieser Einschränkung für Anfrageautomaten ist die naive Simulation möglich. Ausdrucksstärke bleibt wegen obiger Äquivalenz erhalten

35 Zusammenfassung Monadisches Datalog als Anfragesprache über Bäumen. Syntax Fixpunktsemantik Effektive Auswertung Äquivalenz von monadischen Datalog-Anfragen und MSO-Anfragen Monadisches Datalog Π 1 -MSO-Anfragen MSO-Anfragen Anfrageautomaten Monadisches Datalog Effektive Auswertung von Anfrageautomaten Nach Anpassung der Anfrageautomaten ist eine Vereinfachung der Simulation möglich

36 Vielen Dank für die Aufmerksamkeit

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Abschnitt 3.2: Der Satz von Ehrenfeucht

Abschnitt 3.2: Der Satz von Ehrenfeucht Abschnitt 3.2: Der Satz von Ehrenfeucht In diesem Abschnitt wird gezeigt, dass ein enger Zusammenhang zwischen EF-Spielen und der Ausdrucksstärke der Logik erster Stufe besteht. Zur Formulierung dieses

Mehr

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15

Logik. Gabriele Kern-Isberner LS 1 Information Engineering. TU Dortmund Wintersemester 2014/15 WS 2014/15 Logik Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2014/15 WS 2014/15 G. Kern-Isberner (TU Dortmund) Logik WS 2014/15 1 / 125 Übersicht Modallogik 5. Grundlagen 6. Erfüllbarkeit

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 11: Logikprogramme Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 19. Dezember 2016 1/55 WIEDERHOLUNG: HORN-KLAUSELN

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/25 Motivation Die ist eine Erweiterung

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Motivation Die ist eine Erweiterung

Mehr

Musterlösung 11.Übung Mathematische Logik

Musterlösung 11.Übung Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt SS 2015 Aufgabe 2 Musterlösung 11.Übung Mathematische Logik Geben Sie für die folgenden

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 17. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 17 & Frank Heitmann heitmann@informatik.uni-hamburg.de 6. & 7. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/43 Die ist eine Erweiterung

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Logik erster Stufe FO

Logik erster Stufe FO Logik erster Stufe FO Sonderstellung als die Logik für die Grundlegung der Mathematik natürliche Semantik (Tarski) und große Ausdrucksstärke vollständige Beweiskalküle (Gödelscher Vollständigkeitssatz)

Mehr

5.2 Endliche Automaten

5.2 Endliche Automaten 114 5.2 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Automaten, Spiele und Logik

Automaten, Spiele und Logik Automaten, Spiele und Logik Woche 13 11. Juli 2014 Inhalt der heutigen Vorlesung Linearzeit Temporale Logik (LTL) Alternierende Büchi Automaten Nicht-Determinisierung (Miyano-Ayashi) Beschriftete Transitionssysteme

Mehr

Deklarative Semantik

Deklarative Semantik 7. Deklarative Semantik 7-1 Deklarative Semantik Bisher: Prolog als Programmiersprache. Operationale Semantik : Wie wird ein Programm ausgeführt? Welche Antworten werden berechnet? Jetzt: Prolog als logischer

Mehr

Anwendungen der Logik, SS 2008, Martin Goldstern

Anwendungen der Logik, SS 2008, Martin Goldstern Anwendungen der Logik, SS 2008, Martin Goldstern Total geordnete Körper Ein total geordneter Körper ist ein Körper (K, +,, 0, 1, ) mit einer totalen (=linearen) Ordnung, die mit den Operationen verträglich

Mehr

Probeklausur Mathematische Logik

Probeklausur Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel SS 2015 Probeklausur Mathematische Logik Aufgabe 1 (a) (i) Seien R, zweistellige Relationssymbole. Ist

Mehr

1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf

1.1 Grundbegriffe. Logik und Diskrete Strukturen (Sommer 2018) Prof. Dr. Ulrich Hertrampf . Grundbegriffe Beispiele: Paris und Mäuse / Otto und der Arzt /... Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln. 2) Falls F und G Formeln, dann auch (F ^ G) und

Mehr

4. Alternative Temporallogiken

4. Alternative Temporallogiken 4. Alternative Temporallogiken Benutzung unterschiedlicher Temporallogiken entsprechend den verschiedenen Zeitbegriffen LTL: Linear Time Logic Ähnlich der CTL, aber jetzt einem linearen Zeitbegriff entspechend

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Syntax der Aussagenlogik

Syntax der Aussagenlogik Einführende Beispiele bitte im Buch nachlesen: Uwe Schöning: Logik für Informatiker. 5. Auflage, Spektrum Akad. Verlag, 2. Definition: Syntax der Aussagenlogik ) Atomare Formeln (A i, i =, 2, 3,...)sindFormeln.

Mehr

Ogden s Lemma: Der Beweis (1/5)

Ogden s Lemma: Der Beweis (1/5) Ogden s Lemma: Der Beweis (1/5) Wir betrachten zuerst die Rahmenbedingungen : Laut dem auf der vorhergehenden Folie zitierten Satz gibt es zur kontextfreien Sprache L eine Grammatik G = (Σ, V, S, P) in

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Ronja Düffel WS2018/19 01. Oktober 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis der

Mehr

Vorlesung Datenbanktheorie. Einige Erweiterungen der Anfragesprachen. Regelbasierte konjunktive Anfragen mit = Vorlesung vom Mittwoch, 26.

Vorlesung Datenbanktheorie. Einige Erweiterungen der Anfragesprachen. Regelbasierte konjunktive Anfragen mit = Vorlesung vom Mittwoch, 26. Vorlesung Datenbanktheorie Vorlesung vom Mittwoch, 26. April 2006 Nicole Schweikardt Humboldt-Universität zu Berlin Sommersemester 2006 Letzte Vorlesung: regelbasierte konjunktive Anfragen Tableau-Anfragen

Mehr

Automaten und Coinduktion

Automaten und Coinduktion Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Lerneinheit 5: Die Klasse NP Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 26.9.2015 Einleitung Thema dieser Lerneinheit

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

Ehrenfeucht-Fraïssé Spiele

Ehrenfeucht-Fraïssé Spiele Kapitel 3 Ehrenfeucht-Fraïssé Spiele In diesem Kapitel werden Ehrenfeucht-Fraïssé-Spiele (kurz: EF-Spiele) eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass bestimmte Anfragen

Mehr

Endliche Automaten. Endliche Automaten J. Blömer 1/24

Endliche Automaten. Endliche Automaten J. Blömer 1/24 Endliche Automaten Endliche Automaten J. Blömer /24 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben)

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 23. November 2017 INSTITUT FÜR THEORETISCHE 0 23.11.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 27. Vorlesung 08.02.2007 1 Komplexitätstheorie - Platzklassen Platzkomplexität Definition Simulation mehrerer Bänder Savitchs Theorem PSPACE

Mehr

Die mathematische Seite

Die mathematische Seite Kellerautomaten In der ersten Vorlesung haben wir den endlichen Automaten kennengelernt. Mit diesem werden wir uns in der zweiten Vorlesung noch etwas eingängiger beschäftigen und bspw. Ansätze zur Konstruktion

Mehr

Proseminar Automatentheorie. Thema: Berry Sethi Algorithmus. Von Christopher Haas

Proseminar Automatentheorie. Thema: Berry Sethi Algorithmus. Von Christopher Haas Proseminar Automatentheorie Thema: Berry Sethi Algorithmus Von Christopher Haas Inhaltsangabe Allgemeines/Notation Ableitung regulärer Ausdruck Intuitiv Definition Beispiele Das Brzozowski-Verfahren Markierungsverfahren

Mehr

NP-Vollständigkeit des Erfüllbarkeitsproblems

NP-Vollständigkeit des Erfüllbarkeitsproblems NP-Vollständigkeit des Erfüllbarkeitsproblems Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 25 Def: NP-Härte Definition (NP-Härte) Ein Problem L heißt NP-hart,

Mehr

Datalog. Moritz Kaufmann 1. Juni Technische Universität München

Datalog. Moritz Kaufmann 1. Juni Technische Universität München Datalog Moritz Kaufmann 1. Juni 2015 Technische Universität München Datalog Grundlagen Zusammenfassung 1. Faktenbasis (EDB = extensionale Datenbasis) 2. + logische Herleitungsregeln Ableitung neuer Fakten

Mehr

Einführung in die Logik Aufgabenblatt 3, Zeigen Sie, dass folgende Mengen von Junktoren logisch vollständig sind:

Einführung in die Logik Aufgabenblatt 3, Zeigen Sie, dass folgende Mengen von Junktoren logisch vollständig sind: TCS Prof. Dr. Roland Meyer, Dr. Jürgen Koslowski Einführung in die Logik Aufgabenblatt 3, 2018-04-30 Präsenzaufgabe 1 Zeigen Sie, dass folgende Mengen von Junktoren logisch vollständig sind: (1) {, } (2)

Mehr

Einführung in die Logik (Vorkurs)

Einführung in die Logik (Vorkurs) Einführung in die Logik (Vorkurs) Jürgen Koslowski 2014-04-07 Ein Beispiel Familie A will im kommenden Jahr eine Waschmaschine, ein Auto und ein Moped anschaffen. Aber falls Herr A seinen üblichen Bonus

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Probeklausur Mathematische Logik

Probeklausur Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel SS 2017 Probeklausur Mathematische Logik Aufgabe 1 (a) (i) Sei τ = {R} für ein zweistelliges Relationssymbol

Mehr

Wiederholung zur SLD-Resolution (1)

Wiederholung zur SLD-Resolution (1) 8. Korrektheit und Vollständigkeit der SLD-Resolution 8-1 Wiederholung zur SLD-Resolution (1) SLD-Resolution: Selektionsfunktion: Wählt Atom der Anfrage. Nächstes zu bearbeitendes Atom. Normalerweise einfach

Mehr

Kapitel 3: Grundlagen von Anfragesprachen

Kapitel 3: Grundlagen von Anfragesprachen 3. Grundlagen von Anfragesprachen 3. Kapitel 3: Grundlagen von Anfragesprachen Sprachparadigmen Relationenalgebra Relationenkalkül Datenbanken und Informationssysteme, WS 2012/13 9. November 2012 Seite

Mehr

Modellierung. Prof.Dr. Hans Kleine Büning, Prof.Dr. Johannes Blömer. Paderborn, 6. Februar Universität Paderborn Institut für Informatik

Modellierung. Prof.Dr. Hans Kleine Büning, Prof.Dr. Johannes Blömer. Paderborn, 6. Februar Universität Paderborn Institut für Informatik Modellierung Prof.Dr. Hans Kleine Büning, Prof.Dr. Johannes Blömer Universität Paderborn Institut für Informatik Paderborn, 6. Februar 2015 J. Blömer 1/19 Vorbereitung auf die Klausur 1 Vorlesungsinhalte

Mehr

2 Hennessy-Milner-Logik

2 Hennessy-Milner-Logik 2.1 Syntax und Semantik Hennessy-Milner-Logik (HML), auch als multi-modale Logik K bekannt, erweitert die Aussagenlogik um zwei Konstrukte ( diamond und box ), mit denen man über Nachfolger eines Zustandes

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 9. Alexander Bors. 11. & 18. Mai A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 9. Alexander Bors. 11. & 18. Mai A. Bors Logik Mathematische Logik Vorlesung 9 Alexander Bors 11. & 18. Mai 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Un-)sresultate (Quellen heute: http://homepages.abdn.ac.uk/k.vdeemter/pages/ teaching/cs3518/abdn.only/monadicfopl.pdf

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 25. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 25.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016.

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Logikprogrammierung. Berechnung durch Resolution Die Programmiersprache Prolog

Logikprogrammierung. Berechnung durch Resolution Die Programmiersprache Prolog Logikprogrammierung Berechnung durch Resolution Die Programmiersprache Prolog Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 6.1 Logikprogrammierung Berechnung durch Resolution 213 Resolution

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Logik Vorlesung 4: Horn-Logik und Kompaktheit

Logik Vorlesung 4: Horn-Logik und Kompaktheit Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Ilhan Aslan. October 22, 2003

Ilhan Aslan. October 22, 2003 Monadische Logik 2. Ordnung Ausarbeitung zum Seminarvortrag im Rahmen der Seminarveranstaltung Logische Aspekte von XML SS03 Gert Smolka PS-Lab Universität des Saarlandes Ilhan Aslan October 22, 2003 Monadische

Mehr

Probeklausur Mathematische Logik

Probeklausur Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel SS 2015 Probeklausur Mathematische Logik Aufgabe 1 (a) (i) Seien R, zweistellige Relationssymbole. Ist

Mehr

Normalformen. Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine bestimmte Form haben.

Normalformen. Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine bestimmte Form haben. Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.5 Prädikatenlogik Normalformen 148 Normalformen Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine

Mehr

How To Prove A Propositional Logic

How To Prove A Propositional Logic Klausur Formale Systeme Fakultät für Informatik SS 2015 Prof. Dr. Bernhard Beckert 31. Juli 2015 Vorname: Matrikel-Nr.: Die Bearbeitungszeit beträgt 60 Minuten. A1 (10) A2 (8) A3 (6) A4 (7) A5 (9) A6 (11)

Mehr

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen Algorithmen für OBDD s 1. Reduziere 2. Boole sche Operationen 1 1. Reduziere siehe auch M.Huth und M.Ryan: Logic in Computer Science - Modelling and Reasoning about Systems, Cambridge Univ.Press, 2000

Mehr

Formale Methoden 1. Gerhard Jäger 7. November Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 7. November Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 7. November 2007 2/18 Geordnete Paare Mengen sind ungeordnet: {a, b} = {b, a} für viele Anwendungen braucht

Mehr

Endliche Automaten. Endliche Automaten J. Blömer 1/23

Endliche Automaten. Endliche Automaten J. Blömer 1/23 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben) ändern ihren inneren Zustand produzieren gegebenenfalls

Mehr

Kap. 5 Erweiterung der Relationenalgebra für Deduktive Datenbanken

Kap. 5 Erweiterung der Relationenalgebra für Deduktive Datenbanken Kap. 5 Erweiterung der Relationenalgebra für Deduktive Datenbanken Ziel dieses kurzen Kapitels: Verbindung herstellen zwischen Logiksprachen und Relationenalgebra. Umgehen mit (rekursiven) Regeln zusätzlich

Mehr

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik Theorie der Informatik 3. März 2014 4. Prädikatenlogik I Theorie der Informatik 4. Prädikatenlogik I 4.1 Motivation Malte Helmert Gabriele Röger 4.2 Syntax der Prädikatenlogik Universität Basel 3. März

Mehr

1.3 Knuth-Morris-Pratt-Algorithmus

1.3 Knuth-Morris-Pratt-Algorithmus 1.3 Knuth-Morris-Pratt-Algorithmus Präprozessing bestimmt längste Ränder der Präfixe von P Die Kenntnis der Ränder erspart Vergleiche bei periodischen Suchwörtern Laufzeit: Θ(m) für das Präprozessing,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (III) 7.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Organisatorisches 1. Teilklausur: Mittwoch, 10.06.2015, D028,

Mehr

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Logik Vorlesung 7: Grundlagen Prädikatenlogik

Logik Vorlesung 7: Grundlagen Prädikatenlogik Logik Vorlesung 7: Grundlagen Prädikatenlogik Andreas Maletti 5. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Umgekehrt kann eine Datenbank-Instanz in eine konjunktive Anfrage umgewandelt werden: hasairport. ans. fly n 1 n 2 n 3 n 2 Bonn n 4.

Umgekehrt kann eine Datenbank-Instanz in eine konjunktive Anfrage umgewandelt werden: hasairport. ans. fly n 1 n 2 n 3 n 2 Bonn n 4. der Chase, jetzt formal... Datenbank-Instanzen 1 Wir fixieren drei unendliche, paarweise disjunkte Mengen, null und V. ist der zugrunde gelegte Domain. null = {n 1, n 2,...} ist die Menge der Null-Werte.

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Maximilian Haslbeck Fabian Mitterwallner Georg Moser David Obwaller cbr.uibk.ac.at Zusammenfassung der letzten LVA Definition Eine Registermaschine (RM) R ist

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 20. Vorlesung 12.01.2007 1 Komplexitätstheorie - Zeitklassen Die Komplexitätsklassen TIME DTIME, NTIME P NP Das Cook-Levin-Theorem Polynomial-Zeit-Reduktion

Mehr

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 20.

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 20. Wiederholung FORMALE SYSTEME 4. Vorlesung: Nichtdeterministische Endliche Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Vortrag 8: Einbettungssatz von Jech und Sochor und Konsistenz der Negation von AC. 1 Der Einbettungssatz von Jech und Sochor

Vortrag 8: Einbettungssatz von Jech und Sochor und Konsistenz der Negation von AC. 1 Der Einbettungssatz von Jech und Sochor Seminar zur Mengenlehre: Forcing SS 2007 Prof. Dr. P. Koepke 11. und 18. Juni 2007 Dr. B. Irrgang Vortrag 8: Einbettungssatz von Jech und Sochor und Konsistenz der Negation von AC Friedemann Diener 1 Der

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche Automaten und

Mehr

Formale Grundlagen der Informatik 1 Kapitel 5 Abschlusseigenschaften

Formale Grundlagen der Informatik 1 Kapitel 5 Abschlusseigenschaften Formale Grundlagen der Informatik 1 Kapitel 5 Frank Heitmann heitmann@informatik.uni-hamburg.de 18. April 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/64 NFAs - Grundlagen DFAs vs. NFAs Der

Mehr

Software Engineering Ergänzung zur Vorlesung

Software Engineering Ergänzung zur Vorlesung Ergänzung zur Vorlesung Prof. Dr. Markus Müller-Olm WS 2008 2009 2.6.1 Endliche und reguläre Sprachen Endliche und reguläre Sprache: fundamental in vielen Bereichen der Informatik: theorie Formale Sprachen

Mehr

Typisierung von semistrukturierten Daten

Typisierung von semistrukturierten Daten Typisierung von semistrukturierten Daten Typisierung von semistrukturierten Daten Idee: Strukturieren und Typisieren von semistrukturierte Daten. Zwei einfache Formalismen basierend auf: Logik Graphensimulation

Mehr

Magic Sets. Kontrollkomponente SIP. Sideways Information Passing Strategy (SIP-Strategy)

Magic Sets. Kontrollkomponente SIP. Sideways Information Passing Strategy (SIP-Strategy) Sideways Information Passing Strategy (SIP-Strategy) Magic Sets (informal) Für eine Regel eines Programms stellt eine SIP- Strategie eine Entscheidung hinsichtlich der Auswertungsreihenfolge der Prädikate

Mehr

Modelltheorie. Zunächst fixieren wir die Notation, die wir im Folgenden verwenden werden.

Modelltheorie. Zunächst fixieren wir die Notation, die wir im Folgenden verwenden werden. 1 Modelltheorie Die Modelltheorie beschäftigt sich mit der Klassifikation mathematischer Strukturen und Abbildungen mit Hilfe von logischen Formeln sowie dem Zusammenhang zwischen rein syntaktischen und

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Was bisher geschah Klassische Aussagenlogik zur Modellierung von Aussagen Syntax: Formeln

Was bisher geschah Klassische Aussagenlogik zur Modellierung von Aussagen Syntax: Formeln Was bisher geschah Klassische Aussagenlogik zur Modellierung von Aussagen Syntax: Formeln induktive Definition der Menge AL(P) (Baumstruktur) strukturelle Induktion (Funktionen, Nachweise) syntaktische

Mehr

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2011/12 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

String matching: Überblick

String matching: Überblick String matching: Überblick String matching = Erkennung von Zeichenketten. Problemstellung & Anwendungen Grundlagen Rabin-Karp Verfahren (basierend auf hashing) String-matching mit endlichen Automaten Knuth-Morris-Pratt

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Nicht-Standard-Logiken. Intuitionistische Aussagenlogik Prädikatenlogik 2. Stufe Modallogik

Nicht-Standard-Logiken. Intuitionistische Aussagenlogik Prädikatenlogik 2. Stufe Modallogik Nicht-Standard-Logiken Intuitionistische Aussagenlogik Prädikatenlogik 2. Stufe Modallogik Logik für Informatiker, M. Lange & M. Latte, IFI/LMU: Nicht-Standard-Logiken Intuitionistische Aussagenlogik 238

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Formale Grundlagen der Informatik II

Formale Grundlagen der Informatik II Formale Grundlagen der Informatik II FO: Axiome und Theorie (de-)motivierendes Beispiel: S=(+,0) Strukturen ({0,1}*,,ε) Strukturen (P(X),, ) Formale Grundlagen der Informatik II Interessieren uns für alle

Mehr

Algorithmus: // Zähler für jede Regel. // Initialisierung. // Initialisierung von rhs } // 2 N result = ; // Ergebnis-Menge int count[p];

Algorithmus: // Zähler für jede Regel. // Initialisierung. // Initialisierung von rhs } // 2 N result = ; // Ergebnis-Menge int count[p]; Algorithmus: 2 N result = ; // Ergebnis-Menge int count[p]; // Zähler für jede Regel 2 P rhs[n]; // VorkommeninrechtenSeiten forall (A N) rhs[a] = ; // Initialisierung forall ((A,i) P) { // count[(a,i)]

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Semantik von Programmiersprachen SS 2017

Semantik von Programmiersprachen SS 2017 Lehrstuhl für Programmierparadigmen Denis Lohner Sebastian Ullrich denis.lohner@kit.edu sebastian.ullrich@kit.edu Semantik von Programmiersprachen SS 2017 http://pp.ipd.kit.edu/lehre/ss2017/semantik Lösungen

Mehr

Semantik der Prädikatenlogik

Semantik der Prädikatenlogik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.3 Prädikatenlogik Semantik 131 Semantik der Prädikatenlogik zur Erinnerung: Semantik der Aussagenlogik gegeben durch Interpretation I : V {0,

Mehr