Musterlösung 11.Übung Mathematische Logik

Größe: px
Ab Seite anzeigen:

Download "Musterlösung 11.Übung Mathematische Logik"

Transkript

1 Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt SS 2015 Aufgabe 2 Musterlösung 11.Übung Mathematische Logik Geben Sie für die folgenden Klassen von Strukturen jeweils ein (möglichst endliches) Axiomensystem an. Im Fall, dass die Klasse nicht (endlich) FO-axiomatisierbar ist, beweisen Sie dies mit Hilfe des Kompaktheitssatzes. (a) Die Klasse der endlichen partiellen Ordnungen (A, <) (b) Die Klasse der unendlichen partiellen Ordnungen (A, <) (c) Die Klasse der unendlichen dichten linearen Ordnungen (A, <) (d) Die Klasse der Wohlordnungen (A, <) (e) Die Klasse der partiellen Ordnungen (A, <) in denen jede Kette nach oben beschränkt ist (f) Die Klasse der partiellen Ordnungen (A, <) die keine lineare Ordnungen sind (g) Die Klasse der linearen Ordnungen (A, <) in denen jedes nichtleere Intervall [a, b) := {x a x < b} unendlich ist (h) Die Klasse der linearen Ordnungen (A, <) in denen jedes Intervall [a, b) endlich ist Lösung zu Aufgabe 2: (a) nicht axiomatisierbar. Beweis: Sei K a die Klasse der endlichen partiellen Ordnungen. Angenommen es gibt eine Satzmenge Φ mit Mod(Φ) = K a. Sei C eine unendliche Menge von Konstanten. Betrachte die Satzmenge Φ := Φ {c d c, d C}. Sei Φ 0 eine endliche Teilmenge von Φ. Dann ist Φ 0 Φ {c d c, d C 0} für eine endliche Menge C 0 C von Konstanten. Sei n = C 0 und C 0 = {c 1,..., c n }. Dann ist die lineare Ordnung L n = ({1, 2,..., n}, <, c Ln 1 = 1, c Ln 2 = 2,..., c Ln n = n) offensichtlich ein Modell von Φ 0. Also ist jede endliche Teilmenge von Φ erfüllbar. Nach dem Kompaktheitssatz ist somit auch Φ erfüllbar. Ein Modell A von Φ ist aber zum einen endlich, wegen A = Φ und zum anderen unendlich wegen A = {c d c, d C}. Widerspruch. (b) axiomatisierbar. < is partielle Ordnung, d.h. irreflexiv und transitiv : ϕ po = x x < x x y z(x < y y < z x < z) Es gibt mindestens n Elemente : ϕ n := x 1... x n 1 i<j n x i x j Es gibt unendliche viele Elemente Φ := {ϕ n n N}

2 Dann axiomatisiert Φ b := {ϕ po } Φ die angegebene Klasse. nicht endlich axiomatisierbar: Angenommen Φ b ist doch endlich axiomatisierbar. Dann gibt es einen Satz ψ mit Mod(Φ b ) = Mod(ψ). Insbesondere Φ b = ψ. Nach Kompaktheitssatz existiert bereits eine endliche Teilmenge Φ 0 Φ b mit Φ 0 = ψ. Da Φ 0 endlich ist, gibt es ein größtes n 0, so dass ϕ n0 Φ 0, d.h. Φ 0 {ϕ po } {ϕ m m n 0 }. Die lineare Ordnung L n0 mit n 0 Elementen ist ein Modell von Φ 0 also auch von ψ, womit L n0 unendlich sein muß. Widerspruch. (c) endlich axiomatisierbar: ϕ c := ϕ po x y(x < y x = y y < x) x yx < y x y(x < y z(x < z z < y) ϕ c axiomatisiert die Klasse der dichten linearen Ordnungen mit mindestens 2 Elementen. Eine dichte lineare Ordnung ist genau dann unendlich, wenn sie mindestens 2 Elemente hat, da dann bereits unendlich viele Elemente zwischen diesen beiden Elementen liegen müssen. (d) nicht axiomatisierbar Angenommen es gäbe ein Axiomensystem Φ der Klasse aller Wohlordnungen. Sei C = {c i i N} eine Menge von Konstantensymbolen. Betrachte die Menge Φ := Φ {c i+1 < c i i N}. Sei Φ 0 Φ eine endliche Teilmenge. Dann gibt es eine Zahl n 0 N. so dass Φ 0 Φ {c i+1 < c i 0 i n 0 }. Die lineare Ordnung mit n Elementen und c i = n 0 i für 0 i n 0 ist offenbar ein Modell von Φ {c i+1 < c i 0 i n 0 } und somit auch von Φ 0. Also ist Φ 0 erfüllbar. Nach Kompaktheitssatz ist somit auch Φ erfüllbar. Sei A = Φ ein Modell. Dann gibt es in A aber eine unendlich absteigende Kette c A 0 > ca 1 >... > ca n >... womit A keine Wohlordnung sein kann. Widerspruch. (e) nicht axiomatisierbar Angenommen es gäbe ein Axiomensystem Φ dieser Klasse. Sei C = {c i i N} eine Menge von Konstantensymbolen. Betrachte die Menge Φ := Φ {c i < c i+1 i N}. Genau wie in der vorherigen Aufgabe sieht man, dass Φ erfüllbar sein muß. Jedes Modell A = Φ hat aber eine nach oben unbeschränkte Kette c A 0 < ca 1 <.... (f) endlich axiomatisierbar: ϕ f := ϕ po x y(x < y y < x x = y) (g) endlich axiomatisierbar: Die Klasse stimmt überein mit der Klasse der dichten linearen Ordnungen mit mindestens 2 Elementen (siehe c) ) ϕ g = ϕ c

3 (h) nicht axiomatisierbar: Angenommen Φ ist ein Axiomensystem der Klasse. Sei C = {c i i N} eine Menge von Konstantensymbolen und a, b zwei zusätzliche Konstantensymbole. Φ := Φ {(a < c a = c) c < b c C} {c i c j i j}. Jede endliche Teilmenge Φ 0 von Φ ist erfüllbar durch L n für ein n das groß genug ist, wobei a das erste Element b das letzte Element der linearen Ordnung und die endlichen vielen Konstanten aus C die in Φ 0 vorkommen durch die übrigen Elemente aus L n belegt werden können. Nach Kompaktheitssatz ist also auch Φ erfüllbar, was jedoch ein Widerspruch ist, da für jedes Modell von Φ zum einen das Intervall (a, b] endlich ist, zum anderen aber die unendlichen vielen Konstanten aus C in dem Intervall liegen. Aufgabe 3 Geben Sie für die folgenden Klassen von Strukturen jeweils ein (möglichst endliches) Axiomensystem an. Im Fall, dass die Klasse nicht (endlich) FO-axiomatisierbar ist, beweisen Sie dies mit einer Methode Ihrer Wahl. (a) Die Klasse der zur Booleschen Algebra (P(N),,,,, N) isomorphen Strukturen (b) Die Klasse der zum Ring (Z/5Z, +,, 0, 1) isomorphen Strukturen (c) Die Klasse aller Strukturen A, für die eine endliche Menge B existiert, so dass A zu (P(B),,,,, B) isomorph ist (d) Die Klasse aller Booleschen Algebren, die elementar äquivalent zu (P(A),,,,, A) für eine Menge A mit A 3 sind (e) Die Klasse {(A, R) R P(N) } (f) Die Klasse {(A, +, 0) (A, +, 0) 3 (Z, +, 0)} (g) Die Klasse aller ungerichteten Graphen G, so dass die Klasse aller zu G isomorphen Graphen endlich axiomatisierbar ist (h) Die Klasse aller Strukturen, die zu einer Herbrandstruktur H zur Signatur τ := {c, f} mit Konstantensymbol c und 42-stelligem Funktionssymbol f isomorph sind Lösung zu zu Aufgabe 3: (a) Nicht axiomatisierbar. Sei A = (P(N),,,,, N). Gefragt ist also nach der Axiomatisierbarkeit der Klasse {B B = A}. Da A eine unendliche Struktur ist, ist diese Klasse nach Satz 4.26 nicht axiomatisierbar. (b) endlich axiomatisierbar, da die Isomorphieklasse jeder endlichen Struktur endlich axiomatisierbar ist (siehe Skript Kapitel 3, Übung 3.1). Lösung zu Übung 3.1, Kapitel 3: Wir beweisen hier also direkt allgemeiner, dass für jede endliche τ-struktur A mit endlicher Signatur die Klasse K A := {B B = A} endlich axiomatisierbar ist. Sei A = {a 1,..., a n } das Universum von A. Eine Formel ϕ FO heißt termreduziert, wenn sie nur Atome der Form R x, f x = y und x = y enthält, also insbesondere keine Terme

4 mit Verschachtelungstiefe 2. (siehe Kapitel 2, S. 59). Über einer endlichen Signatur gibt es offensichtlich nur endlich viele termreduzierte Literale mit Variablen aus der Menge {x 1,..., x n }. Sei D = {ϕ(x 1,..., x n ) ϕ(x 1,..., x n ) FO(τ) ist ein termreduziertes Literal mit A = ϕ(a 1,..., a n )}. Behauptung: Der folgenden FO(τ)-Satz axiomatisiert K A : ϕ A = x 1... x n ( D y( n i=1 y = x i )) Beweis: Zunächst ist klar, dass A = ϕ A gilt und aufgrund des Isomorphielemmas somit auch B = ϕ A für jede τ-struktur B mit B = A. Sei nun B eine τ-struktur mit B = ϕ A. Dann gibt es also n Elemente b 1,..., b n in B so dass gilt B = ϕ(b 1,..., b n ) A = ϕ(a 1,..., a n ) für jedes termreduzierte Literal ϕ(x 1,..., x n ) FO(τ). Dann ist die Abbildung π : B A mit π(b i ) := a i ein Isomorphismus von B nach A: π ist bijektiv: π ist surjektiv, wegen B = y( n i=1 y = x i ))[x 1 b 1,..., x n b n ] π ist injektiv, wegen a i = a j A = ϕ(a 1,..., a n ) für ϕ(x 1,..., x n ) = (x i = x j ) B = ϕ(b 1,..., b n ) b i = b j gdw π(a i ) = π(a j ) für alle 1 i, j n. Für jedes k-stellige (k N) Funktionssymbol f τ gilt f A (a i1,..., a ik ) = a ik+1 A = ϕ(a 1,..., a n ) für ϕ(x 1,..., x n ) = fx i1... x ik = x ik+1 B = ϕ(b 1,..., b n ) f B (b i1,..., b ik ) = b ik+1 Also π(f A (a i1,..., a ik )) = π(a ik+1 ) = b ik+1 = f B (π(a i1 ),..., π(a ik )) für alle 1 i 1,..., i k n. Für jedes k-stellige (k N) Relationssymbol R τ gilt (a i1,..., a ik ) R A A = ϕ(a 1,..., a n ) für ϕ(x 1,..., x n ) = Rx i1... x ik B = ϕ(b 1,..., b n ) (b i1,..., b ik ) R B (π(a i1 ),..., π(a ik )) R B für alle 1 i 1,..., i k n (c) nicht axiomatisierbar. Angenommen es gäbe eine Satzmenge Φ welche die Klasse axiomatisiert. Dann gibt es für jedes n ein Modell der Größe mindestens n, z.b. B n = (P(B n ),,,,, B n ) mit

5 B n = {1,..., n}. Es gibt jedoch kein unendliches Modell von Φ, da jedes Modell von Φ zu einer endlichen Struktur isomorph ist. Nach dem aufsteigenden Satz von Löwenheim- Skolem müßte es jedoch ein unendliches Modell geben. Widerspruch. (d) endlich axiomatisierbar Sei die Signatur τ = {,,,, B}. ϕ BA = x y(x y = y x x y = y x) x y z((x y) z = (x z) (y z) (x y) z = (x z) (y z)) x(x = x B = x) x(x x = x x = B) ist ein Axiomensystem für Boolesche Algebren. ϕ d = ϕ BA x 1 x 2 x 3 x 4 ( 1 i<j 4 x i x j ) Alternativ ϕ d = ϕ 1 ϕ 2 ϕ 3 für Sätze ϕ i die jeweils die Isomorphieklasse von B i axiomatisieren für i = 1, 2, 3. (e) nicht axiomatisierbar Die Klasse enthält eine unendliche Struktur, z.b. (R, R R). Nach dem absteigenden Satz von Löwenheim-Skolem müßte sie, falls sie axiomatisierbar wäre, auch ein abzählbar unendliches Modell enthalten. Da jedoch alle Strukturen aus der Klasse überabzählbar sind, tut sie dies nicht. (f) endlich axiomatisierbar Hinweis: Es wird hier angenommen, dass + der Graph der Addition ist, also die Relation {(x, y, z) Z 3 z = x + y}, statt der Additionsfunktion und 0 die Menge {0} statt der 0-stelligen Funktion. Da es bis auf logische Äquivalenz nur endliche viele Sätze vom Quantorenrang 3 über einer relationalen Signatur gibt, kann man Φ f = {ϕ FO({+, 0}) (Z, +, 0) = ϕ und qr(ϕ) = 3} als endliches Axiomensystem nehmen. (g) nicht axiomatisierbar Die Klasse stimmt überein mit der Klasse aller endlichen Graphen. Nach aufsteigendem Satz von Löwenheim-Skolem ist diese nicht axiomatisierbar. (h) nicht axiomatisierbar Da alle Herbrandstrukturen über endlicher Signatur höchstens abzählbar sind folgt aus dem aufsteigenden Satz von Löwenheim-Skolem, dass diese Klasse nicht axiomatisierbar ist.

Probeklausur Mathematische Logik

Probeklausur Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel SS 2015 Probeklausur Mathematische Logik Aufgabe 1 (a) (i) Seien R, zweistellige Relationssymbole. Ist

Mehr

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8.1 Der Kompaktheitssatz Kompaktheitssatz Endlichkeitssatz Der Kompaktheitssatz ist auch unter dem Namen Endlichkeitssatz bekannt. Unter Verwendung

Mehr

Probeklausur Mathematische Logik

Probeklausur Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel SS 2015 Probeklausur Mathematische Logik Aufgabe 1 (a) (i) Seien R, zweistellige Relationssymbole. Ist

Mehr

Probeklausur Mathematische Logik

Probeklausur Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel SS 2017 Probeklausur Mathematische Logik Aufgabe 1 (a) (i) Sei τ = {R} für ein zweistelliges Relationssymbol

Mehr

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )}

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )} Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.7 Prädikatenlogik Fundamentale Sätze 171 Fundamentale Sätze versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(R, +, )} gib

Mehr

Mathematische Logik SS 2011

Mathematische Logik SS 2011 Mathematische Logik SS 2011 Prof. Dr. Erich Grädel Mathematische Grundlagen der Informatik RWTH Aachen Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax und Semantik der Aussagenlogik............ 1 1.2 Aussagenlogik

Mehr

Mathematische Logik SS 2011

Mathematische Logik SS 2011 Mathematische Logik SS 2011 Prof. Dr. Erich Grädel Mathematische Grundlagen der Informatik RWTH Aachen cbnd This work is licensed under: http://creativecommons.org/licenses/by-nc-nd/3.0/de/ Dieses Werk

Mehr

Logik erster Stufe FO

Logik erster Stufe FO Logik erster Stufe FO Sonderstellung als die Logik für die Grundlegung der Mathematik natürliche Semantik (Tarski) und große Ausdrucksstärke vollständige Beweiskalküle (Gödelscher Vollständigkeitssatz)

Mehr

Mathematische Logik SS 2009

Mathematische Logik SS 2009 Mathematische Logik SS 2009 Prof. Dr. Erich Grädel Mathematische Grundlagen der Informatik RWTH Aachen Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax und Semantik der Aussagenlogik............ 1 1.2 Aussagenlogik

Mehr

Mathematische Logik SS 2016

Mathematische Logik SS 2016 Mathematische Logik SS 2016 Prof. Dr. Erich Grädel Mathematische Grundlagen der Informatik RWTH Aachen cbnd This work is licensed under: http://creativecommons.org/licenses/by-nc-nd/3.0/de/ Dieses Werk

Mehr

Mathematische Logik SS 2017

Mathematische Logik SS 2017 Mathematische Logik SS 2017 Prof. Dr. Erich Grädel Mathematische Grundlagen der Informatik RWTH Aachen Inhaltsverzeichnis 0 Notation und Konventionen 1 1 Aussagenlogik 3 1.1 Syntax und Semantik der Aussagenlogik............

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 25. Januar 2012 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik LÖSUNGEN Aufgabe 1 (Aussagenlogik - 8 Punkte)

Mehr

Zusammenfassung der Vorlesung. Mathematische Logik. Bodo von der Heiden Letzte Aktualisierung: 2. Februar 2005

Zusammenfassung der Vorlesung. Mathematische Logik. Bodo von der Heiden Letzte Aktualisierung: 2. Februar 2005 Zusammenfassung der Vorlesung Mathematische Logik Bodo von der Heiden Letzte Aktualisierung: 2. Februar 2005 Zeitraum der Vorlesung: WS 2004/2005 Professor: Prof. Grädel Diese Zusammenfassung erhebt keinen

Mehr

Beachte: Mit n = 0 sind auch Konstanten Terme.

Beachte: Mit n = 0 sind auch Konstanten Terme. Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.2 Prädikatenlogik ohne Gleichheit Syntax und Semantik 107 Terme Ab sofort wird Signatur τ als festgelegt angenommen. Sei V = {x, y,...} Vorrat

Mehr

UE GRUNDBEGRIFFE DER MATHEMATISCHEN LOGIK SS 2016

UE GRUNDBEGRIFFE DER MATHEMATISCHEN LOGIK SS 2016 SS 206 VERA FISCHER Die Gesamtnote ergibt sich je zur Hälfte aus der Teilnote Kreuzerlliste und der Teilnote Zwischentest, gerundet auf freundlichen Weise. Für eine positive Benotung müssen beide Teilnoten

Mehr

Normalformen. Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine bestimmte Form haben.

Normalformen. Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine bestimmte Form haben. Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.5 Prädikatenlogik Normalformen 148 Normalformen Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine

Mehr

Modelltheorie (Einige Impulse)

Modelltheorie (Einige Impulse) Modelltheorie (Einige Impulse) Formale Systeme werden oft entworfen, um mathematische Strukturen zu beschreiben. In der Modelltheorie geht es um das Studium der Beziehungen zwischen formalen Systemen und

Mehr

Kapitel 5: Strukturen. 1.1 Zweistellige Relationen 1.2 Graphen 1.3 Algebren 1.4 Strukturen

Kapitel 5: Strukturen. 1.1 Zweistellige Relationen 1.2 Graphen 1.3 Algebren 1.4 Strukturen 344 Kapitel 5: Strukturen 1.1 Zweistellige Relationen 1.2 Graphen 1.3 Algebren 1.4 Strukturen 5.1 Zweistellige Relationen 345 346 Erinnerung: Relationen Definition Seien k 1 und A eine Menge. 1. A k ist

Mehr

Mathematische Logik SS 2017

Mathematische Logik SS 2017 Mathematische Logik SS 2017 Prof. Dr. Erich Grädel Mathematische Grundlagen der Informatik RWTH Aachen Inhaltsverzeichnis 0 Notation und Konventionen 1 1 Aussagenlogik 3 1.1 Syntax und Semantik der Aussagenlogik............

Mehr

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5 Teil 2: FO Syntax und Semantik FO 2 Spielsemantik Semantik-Spiel Satz: A = ψ[a] V hat Gewinnstrategie in Position (ψ, a. Teil 2: FO Syntax und Semantik FO 2 das Konzept der Gleichung in der Algebra Robert

Mehr

Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert. 2. Klausur zur Vorlesung Mathematische Logik

Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert. 2. Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert 2. Klausur zur Vorlesung Mathematische Logik Es können maximal 48 Punkte erworben werden. Die Klausur ist bestanden,

Mehr

Abschnitt 3.2: Der Satz von Ehrenfeucht

Abschnitt 3.2: Der Satz von Ehrenfeucht Abschnitt 3.2: Der Satz von Ehrenfeucht In diesem Abschnitt wird gezeigt, dass ein enger Zusammenhang zwischen EF-Spielen und der Ausdrucksstärke der Logik erster Stufe besteht. Zur Formulierung dieses

Mehr

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform 2 Normalformen 2.1 Äquivalenz und Folgerung Definition 2.1 Äquivalenz, Folgerung). Seien ϕ, ψ FO[σ]. a) ϕ und ψ heißen äquivalent kurz: ϕ ψ, bzw. ϕ = ψ), wenn für alle zu ϕ und ψ äquivalent passenden σ-interpretationen

Mehr

Klausur zur Vorlesung: Mathematische Logik SS 2011

Klausur zur Vorlesung: Mathematische Logik SS 2011 Klausur zur Vorlesung: Mathematische Logik SS 2011 Geben Sie am Ende Der Klausur Ihre Lösungen einschließlich dieses Deckblatts ab. Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Matrikelnummer. Viel

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Modelltheorie. Zunächst fixieren wir die Notation, die wir im Folgenden verwenden werden.

Modelltheorie. Zunächst fixieren wir die Notation, die wir im Folgenden verwenden werden. 1 Modelltheorie Die Modelltheorie beschäftigt sich mit der Klassifikation mathematischer Strukturen und Abbildungen mit Hilfe von logischen Formeln sowie dem Zusammenhang zwischen rein syntaktischen und

Mehr

ENDLICHE MODELLTHEORIE

ENDLICHE MODELLTHEORIE ENDLICHE MODELLTHEORIE STEFAN GESCHKE 1. Erststufige Logik und endliche Strukturen 1.1. Strukturen. Ein Vokabular τ ist eine endliche Menge bestehend aus Relationssymbolen P, Q, R,..., Funktionssymbolen

Mehr

SE MODALLOGIK UND ANDERE PHILOSOPHISCH RELEVANTE LOGIKEN WS 2015/16 ESTHER RAMHARTER & GÜNTHER EDER

SE MODALLOGIK UND ANDERE PHILOSOPHISCH RELEVANTE LOGIKEN WS 2015/16 ESTHER RAMHARTER & GÜNTHER EDER SE MODALLOGIK UND ANDERE PHILOSOPHISCH RELEVANTE LOGIKEN WS 2015/16 ESTHER RAMHARTER & GÜNTHER EDER DEFIZITE DER PL ERSTER STUFE Klassische Prädikatenlogik erster Stufe (first-order logic, kurz FOL) hat

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

1 Aussagenlogik. Junktoren, z.b.,,,,, Ø, Aussagenvariablen (Atome), z.b. p, q, r, s,...

1 Aussagenlogik. Junktoren, z.b.,,,,, Ø, Aussagenvariablen (Atome), z.b. p, q, r, s,... Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik Junktoren, z.b.,,,,, Ø, Aussagenvariablen (Atome), z.b. p, q, r, s,... Definition 1 (induktiv) Die Menge Ä(P) aller (aussagenlogischen) Formeln

Mehr

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P Jede Struktur hat mindestens eine Substruktur JA Jeder Isomorphismus ist ein Homomorphismus JEIN? jeder bijektive Homomorphismus ist ein

Mehr

Ehrenfeucht-Fraïssé Spiele

Ehrenfeucht-Fraïssé Spiele Kapitel 3 Ehrenfeucht-Fraïssé Spiele In diesem Kapitel werden Ehrenfeucht-Fraïssé-Spiele (kurz: EF-Spiele) eingeführt. Diese liefern ein Werkzeug, mit dessen Hilfe man zeigen kann, dass bestimmte Anfragen

Mehr

Mathematische Logik Panikzettel

Mathematische Logik Panikzettel panikzettel.philworld.de Mathematische Logik Panikzettel Philipp Schröer, Tobias Polock, Luca Oeljeklaus, Caspar Zecha Version 18 11.04.2018 Inhaltsverzeichnis 1 Einleitung 2 1.1 Logik...............................................

Mehr

Herbrand-Strukturen. o.b.d.a. sei immer mindestens ein Konstantensymbol in τ vorhanden

Herbrand-Strukturen. o.b.d.a. sei immer mindestens ein Konstantensymbol in τ vorhanden Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.6 Prädikatenlogik Herbrand-Theorie 155 Herbrand-Strukturen Def.: Grundterm ist variablenfreier Term. GT τ = Menge aller Grundterme über Signatur

Mehr

UE GRUNDZÜGE DER MATHEMATISCHEN LOGIK SS 2017

UE GRUNDZÜGE DER MATHEMATISCHEN LOGIK SS 2017 UE GRUNDZÜGE DER MATHEMATISCHEN LOGIK SS 207 VERA FISCHER Die Gesamtnote ergibt sich je zur Hälfte aus der Teilnote Kreuzerlliste und der Teilnote Zwischentest, gerundet auf freundlichen Weise. Für eine

Mehr

Notengebung. Teilnote Kreuzerlliste: 60% 69% 4; 70% 79% 3; 80% 89% 2; 90% 100% 1. Falls Sie weitere Fragen haben, bitte melden Sie sich bei mir.

Notengebung. Teilnote Kreuzerlliste: 60% 69% 4; 70% 79% 3; 80% 89% 2; 90% 100% 1. Falls Sie weitere Fragen haben, bitte melden Sie sich bei mir. Notengebung Die Gesamtnote für die Übung ergibt sich je zur Hälfte aus der Teilnote Kreuzerlliste und der Teilnote Zwischentest, gerundet auf freundliche Weise; für eine positive Benotung müssen beide

Mehr

Logik und Künstliche Intelligenz

Logik und Künstliche Intelligenz Logik und Künstliche Intelligenz Kurze Zusammenfassung (Stand: 14. Januar 2010) Prof. Dr. V. Stahl Copyright 2007 by Volker Stahl. All rights reserved. V. Stahl Logik und Künstliche Intelligenz Zusammenfassung

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 8. Alexander Bors. 27. April., 4. & 11. Mai A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 8. Alexander Bors. 27. April., 4. & 11. Mai A. Bors Logik Mathematische Logik Vorlesung 8 Alexander Bors 27. April., 4. & 11. Mai 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) Der Gödelsche und Folgerungen 2 Erinnerung

Mehr

Seminar Mathematische Logik L-Strukturen und Syntax der Prädikatenlogik

Seminar Mathematische Logik L-Strukturen und Syntax der Prädikatenlogik Seminar Mathematische Logik L-Strukturen und Syntax der Prädikatenlogik Linda Raabe 7. März 2012 1 L-Strukturen Definition 1.1 (Struktur) Eine Struktur A ist eine nichtleere Trägermenge A zusammen mit

Mehr

Kapitel 3. Theorien und Modelle

Kapitel 3. Theorien und Modelle Kapitel 3 Theorien und Modelle Ausdrucksstärke und Ausdrucksschwäche der Prädikatenlogik erster Stufe Mathematische Logik (WS 2011/12) Kap. 3: Theorien und Modelle 1 / 121 Übersicht 3.1 Theorien und deren

Mehr

Kapitel 3: Ehrenfeucht-Fraïssé Spiele

Kapitel 3: Ehrenfeucht-Fraïssé Spiele Kapitel 3: Ehrenfeucht-Fraïssé Spiele Kapitel 3: Ehrenfeucht-Fraïssé Spiele Abschnitt 3.0: In diesem Kapitel werden Ehrenfeucht-Fraïssé-Spiele (kurz: EF-Spiele) eingeführt. Diese liefern ein Werkzeug,

Mehr

1 Syntax und Semantik der Logik erster Stufe

1 Syntax und Semantik der Logik erster Stufe 1 Syntax und Semantik der Logik erster Stufe Die Logik erster Stufe Prädikatenlogik) besitzt eine Syntax, die festlegt, welche Zeichenketten Formeln der Logik erster Stufe sind, und eine Semantik, die

Mehr

Anwendungen der Logik, SS 2008, Martin Goldstern

Anwendungen der Logik, SS 2008, Martin Goldstern Anwendungen der Logik, SS 2008, Martin Goldstern Total geordnete Körper Ein total geordneter Körper ist ein Körper (K, +,, 0, 1, ) mit einer totalen (=linearen) Ordnung, die mit den Operationen verträglich

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

5 Noethersche Ringe und Moduln, Algebren und Ganzheit

5 Noethersche Ringe und Moduln, Algebren und Ganzheit 5 Noethersche Ringe und Moduln, Algebren und Ganzheit Sofern nichts anderes gesagt wird, sind im Folgenden alle Ringe kommutativ mit 1 0. Satz und Definition 5.1. Sei A ein Ring. Die folgenden Aussagen

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G.

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G. 5. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 5.1 Sei G eine Gruppe und seien A, B G Untergruppen

Mehr

SS Juli Übungen zur Vorlesung Logik Blatt 11

SS Juli Übungen zur Vorlesung Logik Blatt 11 SS 2011 06. Juli 2011 Übungen zur Vorlesung Logik Blatt 11 Prof. Dr. Klaus Madlener Abgabe bis 13. Juli 2011 10:00 Uhr 1. Aufgabe: [Axiomatisierung, Übung] 1. Definieren Sie eine Formel A n der Prädikatenlogik

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 16 S-Homomorphismen und elementare Äquivalenz Definition 16.1. Zwei S-Strukturen M und N über einem erststufigen Symbolalphabet

Mehr

Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe. Vorlesung im Wintersemester 2010

Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe. Vorlesung im Wintersemester 2010 Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe Vorlesung im Wintersemester 2010 Übersicht Teil 3 Kapitel 3.1: Sequenzenkalkül Kapitel 3.2: Rekursive Aufzählbarkeit, Kompaktheit und Löwenheim-Skolem

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

Formale Grundlagen der Informatik II

Formale Grundlagen der Informatik II Formale Grundlagen der Informatik II FO: Axiome und Theorie (de-)motivierendes Beispiel: S=(+,0) Strukturen ({0,1}*,,ε) Strukturen (P(X),, ) Formale Grundlagen der Informatik II Interessieren uns für alle

Mehr

Erfüllbarkeit von Formelmengen

Erfüllbarkeit von Formelmengen Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.6 Aussagenlogik Kompaktheit 75 Erfüllbarkeit von Formelmengen bisher nur Erfüllbarkeit einzelner Formeln betrachtet erweitere Begriff auf Mengen

Mehr

Semantik der Prädikatenlogik

Semantik der Prädikatenlogik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.3 Prädikatenlogik Semantik 131 Semantik der Prädikatenlogik zur Erinnerung: Semantik der Aussagenlogik gegeben durch Interpretation I : V {0,

Mehr

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt Dr. V. Klebanov, Dr. M. Ulbrich, C. Scheben Formale Systeme, WS 2013/2014 Lösungen zu Übungsblatt 5 Dieses

Mehr

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Abbildungen Die wichtigsten Relationen sind die Abbildungen: Eine Abbildung (A,B,f ) von A nach

Mehr

Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe

Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe Übersicht Teil 3 Kapitel 3.1: Sequenzenkalkül Kapitel 3.2: Rekursive Aufzählbarkeit, Kompaktheit und Löwenheim-Skolem Kapitel 3.3: Ausdrucksstärke /

Mehr

Logik und Grundlagen Martin Goldstern, WS 2018/19 1

Logik und Grundlagen Martin Goldstern, WS 2018/19 1 Logik und Grundlagen Martin Goldstern, WS 2018/19 1 Hinweis: Manche (sehr wenige) der folgenden Beispiele sind falsch, manche enthalten offene Fragen, manche sind besonders schwierig. Die Lösung eines

Mehr

Universität Heidelberg 06. April 2017 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Martin Monath

Universität Heidelberg 06. April 2017 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Martin Monath Universität Heidelberg 06. April 2017 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Martin Monath Klausur zur Vorlesung Mathematische Logik Es können maximal 48 Punkte erworben werden.

Mehr

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann Ordinalzahlen Im Rahmen der Ordnungsrelationen wurden bisher die Begriffe Partialordnung und Totalordnung (lineare Ordnung) erwähnt. Ein weiterer wichtiger Ordnungsbegriff ist die Wohlordnung. Wohlgeordnete

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

Analysis I (HS 2016): DAS LEMMA VON ZORN UND DER BEGRIFF DER MÄCHTIGKEIT.

Analysis I (HS 2016): DAS LEMMA VON ZORN UND DER BEGRIFF DER MÄCHTIGKEIT. Analysis I (HS 2016): DAS LEMMA VON ZORN UND DER BEGRIFF DER MÄCHTIGKEIT. Dietmar A. Salamon ETH-Zürich 29. September 2016 Zusammenfassung Dieses Manuskript dient einer Einführung für Studierende des ersten

Mehr

1 Syntax und Semantik der Logik erster Stufe

1 Syntax und Semantik der Logik erster Stufe 1 Syntax und Semantik der Logik erster Stufe Die Logik erster Stufe Prädikatenlogik) besitzt eine Syntax, die festlegt, welche Zeichenketten Formeln der Logik erster Stufe sind, und eine Semantik, die

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 17 Isomorphie und elementare Äquivalenz im endlichen Fall Beispiel 17.1. Das Symbolalphabet S bestehe (neben Variablen)

Mehr

Diskrete Mathematik für Informatiker Universität Leipzig WS 2007 / 08. Claus Diem

Diskrete Mathematik für Informatiker Universität Leipzig WS 2007 / 08. Claus Diem Diskrete Mathematik für Informatiker Universität Leipzig WS 2007 / 08 Claus Diem 2 Kapitel 1 Algebraische Strukturen 1.1 Boolesche Ringe und boolesche Algebren Boolesche Ringe Definition Sei X eine Menge

Mehr

Formale Systeme, WS 2014/2015 Übungsblatt 5

Formale Systeme, WS 2014/2015 Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 2014/2015 Übungsblatt

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Algebraische Strukturen und Verbände

Algebraische Strukturen und Verbände KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.

Mehr

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar). Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und

Mehr

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) 15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle

Mehr

Skriptum EINFÜHRUNG IN DIE ALGEBRA

Skriptum EINFÜHRUNG IN DIE ALGEBRA Skriptum EINFÜHRUNG IN DIE ALGEBRA 1 Günter Lettl SS 2016 1. Algebraische Grundbegriffe 1.1 Verknüpfungen Definition 1. Es sei M eine nicht leere Menge. a) Eine Verknüpfung (oder (binäre) Operation) auf

Mehr

Mengenlehre: Mächtigkeit (Ordnung) einer Menge

Mengenlehre: Mächtigkeit (Ordnung) einer Menge Mengenlehre: Mächtigkeit (Ordnung) einer Menge Def. Seien A, B Mengen. Wir sagen, dass A höchstens gleichmächtig zu B ist, falls es eine injektive Abbildung f : A B gibt. Schreibweise: A B. Wir sagen,

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion

1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion Transitiv-reflexive Hülle Definition 24. Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a, a) R 2. R R 3.

Mehr

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation 3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): Häufig verwendeten Umformungen sind: Idempotenz doppelte Negation De Morgan a = a a a = a a + b = a b ADS-EI 3.6 Bemerkungen zur Umformung boolescher

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 18: Logik Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/35 Überblick Formeln in Prädikatenlogik erster Stufe Theorien und

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

6. Boolesche Algebren

6. Boolesche Algebren 6. Boolesche Algebren 6.1 Definitionen Eine Boolesche Algebra ist eine Algebra S,,,, 0, 1,, sind binäre, ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt: 1 und sind assoziativ und kommutativ.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik &

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Kapitel 3. Ein adäquater Kalkül der Prädikatenlogik. Teil 2. Deduktionstheorem und Rückführung des Vollständigkeitssatzes auf das Erfüllbarkeitslemma

Kapitel 3. Ein adäquater Kalkül der Prädikatenlogik. Teil 2. Deduktionstheorem und Rückführung des Vollständigkeitssatzes auf das Erfüllbarkeitslemma Kapitel 3 Ein adäquater Kalkül der Prädikatenlogik Teil 2 Deduktionstheorem und Rückführung des Vollständigkeitssatzes auf das Erfüllbarkeitslemma Mathematische Logik (WS 2012/13) Kap. 3: Shoenfields Kalkül

Mehr

(Algebraische) Strukturen Beispiele (Träger-)Mengen (Individuenbereiche) mit Relationen (Eigenschaften, Beziehungen) und Funktionen (Operationen) auf

(Algebraische) Strukturen Beispiele (Träger-)Mengen (Individuenbereiche) mit Relationen (Eigenschaften, Beziehungen) und Funktionen (Operationen) auf Was bisher geschah Modellierung von Aussagen durch logische Formeln Daten durch Mengen, Multimengen, Folgen, Sprachen Zusammenhängen und Eigenschaften von Elementen von Mengen durch Relationen (Eigenschaften

Mehr

Logik und Grundlagen Martin Goldstern, WS 2017/18 1

Logik und Grundlagen Martin Goldstern, WS 2017/18 1 Logik und Grundlagen Martin Goldstern, WS 2017/18 1 Hinweis: Manche (sehr wenige) der folgenden Beispiele sind falsch, manche enthalten offene Fragen, manche sind besonders schwierig. Die Lösung eines

Mehr

Einführung in die Logik/Modelltheorie Kurzskript

Einführung in die Logik/Modelltheorie Kurzskript Einführung in die Logik/Modelltheorie Kurzskript Inhaltsverzeichnis 1 Logik erster Stufe 2 1.1 Sprachen und Strukturen...................... 2 1.2 Formeln und Aussagen........................ 3 1.3 Theorien................................

Mehr

Universelle Algebra. Zur Erinnerung: Definition von Gruppe, Ring (mit 1), R-Vektorraum.

Universelle Algebra. Zur Erinnerung: Definition von Gruppe, Ring (mit 1), R-Vektorraum. Kapitel 3 Universelle Algebra 3.1 Universelle Algebra als Logik Zur Erinnerung: Definition von Gruppe, Ring (mit 1), R-Vektorraum. Signaturen Eine funktionale Signatur ist eine Menge F von Funktionssymbolen

Mehr

Signatur einer prädikatenlogische Sprache

Signatur einer prädikatenlogische Sprache Signatur einer prädikatenlogische Sprache Das Alphabet einer prädikatenlogische Sprache (erster Stufe) besteht aus den logischen Funktoren,,,,, and den Klammersymbolen ( und ) und dem Komma, einer (abzählbar

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Aufgabe 13 Wie üblich sei l 1 = {x : N K x n < } mit Norm x l 1 = x n und l = {x : N K sup n N x n < } mit x l = sup n N x n Für die Unterräume d

Mehr

Theorie der reell abgeschlossenen Körper (RCF)

Theorie der reell abgeschlossenen Körper (RCF) Theorie der reell abgeschlossenen Körper (RCF) 1 Einführung Die im Vortrag betrachteten Modelle verwenden die Sprache L ORing ={0,1,+,-,,

Mehr

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation

Widerspruchsbasiertes Kalkül. Präinterpretation. Variablenzuweisung. Interpretation Widerspruchsbasiertes Kalkül Ziel: Zeige dass gilt: x 1 x s (B 1 B n ) Mittel: Negiere so dass: B 1 B n Resultate: Widerspruch Variablenbindungen [y/5.6.17.22.nil] für sort(17.22.6.5.nil,y) Präinterpretation

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f,,,,, aussagenlogische Formeln AL(P) induktive Definition: IA Atome (Aussagenvariablen) p, q, r,... P IS zusammengesetzte

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

Zusammenfassung Kapitel 3: Theorien und Modellklassen: Ausdrucksstärke und -schwäche von PL1

Zusammenfassung Kapitel 3: Theorien und Modellklassen: Ausdrucksstärke und -schwäche von PL1 Zusammenfassung Kapitel 3: Theorien und Modellklassen: Ausdrucksstärke und -schwäche von PL1 1 Theorien und Modellklassen 1.1 Theorien Definition 1.1 (Theorien) Eine (L-)Theorie T ist ein Paar T = (L,

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 5 Das Lemma von Zorn Wir möchten im Folgenden zeigen, dass eine widerpruchsfreie Menge Γ L V von Aussagen nicht nur

Mehr