Entwicklung eines Map-Matching- Algorithmus zur Ortung von Fahrzeugen in Stadtgebieten

Größe: px
Ab Seite anzeigen:

Download "Entwicklung eines Map-Matching- Algorithmus zur Ortung von Fahrzeugen in Stadtgebieten"

Transkript

1 11. Vermessungsingenieurtag - Ein Map-Matching-Algorithmus Entwicklung eines Map-Matching- Algorithmus zur Ortung von Fahrzeugen in Stadtgebieten Prof. Dr. Paul Rawiel HFT Stuttgart auf Basis der Bachelor-Arbeit von Frau Kerstin Fill Prof. Dr. P. Rawiel 1

2 11. Vermessungsingenieurtag - Ein Map-Matching-Algorithmus Agenda 1. Problemstellung - Anwendungsfall car2go 2. Entwicklungskonzept 3. Verfahrensschritte 4. Untersuchung erster Ergebnisse 5. Erkenntnisse und Fazit Prof. Dr. P. Rawiel 2

3 Problemstellung Anwendungsfall car2go Car Sharing ohne feste Standplätze Kunden müssen Fahrzeuge finden car2go App für Smartphones Navigation zum nächsten freien Fahrzeug Betreiber muss die Fahrzeuge wiederfinden Wartung der Fahrzeuge Reinigung der Fahrzeuge Tanken bzw. aufladen der Fahrzeuge Umverteilen der Fahrzeuge Essentiell wichtig für car2go: genaue Position der Fahrzeuge 3

4 Problemstellung Anwendungsfall car2go Problem der ungenauen Position 4

5 Problemstellung Anwendungsfall car2go Problem der ungenauen Position 5

6 Problemstellung Anwendungsfall car2go Erfassen einer gefahrenen Trajektorie mit Hilfe von Radimpulssensoren Beschleunigungssensoren Gyroskopen Magnetometer barometrischer Höhenmesser 6

7 Problemstellung Anwendungsfall car2go 7

8 Problemstellung Anwendungsfall car2go 8

9 Entwicklungskonzept Gegeben lokale Koordinaten Gesucht Start Ende unscharfe Fahrzeugtrajektorie Istkurve (Sensordaten) Sollkurve (Straßenkarte) Zuordnung 9

10 Entwicklungskonzept - Datengrundlage Trajektorie als diskrete geordnete Punktfolge IST Straßennetz modelliert als Graph Knoten = Kreuzungen, Formpunkte Kanten = Straßensegmente SOLL 10

11 Verfahrensschritte Merkmalsdetektion Suche nach signifikanten Richtungsänderungen. Approximation von Abbiegepunkten durch eine Regelform. Kodierung eines Parameters der Regelform (z.b. Dreieckswinkel). IST SOLL

12 Verfahrensschritte Suche im Straßennetz Sammlung passender Straßenmerkmale für jedes Merkmal der Trajektorie Suche plausibler Verbindungen zwischen den Merkmalssammlungen. IST SOLL 6 6: ~193 m 193 m 96 7: ~ m 8 8: ~ 187 m 12

13 Verfahrensschritte Einpassung ins Straßennetz Transformation der Trajektorie ins System der Straßenkarte. Projektion der transformierten Trajektorieenden auf die Straßentrasse. SOLL 13

14 Verfahrensschritte Bemessung der Ähnlichkeit Bemessung der Übereinstimmung zwischen jedem Kurvenpaar (Straßentrasse - transformierte Trajektorie). ähnlichste Vergleichstrasse = Map-Matching-Ergebnis 0,9737 SOLL 0, plausible Straßentrassen z.b. Hausdorff-Abstand Fréchet-Abstand 14

15 Test des Verfahrens Testdaten 15 GPS-Trajektorien 6 OSM-Karten Länge [m]: Merkmale: 2 5 Größe [m]: x Merkmale:

16 Test des Verfahrens Prototypische Implementierung 16

17 Test des Verfahrens Ergebnisse 15 6 eindeutig & korrekt Abweichung vom letzten GPS-Trackpunkt: ~ 10 m 4 mehrdeutig Hausdorff-Abstand Profilverfahren Koordinatenverfahren Fréchet-Abstand 5 falsch Scheiterungsgründe z.b. Kreisverkehr komplexe Kreuzung 17

18 Test des Verfahrens Erkenntnisse zwei Merkmale ausreichend Approximation über einfache Regelform Abhängigkeit von Schwellwerten Merkmalsdetektion Trassensuche Merkmal = Abbiegung irrelevant: z.b. Fahrspurwechsel 18

19 Fazit wichtige Fragen Produziert der Algorithmus korrekte Einpassungsergebnisse? JA erfolgreich eingepasste Merkmalsfolgen ABER Optimierungsbedarf Weiterentwicklung Ist der Algorithmus car2go-tauglich? JA lokale Fahrzeugkoordinaten unscharfe Trajektorie Start Zuordnung Ende 19

20 11. Vermessungsingenieurtag - Ein Map-Matching-Algorithmus Vielen Dank für Ihre Aufmerksamkeit! Prof. Dr. P. Rawiel 20

21 11. Vermessungsingenieurtag - Ein Map-Matching-Algorithmus Fréchet-Abstand Eine Person schreitet auf der einen Kurve entlang. Sie hält einen Hund an der Leine, der sich entsprechend des Verlaufs der anderen Kurve fortbewegt. Es ist zulässig, dass sie ihre Schrittgeschwindigkeit variieren. Hingegen ist die Richtung ihres Durchschreitens identisch und nicht umkehrbar. Der Fréchet-Abstand zwischen den traversierten Kurven kommt der minimal möglichen Länge der Hundeleine gleich, bei welcher es der Person und dem Hund möglich ist, mit ihrer individuell gewählten Geschwindigkeit ihre Kurve vom Anfang bis zum Ende zu durchlaufen. Prof. Dr. P. Rawiel 21

22 11. Vermessungsingenieurtag - Ein Map-Matching-Algorithmus Hausdorff-Abstand Von einem Punkt aus einer Punktmenge A werden die Abstände zu allen Punkten einer Punktmenge B berechnet. der minimale Punktabstand wird gespeichert. Dies wird für alle Punkte der Menge A durchgeführt. Der maximale Punktabstand dieser minimalen Abstände ist der Hausdorff-Abstand zwischen den Mengen A und B. Prof. Dr. P. Rawiel 22

23 11. Vermessungsingenieurtag - Ein Map-Matching-Algorithmus Transformationsverfahren zur Bestimmung der Ähnlichkeit Prof. Dr. P. Rawiel 23

24 11. Vermessungsingenieurtag - Ein Map-Matching-Algorithmus Profilverfahren zur Bestimmung der Ähnlichkeit Prof. Dr. P. Rawiel 24

Wie findet das Navi den Weg?

Wie findet das Navi den Weg? 0.05.0 Verwandte Fragestellungen Problemstellungen aus der Praxis Prof. Dr. Paul Rawiel Gliederung des Vortrags Speicherung von Kartendaten zur Navigation Kriterien für die Navigation Finden des kürzesten

Mehr

Algorithmen für Geographische Informationssysteme

Algorithmen für Geographische Informationssysteme Algorithmen für Geographische Informationssysteme 2. Vorlesung: 16. April 2014 Thomas van Dijk basiert auf Folien von Jan-Henrik Haunert Map Matching? Map Matching! Map Matching...als Teil von Fahrzeugnavigationssystemen

Mehr

Algorithmen für Geographische Informationssysteme

Algorithmen für Geographische Informationssysteme Algorithmen für Geographische Informationssysteme 8. Vorlesung: 10. Dezember 2012 Jan-Henrik Haunert Map Matching Problemformulierung Gegeben: Das Straßennetz als planar eingebetteter Graph G = V, E Die

Mehr

Algorithmen für Geographische Informationssysteme

Algorithmen für Geographische Informationssysteme Algorithmen für Geographische Informationssysteme 3. Vorlesung: 29. April 205 Thomas van Dijk basiert auf Folien von Jan-Henrik Haunert Map Matching Problemformulierung Gegeben: Das Straßennetz als planar

Mehr

Praktikum und Projektarbeit in Kooperation mit der documedias GmbH. von Jan Hendrik Sarstedt IMIT im 6. Semester an der Universität Hildesheim

Praktikum und Projektarbeit in Kooperation mit der documedias GmbH. von Jan Hendrik Sarstedt IMIT im 6. Semester an der Universität Hildesheim Praktikum und Projektarbeit in Kooperation mit der documedias GmbH IMIT im 6. Semester an der Universität Hildesheim Inhalt 1. documedias 2. Praktikum a. Allgemein b. MapCoordinates 3. Projektarbeit a.

Mehr

Algorithmen für Geographische Informationssysteme

Algorithmen für Geographische Informationssysteme Algorithmen für Geographische Informationssysteme 3. Vorlesung: 23. April 2014 Thomas van Dijk basiert auf Folien von Jan-Henrik Haunert Map Matching Problemformulierung Gegeben: Das Straßennetz als planar

Mehr

Dijkstra, Kalmann und der Heiratssatz. Anwendung von Algorithmen am Beispiel der innovativen Mobilitätslösung car2go

Dijkstra, Kalmann und der Heiratssatz. Anwendung von Algorithmen am Beispiel der innovativen Mobilitätslösung car2go Dijkstra, Kalmann und der Heiratssatz Anwendung von Algorithmen am Beispiel der innovativen Mobilitätslösung cargo Jahre Automobil Am 9 Januar meldete Carl Benz seinen Motorwagen mit Verbrennungsmotor

Mehr

Prüfungsklausur Operations Research,

Prüfungsklausur Operations Research, HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Operations Research, 10.7.2008 A Name, Vorname Matr. Nr. Aufgabe 1 : In drei Porzellanwerken W 1, W 2 und W 3 werden Speiseservice hergestellt,

Mehr

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung Algorithmische Geometrie): Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin Konvexe Hülle Konvexe Hülle AK der Algorithmik 5, SS 2005 Hu Bin Anwendung: Computergraphik Boundary Kalkulationen Geometrische Optimierungsaufgaben Konvexe Hülle: Definition Mathematik Konvex: Linie zwischen

Mehr

Ihre Route wird berechnet Schneller zum kürzesten Weg

Ihre Route wird berechnet Schneller zum kürzesten Weg Ihre Route wird berechnet Schneller zum kürzesten Weg Dr. Felix Hahne Curt Nowak (M.Sc.) hahne@bwl.uni-hildesheim.de cnowak@bwl.uni-hildesheim.de Stiftung Universität Hildesheim Institut für Betriebswirtschaft

Mehr

Automatische Kalibrierung eines Kamerasystems zur Verkehrsdatenerfassung auf Basis von Navigationssensorik Sebastian Schulz, DLR-TS-ANL

Automatische Kalibrierung eines Kamerasystems zur Verkehrsdatenerfassung auf Basis von Navigationssensorik Sebastian Schulz, DLR-TS-ANL DLR.de Folie 1 03.03.2015, ASW 2016, Wildau Automatische Kalibrierung eines Kamerasystems zur Verkehrsdatenerfassung auf Basis von Navigationssensorik Sebastian Schulz, DLR-TS-ANL DLR.de Folie 2 Agenda

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Formale Grundlagen der Informatik

Formale Grundlagen der Informatik Formale Grundlagen der Informatik / 2015 1 Die Elemente einer (endlichen) Menge sollen den Elementen einer zweiten, gleichmächtigen Menge zugeordnet werden Problemstellung Bipartite Graphen Zuordnungsprobleme

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

ES-Projektseminar (SS 2012)

ES-Projektseminar (SS 2012) ES-Projektseminar (SS 2012) Endvortrag Team Justice League of America Dominik Matthias [Team ] Pascal Stephen Vorname Name; ES Real-Time Systems Lab Prof. Dr. rer. nat. Andy Schürr Dept. of Electrical

Mehr

Berechnung kürzester Wege

Berechnung kürzester Wege Berechnung kürzester Wege 7. Algorithmus der Woche Informatikjahr 2006 Prof. Dr. Peter Sanders Dipl.-Inform. Johannes Singler 18. April 2006 Berechnung kürzester Wege 7. Algorithmus der Woche, Informatikjahr

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

Projektdokumentation. Teilnahme am ACM SIGSPATIL CUP 2012 im Zuge des Projektseminars Datenverwaltung

Projektdokumentation. Teilnahme am ACM SIGSPATIL CUP 2012 im Zuge des Projektseminars Datenverwaltung Projektdokumentation Teilnahme am ACM SIGSPATIL CUP 2012 im Zuge des Projektseminars Datenverwaltung Betreut durch Frau Prof. Dr. Agnès Voisard und Sebasti an Müller Philipp Neuser 05.09.2012 Abstract

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten L 1, L 2 und L 3 zur Bearbeitung aus. Gewählte Aufgaben (Die drei zur Bewertung vorgesehenen Aufgaben

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Relationen und Funktionen 2 INHALTSVERZEICHNIS 1. RELATIONEN... 3 2. FUNKTIONEN... 4 2.1. LINEARE FUNKTION... 6 Relationen und Funktionen 3 1. RELATIONEN Def.: Eine Relation zwischen

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Algorithmische Geometrie

Algorithmische Geometrie Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Klausur zum Modul Einführung in die Diskrete Mathematik

Klausur zum Modul Einführung in die Diskrete Mathematik Klausur zum Modul Einführung in die Diskrete Mathematik 11.2.2014 Aufgabe 1 [10 Punkte] Sei G ein ungerichteter Graph, k N und x, y, z V (G). Zeigen Sie: Gibt es k paarweise kantendisjunkte x-y-wege und

Mehr

Multi-Touch- und Multi-User-Interfaces Björn Frömmer

Multi-Touch- und Multi-User-Interfaces Björn Frömmer Multi-Touch- und Multi-User-Interfaces Björn Frömmer Tracking Was ist Tracking? Was kann alles getracked werden? Wie funktioniert Tracking? [ ] Finger tracken! Was ist Tracking? Tracking bedeutet, ein

Mehr

10. Vermessungsingenieurtag Workshop 3 Mobile Mapping an der HFT Stuttgart

10. Vermessungsingenieurtag Workshop 3 Mobile Mapping an der HFT Stuttgart 10. Vermessungsingenieurtag Workshop 3 Mobile Mapping an der HFT Stuttgart M.Eng. Marius Ziegler Projektleiter: Prof. Dr. M. Hahn 07. November 2014 Mobile Mapping Kernelemente Messgeräte zur Positionsbestimmung

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg Wahlteil Analysis A1 Hilfsmittel: GTR und Merkhilfe allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Mai 2017 1 Aufgabe

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

Autonomes Kreuzungsmanagement für Kraftfahrzeuge

Autonomes Kreuzungsmanagement für Kraftfahrzeuge Autonomes Kreuzungsmanagement für Kraftfahrzeuge Trajektorienplanung mittels Dynamischer Programmierung Torsten Bruns, Ansgar Trächtler AUTOREG 2008 / Baden-Baden / 13.02.2008 Szenario Kreuzungsmanagement

Mehr

KOMMENTAR: HÖHENMESSUNG MIT DEM RADCOMPUTER

KOMMENTAR: HÖHENMESSUNG MIT DEM RADCOMPUTER Dieser Kommentar behandelt die Abweichungen, welche bei der Bestimmung der Anstiegsleistung durch Radcomputer auftreten. Folgende Messmethoden stehen zur Verfügung: barometrische Höhenmessung GPS-Höhenmessung

Mehr

MOBILE SENSING ZUR U-BAHN-NAVIGATION UIS 2016 HTWK LEIPZIG

MOBILE SENSING ZUR U-BAHN-NAVIGATION UIS 2016 HTWK LEIPZIG MOBILE SENSING ZUR U-BAHN-NAVIGATION UIS 2016 HTWK LEIPZIG Matthias Heyde / Fraunhofer FOKUS Frank Fuchs-Kittowski & Daniel Faust, 2. Juni 2016 AGENDA 1. Einführung 2. Anwendungsszenario U-Bahn-Navigation

Mehr

Minimal spannender Baum

Minimal spannender Baum Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen

Mehr

Algorithmen. Von Labyrinthen zu. Gerald Futschek

Algorithmen. Von Labyrinthen zu. Gerald Futschek Von Labyrinthen zu Algorithmen Gerald Futschek Wie kommt man aus einem Labyrinth heraus? Labyrinth (griechisch: Haus der Doppelaxt, wahrscheinlich Knossos auf Kreta) Labrys Grundriss des Palastes von Knossos

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Indoor Positionierungs-Technologien

Indoor Positionierungs-Technologien Indoor Positionierungs-Technologien Corina Kim Schindhelm Siemens 4. Deutscher AAL Kongress, 26. Januar 2011 Selbstständig, sicher, gesund und mobil im Alter. Smart Senior Zu Hause TV als zentrales Diensteportal

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Schnelle und genaue Routenplanung

Schnelle und genaue Routenplanung Sanders/Schultes: Routenplanung 1 Schnelle und genaue Routenplanung Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe Tag der Informatik, 15. Juli

Mehr

Der Einbau im Auto. Stereo: Beispiel Fahrzeug. Einbau im Rückspiegel Erfassung von. Reichweite: bis 30 m

Der Einbau im Auto. Stereo: Beispiel Fahrzeug. Einbau im Rückspiegel Erfassung von. Reichweite: bis 30 m Der Einbau im Auto Sichtbereich Sichtbereich Kameras Einbau im Rückspiegel Erfassung von anderen Fahrzeugen (Pkw,Lkw) Zweiradfahrern Fußgängern und Kindern Reichweite: bis 30 m Digitale Bildverarbeitung

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Visual Servoing using Mutual Information

Visual Servoing using Mutual Information Visual Servoing using Mutual Information Christian Rupprecht Robotics and Embedded Systems Technische Universität München Outline 1 Visual Servoing Was ist Visual Servoing? Typische Lösungsansätze 2 Mutual

Mehr

Zusammenfassung des 2. Abends

Zusammenfassung des 2. Abends lgorithmen in der iologie r. Hans-Joachim öckenhauer r. ennis Komm Zusammenfassung des. bends Zürich, 0. pril 0 lignment-verfahren Für einen Überblick über die lignment-lgorithmen zur estimmung der Ähnlichkeit

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Ziel. MapMatchingVerfahren spielen eine wichtige Rolle, z.b bei der Fahrzeugnavigation. Visualisierung der gematchten.

Ziel. MapMatchingVerfahren spielen eine wichtige Rolle, z.b bei der Fahrzeugnavigation. Visualisierung der gematchten. Ziel Mit Hilfe von Verfahren werden die mittels Sensoren aufgenommenen Wegestücke / Punkte auf die Geometrien der Vektordaten im Navigationssystem bezogen MapMatchingVerfahren spielen eine wichtige Rolle,

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Zentrale Klausur am Ende der Einführungsphase Mathematik

Zentrale Klausur am Ende der Einführungsphase Mathematik Seite von 5 Zentrale Klausur am Ende der Einführungsphase Aufgabenstellung 0 Mathematik Aufgabe : Untersuchung ganzrationaler Funktionen Gegeben ist die Funktion f mit der Gleichung: 3 f( x) = x 3 x. 4

Mehr

Vorkurs Informatik WiSe 16/17

Vorkurs Informatik WiSe 16/17 Institut für Programmierung Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 12.10.2016 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Schilda-Rallye Was steckt

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Konzentrische U-Bahn-Linienpläne

Konzentrische U-Bahn-Linienpläne Bachelor-Kolloquium Konzentrische U-Bahn-Linienpläne Magnus Lechner 19.03.2014 Betreuer: Prof. Dr. Alexander Wolff Dipl.-Inf. Martin Fink Motivation Warum sind U-Bahn-Linienpläne von Interesse? Motivation

Mehr

11. VIMOS Tagung Technische Universität Dresden

11. VIMOS Tagung Technische Universität Dresden 11. VIMOS Tagung Technische Universität Dresden Indoor Ortung und Navigation für die Führung von Fußgängern in Gebäuden des öffentlichen Verkehrs Olaf Czogalla ifak Magdeburg 26. November 2015 1 Einführung

Mehr

Kürzeste Wege in einem gewichteten Graphen. Anwendungen

Kürzeste Wege in einem gewichteten Graphen. Anwendungen Kürzeste Wege in einem gewichteten Graphen Dazu werden die Gewichte als Weglängen interpretiert. Der kürzeste Weg zwischen zwei Knoten in einem zusammenhängenden Graphen ist derjenige, bei dem die Summe

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, chnitte, bipartite Graphen Matthias Hoffmann 5.5.009 Matthias Hoffmann Flüsse, chnitte, bipartite Graphen 5.5.009 / 48 Übersicht Einführung Beispiel Definitionen Ford-Fulkerson-Methode Beispiel

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Space Usage Rules. Neele Halbur, Helge Spieker InformatiCup 2015 19. März 2015

Space Usage Rules. Neele Halbur, Helge Spieker InformatiCup 2015 19. März 2015 Space Usage Rules? InformatiCup 2015 1 Agenda 1. Vorstellung des Teams 2. Entwicklungsprozess und Umsetzung 3. Verbesserung der Strategien 4. Auswertung der Strategien 5. Ausblick 6. Fazit 2 Vorstellung

Mehr

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner)

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Teil : Mathematische Grundkompetenzen ) Es muss (ausschließlich) die richtige Antwortmöglichkeit

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

Von Labyrinthen zu. Algorithmen

Von Labyrinthen zu. Algorithmen Von Labyrinthen zu 4 Gerald Futschek Charakterisierung Algorithmus Ein Algorithmus ist ein schrittweises Verfahren ist exakt beschrieben liefert nach endlich vielen Schritten das Ergebnis (terminiert)

Mehr

1.8 Shift-And-Algorithmus

1.8 Shift-And-Algorithmus .8 Shift-And-Algorithmus nutzt durch Bitoperationen mögliche Parallelisierung Theoretischer Hintergrund: Nichtdeterministischer endlicher Automat Laufzeit: Θ(n), falls die Länge des Suchwortes nicht größer

Mehr

Mustererkennung: Graphentheorie

Mustererkennung: Graphentheorie Mustererkennung: Graphentheorie D. Schlesinger TUD/INF/KI/IS D. Schlesinger () ME: Graphentheorie 1 / 9 Definitionen Ein Graph ist ein Paar G = (V, E) mit der Menge der Knoten V und der Menge der Kanten:

Mehr

Wasserscheiden-Ansätze zur Bildsegmentierung I

Wasserscheiden-Ansätze zur Bildsegmentierung I Seminar Bildsegmentierung und Computer Vision Wasserscheiden-Ansätze zur Bildsegmentierung I Stefan Sugg 19.12.2005 Gliederung 1. Einführung 2. Morphologische Grundlagen 3. Simulation durch Überflutung

Mehr

Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011

Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011 Einführung Aufgabe 3 - MPEG Tobias Reinsch 2011 Allgemeines Aufgabe 3 - MPEG Ziel der Aufgabe Kennenlernen der Bildkodierungsverfahren des MPEG Standards Praktische Umsetzung dieser Techniken mit Java

Mehr

Verkehr Analyse. Inhalt. Was ist Verkehr Analyse? Geschichte der Verkehr Analyse. Iavor Jelev Jintao Ding

Verkehr Analyse. Inhalt. Was ist Verkehr Analyse? Geschichte der Verkehr Analyse. Iavor Jelev Jintao Ding Inhalt Verkehr Analyse Iavor Jelev Jintao Ding Was ist Verkehr Analyse? Wozu ist die Verkehr Analyse gut? Wie kann man Verkehr Analyse machen? Anwendungsbeispiele Algorithmen für Verkehr Analyse Geschichte

Mehr

Smartphones. Sie verraten mehr, als man erwartet. Frederik Armknecht. Frederik Armknecht 1

Smartphones. Sie verraten mehr, als man erwartet. Frederik Armknecht. Frederik Armknecht 1 Smartphones Sie verraten mehr, als man erwartet Frederik Armknecht Frederik Armknecht 1 Agenda Sicherheitsrisiko Smartphone Sensoren in Smartphones Angriffe Neue Sicherheitslösungen Fazit Frederik Armknecht

Mehr

m4guide mobile multimodal mobility guide

m4guide mobile multimodal mobility guide m4guide mobile multimodal mobility guide Auftaktveranstaltung Tür zu Tür - Projekte des Bundesministeriums für Wirtschaft und Technologie 17.Oktober 2013 in Bonn Referent: Michael Beer Inhalt 1. Projektziele

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

4. Segmentierung von Objekten Video - Inhaltsanalyse

4. Segmentierung von Objekten Video - Inhaltsanalyse 4. Segmentierung von Objekten Video - Inhaltsanalyse Stephan Kopf Inhalt Vorgehensweise Berechnung der Kamerabewegungen zwischen beliebigen Bildern Transformation eines Bildes Hintergrundbilder / Panoramabilder

Mehr

Algorithmen & Datenstrukturen 2 Praktikum 3

Algorithmen & Datenstrukturen 2 Praktikum 3 Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung

Mehr

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen . Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2016 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2016 Mathematik Seite von Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 06 Mathematik. Aufgabenart Analysis, Stochastik. Aufgabenstellung Teil I: Hilfsmittelfreier Teil Aufgabe : Analysis

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

InMoBS. Innerstädtische Mobilitätsunterstützung für Blinde und Sehbehinderte. Institut für Verkehr und Stadtbauwesen Prof. Dr.-Ing. Bernhard Friedrich

InMoBS. Innerstädtische Mobilitätsunterstützung für Blinde und Sehbehinderte. Institut für Verkehr und Stadtbauwesen Prof. Dr.-Ing. Bernhard Friedrich InMoBS Innerstädtische Mobilitätsunterstützung für Blinde und Sehbehinderte Universitätstagung-Verkehrswesen 2013 - Steffen Axer Ausgangssituation und Primärziel Ausgangssituation Mobilität Blinder und

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

1 Referenzpunkte für. MagicMap mit Nokia N810

1 Referenzpunkte für. MagicMap mit Nokia N810 1 Referenzpunkte für MagicMap mit Nokia N810 Ideen für das Projekt Ziele 2 Monitor Modus für Signalstärkenmessung (MagicMap) nicht nötig nicht weiter untersucht Kismet Anleitung für N800 aber: OS2007,

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

OR für Wirtschaftsingenieure. Übungsserie 7: Färbungen von Graphen

OR für Wirtschaftsingenieure. Übungsserie 7: Färbungen von Graphen HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Operations Research allgemeine Optimierungsmethoden OR für Wirtschaftsingenieure Übungsserie : Färbungen von Graphen Aufgabe 1 : Wieviele Farben

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Helmut Schauer Educational Engineering Lab Department for Information Technology University of Zurich. Graphen (2)

Helmut Schauer Educational Engineering Lab Department for Information Technology University of Zurich. Graphen (2) Graphen (2) 1 Topologisches Sortieren (1) Die Kanten eines gerichteten zyklenfreien Graphen bilden eine Halbordnung (die Ordnungsrelation ist nur für solche Knoten definiert die am gleichen Pfad liegen).

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Minimale aufspannende Bäume und Matchings Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline Minimale aufspannende

Mehr

Gliederung Unfallanalyse Szenarien Technologien Ausblick. car2ped

Gliederung Unfallanalyse Szenarien Technologien Ausblick. car2ped car2ped Überlegungen zur Verbesserung des Fußgängerschutzes durch Nutzung der Car-to-X-Technologie Prof. Dr.-Ing. Lars Wolf Institut für Betriebssysteme und Rechnerverbund Technische Universität Braunschweig

Mehr

Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr

Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr , Klausur Diskrete Mathematik I Donnerstag, den 29.02.2008 um 14 Uhr Aufgabenblätter Füllen Sie das Deckblattvollständigaus. Prüfen Sie, ob die Klausur 8 Aufgaben enthält.. Kennzeichnen Sie alle verwendeten

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr