Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes"

Transkript

1 Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la $a0,msg li $v0,4 syscall jr $ra 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1

2 Inhalt 1. Literatur 2. Caches 3. Anschauung der Organisation der Caches 4. Anordnung der Index-Bits 5. Beurteilung der Caches 6. Zusammenfassung und Ausblick 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 2

3 Literatur [BO10] Bryant, Randal E. und David R. O Hallaron: Computer Systems - A Programmer s Perspective. Prentice Hall, [PH05] Patterson, David A. und John L. Hennessy: Rechnerorganisation und -entwurf. Spektrum Verlag, Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 3

4 Caches Direct-Mapped Cache Direkte Abbildung eines Blocks 1 an genau einer Stelle im Cache Genauer: Jede Blockadresse im Speicher wird auf eine einzige Position in der oberen Ebene der Speicherhierarchie abgebildet Ggf. Nachteil bei Ersetzung Es gibt zahlreiche Schemata für die Platzierung von Blöcken 1. Extrem: direkte Abbildung 2. Extrem: Ein Block kann an jeder beliebigen Position im Cache platziert werden Im Folgenden: Assoziative Caches 1 Speicherbereichs 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 4

5 Vollassoziativer Cache Kann ein Block an jede beliebige Position im Cache platziert werden, wird dieses Schema der Platzierung auch als vollassoziativ bezeichnet. Der Cache wird dann als vollassoziativer Cache 2 bezeichnet. Um einen bestimmmten Block in einem vollassoziativen Cache zu finden, müssen alle Einträge im Cache durchsucht werden. Um die Suche (sinnvoll) durchführbar zu machen, erfolgt sie parallel mit je einem Vergleicher pro Cache-Eintrag. Diese Vergleicher erhöhen die Hardwarekosten wesentlich, so dass eine vollassoziative Cache-Organisation nur für Caches mit wenigen Blöcken sinnvoll ist. 2 fully associative cache 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 5

6 Satzassoziativer Cache I Zwischen direkt abbildenden und vollassoziativen Caches gibt es die Organisationsform des satzassoziativen Caches 3. In einem satzassoziativen Cache gibt es eine feste Anzahl von Speicherplätzen (mindestens 2), auf die ein Block gespeichert werden kann. Ein satzassoziativer Cache mit n Positionen für einen Block wird als n-fach satzassoziativer Cache bezeichnet. Ein n-fach satzassoziativer Cache besteht aus einer Menge von Sätzen, die aus jeweils n Blöcken bestehen. Jeder Block im Speicher wird auf einen eindeutigen Satz im Cache abgebildet, der durch das Indexfeld bestimmt ist ein Block kann in jedem beliebigen Element dieses Satzes plaziert werden. 3 setassociative cache 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 6

7 Satzassoziativer Cache II Eine satzassoziative Platzierung kombiniert also die direkt abbildende Platzierung und eine vollassoziative Platzierung Ein Block wird also auf einen Satz abgebildet, und dann werden alle Blöcke in dem Satz auf Übereinstimmung durchsucht. Weil der Block in jedem Element des Satzes plaziert werden kann, müssen alle Tags aller Elemente des Satzes durchsucht werden Abbildung Bei einem direkt abbildenden Cache ist die Position eines Speicherplatzes wie folgt festgelegt: (Blocknummer) modulo (Anzahl der Cache-Blöcke) Bei einem satzassoziativen Cache ist der Satz, der einen Speicherblock enthält wie folgt festgelegt: (Blocknummer) modulo (Anzahl der Sätze im Cache) 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 7

8 Anschauung der Caches Position der Adresse 12 in den unterschiedlichen Cache-Typen Abbildung: Quelle: [PH05, S. 406] 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 8

9 Anschauung der Caches Erklärung: Die Position eines Speicherblocks mit der Adresse 12 unterscheidet sich in einem Cache mit 8 Blöcken bei direkt abgebildeter, satzassoziativer und vollassoziativer Platzierung Bei der direkt abgebildeten Platzierung gibt es nur einen Cache-Block, in dem Speicherblock 12 gefunden werden kann. Dieser Cache-Block ist angegeben durch (12 mod 8) = 4. In einem zweifach satzassoziativen Cache mit 8 Cache-Blöcken gibt es vier Sätze und der Speicherblock 12 muss sich in Satz (12 mod 4) = 0 befinden. Der Speicherblock kann sich in jedem Element des Satzes befinden. Bei einer vollassoziativen Platzierung kann der Speicherblock mit der Blockadresse 12 in jedem der acht Cache-Blöcke erscheinen. 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 9

10 Anschauung der Caches Cache mit 8 Blöcken Abbildung: Quelle: [PH05, S. 406] 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 10

11 Anschauung der Caches Erklärung: Die Gesamtgröße des Caches in Blöcken ist gleich der Anzahl der Sätze mal der Assoziativität. Für eine feste Cache-Größe verringert also eine Vergrößerung der Cache-Assoziativität die Anzahl der Sätze, während sie die Anzahl der Elemente pro Satz erhöht. Mit acht Blöcken ist ein achtfach satzassoziativer Cache dasselbe wie ein vollassoziativer Cache. Vorteil einer erhöhten Assoziativität ist normalerweise eine Verringerung der Fehlzugriffsrate 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 11

12 Zusammenfassung der Caches Ein direkt abbildender Cache entspricht einem einfachen satzassoziativen Cache Dabei enthält jeder Cache-Eintrag einen Block und jeder Satz besitzt ein Element. Ein vollassoziativer Cache der Größe m entspricht einem m-fach satzassoziativen Cache Er enthält dabei einen Satz mit m Blöcken und ein Eintrag kann sich in jedem Block innerhalb dieses Satzes befinden. 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 12

13 Anschauung der Organisation der Caches Direct-Mapped Abbildung: Quelle: [PH05, S. 389] 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 13

14 Anschauung der Organisation der Caches Direct-Mapped Bei diesem Cache wird der untere Teil der Adresse verwendet, um einen Cache-Eintrag auszuwählen, der aus einem Datenwort und einem Tag besteht. Das Tag für den Cache wird mit dem oberen Teil der Adresse verglichen, um festzustellen, ob der Eintrag im Cache der angeforderten Adresse entspricht. Weil der Cache 2 10 (oder 1024) Wörter enthält und eine Blockgröße von 1 Wort aufweisst, werden 10 Bits verwendet, um den Cache zu indizieren, so dass = 20 Bits bleiben, die mit dem Tag verglichen werden müssen. Wenn das Tag und die oberen 20 Bits der Adresse glecih sind und das Gültigkeits-Bit (V) gesetzt ist, erzeugt die Anforderung einen Treffer im Cache und das Wort wird dem Prozessor bereitgestellt. Andernfalls erfolgt ein Fehlzugriff (Cache Miss) 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 14

15 Anschauung der Organisation der Caches Direct-Mapped vier Wörter pro Zeile Abbildung: Quelle: [PH05, S. 396] 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 15

16 Anschauung der Organisation der Caches Direct-Mapped vier Wörter pro Zeile Bisher einfache Cache-Organisation: 1 Wort entspricht einer Cache-Zeile Jetzt: Cache nutzt die räumliche Lokalität aus Bei jedem Cache Miss werden Blöcke aufeinanderfolgender Speicherworte in den Cache übertragen Ausnutzen der räumlichen Lokalität: z. B. Cache-Zeile enthält Speicherworte Zur Auswahl eines Speicherworts aus der Zeile werden weitere Bits benötigt 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 16

17 Anschauung der Organisation der Caches Satzassoziativer Cache Abbildung: Quelle: [PH05, S. 410] 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 17

18 Anschauung der Organisation der Caches Satzassoziativer Cache Erklärung: Ein vierfach satzassoziativer Cache benötigt vier Vergleicher und einen 4:1 Multiplexer n-fach assoziativ: n Vergleicher (Hardware) notwendig. Die Vergleicher stellen fest, welcher Block des ausgewählten Satzes mit dem Tag übereinstimmt. Anhand der Ausgabe des Vergleichers werden die Daten aus einem der vier Blöcke des indizierten Satzes ausgewählt, wofür ein Multiplexer verwendet wird Ein Cache Hit wird über die eine Oder-Verknüpfung ermittelt. Vorher wird über eine Und-Verknüpfung von Vergleicher und dem Valid-Bit noch geschaut, ob die zu lesenden Daten auch gültig sind. 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 18

19 Anordnung der Index-Bits I Z. B. Direct-Mapped Cache Direkte Abbildung eines Blocks an genau einer Stelle von Speicheradressen auf einen Cache Warum werden für den Index (des Sets) der Caches die mittleren Bits benutzt? Wenn z. B. die MSB 4 als Index benutzt werden, bekommt man einen zusammenhängenden Speicherbereich, der auf dasselbe Cache-Set abgebildet wird. Wenn Programm eine gute räumliche Lokalität hat, wird die Abbildung auf den Cache uneffizient s. nächste Folie 4 Most Significant Bit 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 19

20 Anordnung der Index-Bits II set cache High-order bit indexing Middle-order bit indexing Set index bits Abbildung: Quelle: [BO10, S. 640] 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 20

21 Beurteilung der Caches Begriffe Treffer (hit): zugegriffene Daten sind in oberer Ebene (nahe beim Prozessor) Trefferrate: Anteil der Speicherzugriffe auf höherer Ebene (level) Trefferzeit: Zeit, um Treffer festzustellen und auf Datum zuzugreifen Cache-Fehlzugriff (miss): gesuchte Daten nicht in oberer Ebene Fehlrate = 1 - Trefferrate Fehlstrafzeit (Miss Penalty): Zeit, um Block auf eine höhere Ebene und zum Prozessor zu bringen 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 21

22 Beurteilung der Caches Behandlung eines Cache-Misses Situation: Datum ist nicht im Cache vorhanden und muss aus dem Hauptspeicher geladen werden Problem: Steuerung muss die Befehlsverarbeitung so lange anhalten, bis die gesuchten Daten im Cache verfügbar (Stall-Zyklen) sind Separater Controller lädt die erforderlichen Daten vom Speicher in den Cache Suche Platz im Cache für neue Daten, Strategie erforderlich Falls Cache voll entferne vorhandene Daten aus dem Cache Nachladen dauert ein Vielfaches von Cache-Zugriffen, Nachladezeit/Fehlstrafzeit bezeichnet man als Miss-Penalty 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 22

23 Beurteilung der Caches Blockorganisation Ausnutzen der räumlichen Lokalität durch Vergrößern der Blöcke reduziert Fehlzugriffe Je größer die Blöcke desto besser? Größere Blöcke, damit weniger Blöcke im Cache Wenige Blöcke präsent, damit steigt Miss-Rate an. Größere Blöcke: längere Transferzeiten bei Miss 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 23

24 Beurteilung der Caches Blockorganisation Quantitative Darstellung 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 24

25 Beurteilung der Caches Assozativität 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 25

26 Beurteilung der Caches Assozativität Erklärung: Die Daten-Cache-Fehlzugrgriffsraten verbessern sich mit steigender Assoziativität für jede der acht Cache-Größen Während der Vorteil von einfacher (direkt abgebildet) hin zu zweifacher Satzassoziativität wesentlich ist, sind die Zugewinne für weitere Assoziativitätsgrade kleiner Beim Schritt von vierfacher zu achtfacher Satzassoziativität ist nur noch wenig Verbesserung erkennbar. Kleinere Caches erzielen einen wesentlichen größeren absoluten Vorteil aus der Assoziativität 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 26

27 Beurteilung der Caches Blockersetzung Wenn ein Fehlzugriff auftritt, muss entschieden werden, welcher Block verdrängt wird Direct-Mapped ist fest vorgegeben Beim vollassoziativen Cache kommen alle Blöcke in Frage Beim satzassoziativen Cache kann zwischen den Blöcken im Satz gewählt werden Strategien: Zufällig LRU-Ersetzung LRU-Ersetzung ist sehr aufwändig (bei größeren Assoziativitätsgraden) Schätzung LRU Approximation 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 27

28 Ein intuitives Modell für Speicherhierarchien Die drei C s Die drei C s dienen zur intuitiven Erklärung des Verhaltens von Speicherhierarchien Die Ursachen für Fehlzugriff auf den Cache lassen sich hinsichtlich dreier Ursachen klassifizieren Compulsory misses: Fehler bei erstem Zugriffs auf einen Block, der noch nie im Cache war (Kaltstart-Fehler) Capacity misses: Fehlzugriff, weil der Speicher wegen Größenbeschränkung nicht alle vom Programm verwendeten Blöcke aufnehmen kann. Blöcke werden ausgelagert und später wieder angefordert. Conflict misses: In direkt abgebildeten oder mengen-assoziativen Speichern konkurrieren Blöcke um dieselbe Blockposition. 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 28

29 Speicherhierarchie des Intel Pentium P4 und des AMD Opteron z. B. Intel Pentium Prozessor, 42 Millionen Transistoren Aktuell: Core-i7-Serie: Die-Größe: 248 mm 2 bei 1,17 Milliarden Transistoren 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 29

30 L1- und L2-Caches im Intel Pentium P4 und AMD Opteron 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 30

31 Übersicht verschiedener Prozessoren 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 31

32 Zusammenfassung und Ausblick Caches Anordnung der Index-Bits Beurteilung der Caches Nächste Vorlesung behandelt Pipelining, Busse 7. Dezember 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 32

Grob-Struktur des Prozessor-Speichersystems

Grob-Struktur des Prozessor-Speichersystems 2.3.2 Speicherstruktur (1) Grob-Struktur des Prozessor-Speichersystems Chipsatz (Erklärung s. später, Folie 104) 22.4.-27.5.2013, Folie 52 2.3.2 Speicherstruktur (2) Zugriff Prozessor zumeist auf schnelle

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur

Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Themen heute Besprechung des 8. Übungsblattes Einführung in Caches Cache-Organisation Cache-Ersetzungsstrategien Aufgaben (an der Tafel) Testklausur Besprechung des 8. Übungsblattes Aufgabe 2.6. In diesem

Mehr

Cache. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Cache. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Cache 1/53 2012-02-29 Einleitung Hauptspeicherzugriffe sind langsam die

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 5. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 10 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus 4.2 Caches é Cache kommt aus dem Französischen: cacher (verstecken). é Er kann durch ein Anwendungsprogramm nicht explizit adressiert werden. é Er ist software-transparent, d.h. der Benutzer braucht nichts

Mehr

1. räumliche Lokalität - Nach dem Zugriff auf eine bestimmte Adresse erfolgt in naher Zukunft ein erneuter Zugriff auf ein dazu benachbartes Datum.

1. räumliche Lokalität - Nach dem Zugriff auf eine bestimmte Adresse erfolgt in naher Zukunft ein erneuter Zugriff auf ein dazu benachbartes Datum. Aufgabe 1 a) Warum besitzen nahezu alle modernen Prozessoren einen Cache? Zur Überbrückung der Prozessor-Speicher-Lücke. Geschwindigkeit des Arbeitsspeichers ist nicht in gleichem Maße gestiegen wie die

Mehr

Lösungsvorschlag zur 6. Übung

Lösungsvorschlag zur 6. Übung rof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 9/1 Lösungsvorschlag zur 6. Übung 1 räsenzübungen 1.1 Schnelltest a) Caches und virtueller Speicher können

Mehr

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Themen heute Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Besprechung des 9. Übungsblattes Aufgabe 2 Ist in einer Aufgabe wie hier keine explizite Wortbreite angegeben, nicht

Mehr

Speicher. Speicher. Speicherhierarchie. Speicher. Interessante Zahlen:

Speicher. Speicher. Speicherhierarchie. Speicher. Interessante Zahlen: Übersicht 1 Einleitung Hauptspeicher 2 Hauptspeicher 3 Caches, Cache-Kohärenz Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009

Mehr

Lösungsvorschlag zur 5. Übung

Lösungsvorschlag zur 5. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zur 5. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche Aussagen über Caches sind

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

6 Exkurs: Assoziativspeicher (2) 6 Exkurs: Assoziativspeicher. 7.1 Speicherhierarchie. 7 Caches

6 Exkurs: Assoziativspeicher (2) 6 Exkurs: Assoziativspeicher. 7.1 Speicherhierarchie. 7 Caches 6 Exkurs: Assoziativspeicher alternative Möglichkeit der Speicherung von Informationen in einem Computer: Assoziativspeicher (inhaltsadressierbarer Speicher bzw. CAM = Content Addressable Memory) : bei

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher

In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher Speicherhierarchie In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher Register Speicherzellen, direkt mit der Recheneinheit verbunden Cache-Speicher Puffer-Speicher

Mehr

Speicherarchitektur (16)

Speicherarchitektur (16) Zuweisungsstrategien für Cacheblocks: direct-mapped Speicherarchitektur (16) voll-assoziativ mengen-assoziativ Beispiel: Vorlesung Rechnersysteme SS `09 E. Nett 15 Speicherarchitektur (16) Konfigurationsmöglichkeiten

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Vorlesung Rechnerarchitektur. Speicher V 1.2

Vorlesung Rechnerarchitektur. Speicher V 1.2 Speicher V 1.2 Speicheranbindung früher und heute Bei der MU0 wurde der Speicher in einem Taktzyklus gelesen und geschrieben Dieses Verhalten war für ältere Rechner charakteristisch und stimmt auch noch

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Das Konzept der Speicherhierarchie

Das Konzept der Speicherhierarchie Das Konzept der Speicherhierarchie Small is fast, daher sind kleine Speicher schneller (und kosten mehr pro Byte). Vergrößerung von Speichern und schnellerer Zugriff sind aber Schlüsselfunktionen in der

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 4. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung 7: Speicher und Peripherie 183.579, SS2012 Übungsgruppen: Do., 31.05. Mi., 06.06.2012 Aufgabe 1: Ihre Kreativität ist gefragt! Um die Qualität der Lehrveranstaltung

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

4.2 Verbesserung der Leistungsfähigkeit von Caches

4.2 Verbesserung der Leistungsfähigkeit von Caches 12 4.2 Verbesserung der Leistungsfähigkeit von Caches Peter Marwedel Informatik 12 TU Dortmund 2014/05/02 Cache-Performanz Bewertungsmaß für die Leistungsfähigkeit einer Speicherhierarchie: Mittlere Zugriffszeit

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Caches in der Praxis Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 17. Juli 2015 Cache-Architektur Mehrere Cache-Stufen, z.b.: Speicherplatz

Mehr

2. Ansatzpunkt: Reduktion der Penalty Early Restart und critical word first

2. Ansatzpunkt: Reduktion der Penalty Early Restart und critical word first 2. Ansatzpunkt: Reduktion der Penalty 2.1. Early Restart und critical word first Beide Techniken basieren darauf, die Wartezeit der CPU auf das Mindestmaß zu beschränken. Early restart lädt den Block wie

Mehr

183.579, WS2012 Übungsgruppen: Mo., 07.01. Do., 10.01.2013

183.579, WS2012 Übungsgruppen: Mo., 07.01. Do., 10.01.2013 VU Technische Grundlagen der Informatik Übung 7: Speicher, Peripherie 183.579, WS2012 Übungsgruppen: Mo., 07.01. Do., 10.01.2013 Aufgabe 1: Ihre Kreativität ist gefragt! Um die Qualität der Lehrveranstaltung

Mehr

Algorithm Engineering. Alexander Kröller, Abteilung Algorithmik, IBR

Algorithm Engineering. Alexander Kröller, Abteilung Algorithmik, IBR #7 Terminchaos Nächste Vorlesungen: 27. 5. Vertretung durch Prof. Fekete 3. 6. Exkursionswoche 10. 6. Vertretung durch N.N. 17. 6. back to normal... Experiment Durchlaufe zwei gleichgrosse Arrays: Sortierte

Mehr

Freispeicherverwaltung

Freispeicherverwaltung Freispeicherverwaltung Allgemeine Techniken und Anwendung unter Linux Martin Wahl, 17.11.03 Freispeicherverwaltung 1 Überblick Allgemeines Suchstrategien Verwaltungsstrategien externer / interner Verschnitt

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 2010/2011 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt 07.02.2011 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen bearbeitet werden.

Mehr

Freispeicherverwaltung Martin Wahl,

Freispeicherverwaltung Martin Wahl, Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen

Mehr

Technische Informatik I. Übung 3 Speicherhierarchie. v t d 0 d 1 d 2 d 3 0 1 2 3. Technische Informatik I Übung 3. Technische Informatik I Übung 3

Technische Informatik I. Übung 3 Speicherhierarchie. v t d 0 d 1 d 2 d 3 0 1 2 3. Technische Informatik I Übung 3. Technische Informatik I Übung 3 Institut für Kommunikationsnetze und Rechnersysteme Technische Informatik I Paul J. Kühn, Matthias Meyer Übung 3 Speicherhierarchie Inhaltsübersicht Aufgabe 3.1 Daten-Cache Aufgabe 3.2 Virtueller Speicher

Mehr

Beispiele von Branch Delay Slot Schedules

Beispiele von Branch Delay Slot Schedules Beispiele von Branch Delay Slot Schedules Bildquelle: David A. Patterson und John L. Hennessy, Computer Organization and Design, Fourth Edition, 2012 Grundlagen der Rechnerarchitektur Prozessor 97 Weniger

Mehr

Digital Design Entwicklung der DRAMs. Richard Roth / FB Informatik und Mathematik Speicher 1

Digital Design Entwicklung der DRAMs. Richard Roth / FB Informatik und Mathematik Speicher 1 Entwicklung der DRAMs Richard Roth / FB Informatik und Mathematik Speicher 1 Entwicklung der DRAMs in Zukunft Richard Roth / FB Informatik und Mathematik Speicher 2 DRAM Speicherzelle (Trench Technology)

Mehr

Neben Prozessor ist in einem Rechner das Speichersystem entscheidend für

Neben Prozessor ist in einem Rechner das Speichersystem entscheidend für 1.5 Cache-Architekturen Neben Prozessor ist in einem Rechner das Speichersystem entscheidend für die Leistungsfähigkeit und den Kosten eines Rechners Idealvorstellung ausreichend Kapazität Zugriffszeit

Mehr

Aufgabe 4 : Virtueller Speicher

Aufgabe 4 : Virtueller Speicher Sommer 216 Technische Informatik I Lösungsvorschlag Seite 16 Aufgabe 4 : Virtueller Speicher (maximal 27 Punkte) 4.1: Generelle Funktionsweise (maximal 5 Punkte) (a) (1 Punkt) Nennen Sie zwei Gründe, weshalb

Mehr

1 Organisationsaspekte RISC- und CISC-Prozessoren Ausnutzen von Cache-Effekten

1 Organisationsaspekte RISC- und CISC-Prozessoren Ausnutzen von Cache-Effekten McFarling [1989] konnte Cache Misses um 75% in 8KB direkt abbildenden Caches durch Softwaremaßnahmen senken. Instruktionen Umordnen im Speicher, um Conflict-Misses zu reduzieren Profiling : spezielle Konfliktvermeidungsmaßnahmen

Mehr

7.1 Einleitung. 4 Kapitel 7 Speicherhierarchie

7.1 Einleitung. 4 Kapitel 7 Speicherhierarchie 4 Kapitel 7 Speicherhierarchie 7.1 Einleitung Seit den Anfängen des Computers wünschen sich Programmierer unbegrenzt viel und unendlich schnellen Speicher. Die Konzepte dieses Kapitels helfen, dem Benutzer

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Rechnerarchitektur. Vorlesungsbegleitende Unterlagen. WS 2003/2004 Klaus Waldschmidt

Rechnerarchitektur. Vorlesungsbegleitende Unterlagen. WS 2003/2004 Klaus Waldschmidt Rechnerarchitektur Vorlesungsbegleitende Unterlagen WS 2003/2004 Klaus Waldschmidt Teil 15 Speicherhierarchie und s Seite 1 Speicherhierarchie: Der Speicherraum wird in einzelne Schichten unterteilt, die

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 16. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 25. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

technische universität dortmund fakultät für informatik informatik 12 Speicherhierarchie Peter Marwedel Informatik /05/18

technische universität dortmund fakultät für informatik informatik 12 Speicherhierarchie Peter Marwedel Informatik /05/18 Speicherhierarchie Peter Marwedel Informatik 3/5/8 Kontext Prozessor Leitwerk Rechenwerk Speicherarchitektur Externe Kommunikation Interne Kommunikation, 3 - - Die Realität: Kosten/Mbyte und Zugriffszeiten

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 21/211 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt mit Lösungsvorschlag 7.2.211 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Verbesserung der Leistungsfähigkeit von Caches

Verbesserung der Leistungsfähigkeit von Caches 12 Verbesserung der Leistungsfähigkeit von Caches Peter Marwedel Informatik 12 TU Dortmund 2013/05/20 Verbesserung der Leistungsfähigkeit von Caches ($,, ): Übersicht Beeinflussende Größen (Kapitel 5.2,

Mehr

Rechnerstrukturen Winter SPEICHER UND CACHE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter SPEICHER UND CACHE. (c) Peter Sturm, University of Trier 1 9. SPEICHER UND CACHE (c) Peter Sturm, University of Trier 1 Inhalt Grundlagen Speichertypen RAM / ROM Dynamisches RAM Cache- Speicher Voll AssoziaNv n- Wege AssoziaNv Direct Mapping Beispiel: 8 Bit- Register

Mehr

ARBEITSWEISE VON CACHES: ALLGEMEINES SCHEMA

ARBEITSWEISE VON CACHES: ALLGEMEINES SCHEMA Vorleung 3 ARBEITSWEISE VON CACHES: ALLGEMEINES SCHEMA Raumänderung: Übungen ab ofort im M3! 24 CACHES UND SPEICHERHIERARCHIEN it ein kleiner chneller Speicher, der zichen Hauptpeicher und Prozeor eingefügt

Mehr

Grundlagen der Rechnerarchitektur. Ein und Ausgabe

Grundlagen der Rechnerarchitektur. Ein und Ausgabe Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Betriebssysteme Aufgaben Management von Ressourcen Präsentation einer einheitlichen

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 6 und Präsenzaufgaben Übung 7

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 6 und Präsenzaufgaben Übung 7 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 6 und Präsenzaufgaben Übung 7 Dominik Schoenwetter Erlangen, 16. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1

Technische Grundlagen der Informatik 2 SS Einleitung. R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt E-1 E-1 Technische Grundlagen der Informatik 2 SS 2009 Einleitung R. Hoffmann FG Rechnerarchitektur Technische Universität Darmstadt Lernziel E-2 Verstehen lernen, wie ein Rechner auf der Mikroarchitektur-Ebene

Mehr

Linux Paging, Caching und Swapping

Linux Paging, Caching und Swapping Linux Paging, Caching und Swapping Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 2010/2011 Wolfgang Heenes, Patrik Schmittat 6. Aufgabenblatt mit Lösungsvorschlag 06.12.2010 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 13. Vorlesung Inhalt Cache Lesen Schreiben Überschreiben Memory Management Unit (MMU) Translation Lookaside Buffer (TLB) Klausurvorbereitung Inhalte der Klausur Rechnergrundlagen

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012

Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012 Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine

Mehr

Grundlagen der Informatik III

Grundlagen der Informatik III Grundlagen der Informatik III WS 2009 / 2010 [Folien basierend auf VL von Prof. Eckert, WS 07/08, und von Prof. Fellner WS 08/09] Prof. Dr. rer. nat. Frederik Armknecht Sascha Müller Daniel Mäurer Fachbereich

Mehr

Technische Informatik 2 Speichersysteme, Teil 3

Technische Informatik 2 Speichersysteme, Teil 3 Technische Informatik 2 Speichersysteme, Teil 3 Prof. Dr. Miroslaw Malek Sommersemester 2004 www.informatik.hu-berlin.de/rok/ca Thema heute Virtueller Speicher (Fortsetzung) Translation Lookaside Buffer

Mehr

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper Speicherverwaltung Real Mode Nach jedem starten eines PC befindet sich jeder x86 (8086, 80386, Pentium, AMD) CPU im sogenannten Real Mode. Datenregister (16Bit) Adressregister (20Bit) Dadurch lassen sich

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Lösungsvorschlag zur 8. Übung

Lösungsvorschlag zur 8. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zur 8. Übung 1 Bonuspunkteübungen Diese Übungen werden nicht in den Präsenzübungen

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

10. Speicher-Organisation Einführung

10. Speicher-Organisation Einführung 10. Speicher-Organisation 10.1 Einführung Wir haben bereits bei der Betrachtung von Befehlssätzen beobachtet, daß dort eine 90/10-Regel gilt. Bei einem komplexen Befehlssatz werden 90% der Operationen

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 24.01.2013 Online Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Zeiger. C-Kurs 2012, 2. Vorlesung. Tino Kutschbach 10.

Zeiger. C-Kurs 2012, 2. Vorlesung. Tino Kutschbach  10. Zeiger C-Kurs 2012, 2. Vorlesung Tino Kutschbach tino.kutschbach@campus.tu-berlin.de http://wiki.freitagsrunde.org 10. September 2012 This work is licensed under the Creative Commons Attribution-ShareAlike

Mehr

Rechnerorganisation. 1. Juni 201 KC Posch

Rechnerorganisation. 1. Juni 201 KC Posch .6.2 Rechnerorganisation. Juni 2 KC Posch .6.2 2 .6.2 Front Side Bus Accelerated Graphics Port 28 MHz Front Side Bus North Bridge RAM idge South Bri IDE USB PCI Bus 3 .6.2 Front Side Bus Front Side Bus

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 13. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Über mich. Betriebssysteme Tutorium 1. Organisatorisches I. Was machen wir heute? Tutorien Wöchentliches Tut-Blatt Vorbereitung auf Theorieblätter

Über mich. Betriebssysteme Tutorium 1. Organisatorisches I. Was machen wir heute? Tutorien Wöchentliches Tut-Blatt Vorbereitung auf Theorieblätter Über mich Betriebssysteme Tutorium 1 Philipp Kirchhofer philipp.kirchhofer@student.kit.edu http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität Karlsruhe (TH) 8. Oktober 009

Mehr

Leichtgewichtsprozesse

Leichtgewichtsprozesse Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden

Mehr

Speicherorganisation

Speicherorganisation Speicherorganisation John von Neumann 1946 Ideal wäre ein unendlich großer, undendlich schneller und undendlich billiger Speicher, so dass jedes Wort unmittelbar, d.h. ohne Zeitverlust, zur Verfügung steht

Mehr

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Polling vs Interrupts. SoSe bis P

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Polling vs Interrupts. SoSe bis P SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 3(Musterlösung) 2014-05-05 bis 2014-05-09 Aufgabe 1: Polling vs Interrupts (a) Erläutern Sie

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr

Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff

Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff Konzepte von Betriebssystemkomponenten Disk-Caches und Dateizugriff von Athanasia Kaisa Grundzüge eines Zwischenspeichers Verschiedene Arten von Zwischenspeicher Plattenzwischenspeicher in LINUX Dateizugriff

Mehr

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich fr Algorithmen und Datenstrukturen Institut fr Computergraphik und Algorithmen Technische Universität Wien One of the few resources increasing faster

Mehr

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3

1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 1. Übersicht zu den Prozessorfamilien 2 2. Grundlagen der Rechnerorganisation 3 2.1. Aufbau eines Rechners in Ebenen 3 2.2. Die Ebene der elektronischen Bauelemente 5 2.3. Die Gatterebene 5 2.3.1 Einfache

Mehr

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann Speicher- und Cacheverwaltung unter Linux Ralf Petring & Guido Schaumann Übersicht Virtueller Adressraum Virtuelle Speicheraufteilung Reale Speicheraufteilung Speicherverwaltung Speicherzugriff Auslagerungsstrategien

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 11.01.2017 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Übung zu Einführung in die Informatik # 10

Übung zu Einführung in die Informatik # 10 Übung zu Einführung in die Informatik # 10 Tobias Schill tschill@techfak.uni-bielefeld.de 15. Januar 2016 Aktualisiert am 15. Januar 2016 um 9:58 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* a),

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 13.01.2015 1 Klausur Termin: 10. März 2016, 13:00 Uhr Raum: Audimax, KG 2 4 ECTS Punkte 3 Klausuranmeldung Anmeldefrist: 31.01.2016 (Ausnahme:

Mehr

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 UNIVERSITÄT LEIPZIG Enterprise Computing Einführung in das Betriebssystem z/os Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/13 Verarbeitungsgrundlagen Teil 4 Cache el0100 copyright W.

Mehr

U4-1 Aufgabe 3: einfache malloc-implementierung

U4-1 Aufgabe 3: einfache malloc-implementierung U4 3. Übung U4 3. Übung Besprechung der Aufgabe 2: wsort Aufgabe 3: malloc-implementierung Ziele der Aufgabe Zusammenhang zwischen "nacktem Speicher" und typisierten bereichen verstehen Funktion aus der

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Der Binder Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 28. Mai 2015 Herausforderungen durch große Programme Große Programme: die meisten

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 12 Rechnerarchitektur (RA) Sommersemester 2015 Foliensatz 13: Verbesserung der Leistungsfähigkeit von Caches Michael Engel Informatik 12 michael.engel@tu-.. http://ls12-www.cs.tu-.de/daes/ Tel.: 0231 755

Mehr

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast

Quantitative Prinzipien im Hardwareentwurf. 1. Small is fast Quantitative Prinzipien im Hardwareentwurf 1. Small is fast Kleine Hardwareeinheiten schalten in der Regel schneller als größere. Kleine Transistoren bilden an ihren Gates kleinere Kapazitäten die Source-Drain

Mehr

Inhalt Teil 10 (Caches) aus 6. Speicherorganisation

Inhalt Teil 10 (Caches) aus 6. Speicherorganisation Inhalt Teil 10 (Caches) aus 6. Speicherorganisation 1 6.2 Caches 6.2.1 Systemstrukturen 6.2.2 Laden des Cache 6.2.3 Cache-Strukturen Vollassoziativer Cache Direkt zuordnender Cache N-fach assoziativer

Mehr

Betriebssysteme 1. Thomas Kolarz. Folie 1

Betriebssysteme 1. Thomas Kolarz. Folie 1 Folie 1 Betriebssysteme I - Inhalt 0. Einführung, Geschichte und Überblick 1. Prozesse und Threads (die AbstrakFon der CPU) 2. Speicherverwaltung (die AbstrakFon des Arbeitsspeichers) 3. Dateisysteme (die

Mehr

Wunschvorstellung der Entwickler vom Speicher

Wunschvorstellung der Entwickler vom Speicher Wunschvorstellung der Entwickler vom Speicher Unendlich groß Unendlich schnell Nicht flüchtig billig Obwohl sich der verfügbare Speicher laufend erhöht, wird immer mehr Speicher benötigt, als verfügbar

Mehr

Klausur zur Mikroprozessortechnik

Klausur zur Mikroprozessortechnik Prof. Dr. K. Wüst WS 2001 FH Gießen Friedberg, FB MNI Studiengang Informatik Klausur zur Mikroprozessortechnik Nachname: Vorname: Matrikelnummer: 7.3.2001 Punkteverteilung Aufgabe Punkte erreicht 1 3 2

Mehr