Vorlesung 2 KÜRZESTE WEGE

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 2 KÜRZESTE WEGE"

Transkript

1 Vorlesung 2 KÜRZESTE WEGE 34

2 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme! Oberflächenparameter! Flugrouten! Routenlayout! Logistik, Verkehr! Routing in Netzwerken 35

3 SSSP: DER ALGORITHMUS VON BELLMAN UND FORD 36

4 Kürzeste Wege! Definition: Sei ein gerichteter und gewichteter Graph G=(V,E) mit der Gewichtsfkt. w: E R gegeben. Das Gewicht eines Weges p = <v 0, v 1,, v k > ist die Summe der Gewichte seiner Kanten: w( p) = k i= 1 w( v i 1, v i )! Definition: Sei G=(V,E) wie oben. Das Gewicht eines kürzesten Weges p zwischen u,v aus V ist definiert als: δ ( u, v) = { w p u v } min{ ( ): : sonst! Definition: Sei G=(V,E) wie in Def Ein kürzester Weg zwischen u,v aus V ist ein Weg p mit w(p) = δ(u,v). p 37

5 Bellman-Ford-Algorithmus! Eingabe: Gewichteter Graph G=(V, E) mit Kantengewichten w und einem Startknoten s! Ausgabe: Existenz eines Zyklus negativer Länge oder Länge der kürzesten Wege von s zu allen anderen Knoten! Graphbasiert: s. Tafel 38

6 Beispiel [Cormen, Leiserson, Rivest, S. 533] 39

7 Algebraischer Bellman-Ford! Herleitung: s. Tafel! Eingabe und Ausgabe wie zuvor Bellman-Ford(A, s) 1. d = 2. d(s) = 0 3. for k = 1 to N-1 do 4. d = d min.+ A 5. if d d min.+ A 6. return negative-weight cycle found 7. return d 40

8 Fazit Bellman-Ford Vorgehensweise:! Reduzierung aufs Wesentliche (Relaxierung)! Repräsentation der Datenstrukturen durch Vektoren und Matrizen! Halbringnotation für Relaxierung Bewertung:! Algebraische Schreibweise kompakter! Fragen (MG):! Welche Zeitkomplexität?! Wie hoch im Vergleich zur graphbasierten Variante? 41

9 ALL-PAIRS SHORTEST PATHS 42

10 All Pairs Shortest Paths (APSP)! Eingabe: Gewichteter Graph G=(V,E)! Ausgabe: Für jedes Paar von Knoten u,v aus V die Distanz von u nach v sowie einen kürzesten Weg a b c d e f a b c d e f 0 a 2 5 b -4 d c e 7-1 f 43

11 All Pairs Shortest Paths (APSP)! Eingabe: Gewichteter Graph G=(V,E)! Ausgabe: Für jedes Paar von Knoten u,v in V die Distanz von u nach v sowie einen kürzesten Weg a b c d e f a b c d e a 2 5 b -4 d c e 7-1 f f 0 44

12 Eine einfache Idee Lösung durch wiederholtes Single-source shortest path (SSSP)! Von jedem Knoten aus SSSP-Problem lösen! Algorithmen: Dijkstra, Bellman-Ford! Anwendbarkeit? Algorithmus Dijkstra (lineares Array) Dijkstra (binärer Heap) Dijkstra (Fibonacci-Heap) Bellman-Ford Zeitkomplexität bei V maliger Anwendung O( V ³ + V E ) O( V E log V ) O( V ² log V + V E ) O( V 2 E ) 45

13 All Pairs Shortest Paths! Frage (MG): Sehen Sie Alternativen? Lassen sich bereits bekannte Techniken anwenden? (l) d ij Sei die Länge eines kürzesten i-j-wegs bestehend aus höchstens l Kanten. d ( l) ij = min( d ( l 1) ij,min 1 k n { d ( l 1) ik + w kj 0, falls l, falls l }),falls l 1 = 0 undi = = 0 und i j j Matrix D (n) enthält die gesuchte Lösung 46

14 All Pairs Shortest Paths! Umsetzung der Formel in einen Algorithmus, der wiederholt für fortgesetzte D aufgerufen wird: Naive-Extend-Shortest-Path(D,W) 1. for iç 1 to n do 2. for jç 1 to n do 3. d ij ç 4. for k ç 1 to n do 5. d ij ç min(d ij, d ik + w kj ) 6. return D 47

15 All Pairs Shortest Paths D 6 0 D

16 All Pairs Shortest Paths D 6 0 D 6 49

17 All Pairs Shortest Paths D 6 0 D 6 50

18 All Pairs Shortest Paths D 6 0 D 6 51

19 All Pairs Shortest Paths D 6 0 D 6 52

20 All Pairs Shortest Paths D 6 0 D 6 53

21 All Pairs Shortest Paths D 6 0 D

22 All Pairs Shortest Paths Slow-All-Pairs-Shortest-Paths(W) 1. D (1) W 2. for m 2 to n-1 do 3. D (m) Naive-Extend-Shortest-Path(D (m-1),w) 4. return D (n-1)! Fragen (MG):! Welche Zeitkomplexität?! Wie geht es schneller? 55

23 All Pairs Shortest Paths Faster-All-Pairs-Shortest-Paths(W) 1. D (1) W 2. m 1 3. while m < n-1 do 4. D (2m) Extend-Shortest-Path(D (m), D (m) ) 5. m 2m 6. return D (m) 56 56

24 Zeitkomplexität! Die while-schleife wird O(log n) mal durchlaufen! Das naive Erweitern der Pfade hat kubischen Aufwand! Aber: Schnellere Algorithmen zur Multiplikation zweier Matrizen existieren! Beste bekannte obere Schranke für MM(n): O(n ) (Williams, UC Berkeley)! Beste bekannte untere Schranke für MM(n): O(n 2 ) 57

25 Zusammenfassung APSP! Man betrachtet kürzeste Wege der Länge höchstens l! Die Länge l wird schrittweise erhöht, bis n-1 erreicht ist! Fortgesetztes Quadrieren führt zu logarithmischer Laufzeit der äußeren Schleife! Gesamtlaufzeit: O(MM(n) log n)! In der Praxis meist: O(n 3 log n) oder O(n log n)! Aber: Pfadinformation geht verloren durch Beschleunigung 58

26 MAXIMALE UNABHÄNGIGE MENGEN 59

27 Aufgabe! Sie richten eine Party aus und wollen Einladungen versenden! Zu beachten:! Unter ihren Freunden können sich einige nicht leiden è Feinde dürfen nicht gleichzeitig eingeladen werden! Ziel: Möglichst viele Personen einladen! Frage (MG): Wie modellieren Sie das Problem und wie lösen Sie es? 60

28 Unabhängige Menge im Graphen! Definition: Sei G = (V, E) ein Graph. Eine unabhängige Menge in G ist eine Menge I V dass gilt: u,v I {u,v} V! Also: Von keiner Kante sind beide Endknoten in I derart,! Maximum independent set: Unabhängige Menge mit größtmöglicher Kardinalität in G! Verwandtes Problem: Minimale Knotenüberdeckung! Maximal independent set: Unabhängige Menge in G, die nicht erweiterbar ist! Frage: Komplexität? 61

29 Beispiele für unabhängige Mengen 62

30 Ein einfacher Algorithmus Eingabe: Graph G = (V, E) Ausgabe: Nicht erweiterbare unabhängige Menge I 1. I =, V = V 2. while (V ) do a) Wähle beliebiges v in V b) Setze c) Setze 3. return I I = I v V ' = V '\ (v N(v))! N(v) ist die Nachbarschaft eines Knotens v 63

31 Beispiel 64

32 Lubys Algorithmus Eingabe: Graph G = (V, E) Ausgabe: Nicht erweiterbare unabhängige Menge I 1. I =, G = G 2. while (G ist nicht der leere Graph) do a) Wähle eine zufällige Menge von Knoten S in V(G ), indem jeder Knoten v unabhängig mit Wkt. 1/(2d(v)) gewählt wird b) Für jede Kante (u, v) in E(G ): Falls beide Endpunkte in S sind, dann entferne den Knoten mit kleinerem Grad aus S (Konflikte beliebig auflösen). Diese neue Menge wird S genannt. c) Setze und. 3. return I I = I S' G' = G'\ (S' N(S'))! Die Nachbarschaft einer Knotenmenge ist die Vereinigung der einzelnen Nachbarschaften 65

33 Korrektheit! In jedem Schritt wird die Menge S hinzugefügt! S ist eine unabhängige Menge! S ist unabhängig zu I wegen der Löschung von S' N(S')! => I ist immer eine unabhängige Menge! I ist nicht erweiterbar (maximal)! Alle aus G entfernten Knoten sind entweder aus I oder aus N(I) 66

34 Laufzeit! Theorem: Die erwartete Anzahl von Runden ist O(log m).! Sei G j = (V j, E j ) der Graph nach Runde j.! Hauptlemma: Für ein c < 1 gilt: Ex( E j / E j-1 ) < c E j-1! Kategorisierung der Knoten v:! Gut: Mindestens 1/3 der Nachbarn haben niedrigeren Grad als v! Schlecht: Sonst! Intuitiv: Ein guter Knoten hat gute Chancen für Aufnahme in I! Kategorisierung der Kanten e:! Schlecht: Beide Endpunkte von e sind schlecht! Gut: Sonst 67

35 Viele gute Kanten! Definition: Die Nachbarschaft kleineren Grades eines Knotens u in V ist definiert als: X L(u) := {v: v in N(u) d(v) d(u)}! Fakt: Ein Knoten u ist P gut, falls L(u) d(u) / 3. 1! Lemma: Für jeden Knoten u in V gilt: Pr(u 2 I u 2 S) 2.! Lemma: 1 8u 2 V,Pr(u 2 I) 4d(u). Gegenereignis 2! Lemma: Falls v gut ist, dann Pr(v in N(I)) 1/ ! Lemma: Mindestens die Hälfte der Kanten sind gut.! Beweise: siehe Tafel 68

36 Hauptlemma! Hauptlemma (anders ausgedrückt): In jeder Runde wird mindestens jede 72. Kante (im Erwartungswert) entfernt.! Beweis: siehe Tafel 69

37 Lubys Algorithmus algebraisch! Siehe Matlab-Code und Übung 70

38 Zusammenfassung! Unabhängige Mengen sind in Konfliktgraphen sehr nützlich! Der triviale Algorithmus ist inhärent sequentiell! Lubys Algorithmus bietet Vorteile:! Parallelität: Auswahl der Knoten in jeder Phase ist voneinander unabhängig! Laufzeitschranke: O(log n) Phasen (im Erwartungswert)! Algebraische Implementierung vglw. kurz! Bessere Analysen sind bekannt:! In jeder Iteration werden mehr Kanten gelöscht! Die Laufzeit gilt mit hoher Wahrscheinlichkeit 71

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 45 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Distanzen zwischen allen Knotenpaaren (APD)! Viele Anwendungen:! Navis! Netzwerkrouting!...

Mehr

Das EM-Modell. Vorlesung 3: Lubys Algorithmus. Graphenalgorithmen und lineare Algebra Hand in Hand

Das EM-Modell. Vorlesung 3: Lubys Algorithmus. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 3: Lubys Algorithmus Das EM-Modell 85 Nachsatz: Halbringnotation! Auch Bücher enthalten Fehler...! A op 1.op 2 v: Abkürzung für Matrix-Vektor-Multiplikation! Vereinbarung für Reihenfolge: A +.*

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

p = (v 0, v 1,..., v k )

p = (v 0, v 1,..., v k ) 1 Routenlaner Hamburg 300 km 200 km Berlin 450 km Köln 200 km 400 km Frankfurt 50 km 200 km 150 km Mannheim Saarbrücken 100 km 250 km Stuttgart 200 km Dresden 300 km Nürnberg 200 km München Berechne den

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Kürzeste Pfade. Organisatorisches. VL-17: Kürzeste Pfade. (Datenstrukturen und Algorithmen, SS 2017) Walter Unger

Kürzeste Pfade. Organisatorisches. VL-17: Kürzeste Pfade. (Datenstrukturen und Algorithmen, SS 2017) Walter Unger Organisatorisches VL-17: Kürzeste Pfade (Datenstrukturen und Algorithmen, SS 2017) Walter Unger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11:15 12:00 Übungen: Tim Hartmann,

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Übersicht Topologische Sortierung (einfach) Kürzeste Wege finden

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra Datenstrukturen und Algorithmen Vorlesung 17: (K) Joost-Pieter Katoen Lehrstuhl für Informat Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 1. Juni 15 1 Joost-Pieter

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring Kürzeste Wege in Graphen Orte mit Straßenverbindungen Orte als Knoten eines Graphen Straßenverbindungen als Kanten eines Graphen Ungerichteter Graph G = (V,E) Kanten Knoten Knotenmenge V = {,,n} oder {,,n

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens Praktikum Algorithmen-Entwurf (Teil 5)..5 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen Endpunkt

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Wintersemester 2004/ Februar 2005

Wintersemester 2004/ Februar 2005 Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, )

6. Transitive Hülle. 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) 6. Transitive Hülle 6.1 Min-Plus-Matrix-Produkt und Min-Plus-Transitive Hülle Ring Z(+, ) Semiring N(+, ) Gruppe Halbgruppe Halbgruppe Halbgruppe Wir betrachten den (kommutativen) Semiring über R { } mit

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach B? B A Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

Von Aachen nach Halle...

Von Aachen nach Halle... Von Aachen nach Halle... Koeln? Aachen Halle 14. 6. 15. 6. 16. 6. Saarbruecken? Effiziente Algorithmen fr Graphtraversierungen Ulrich Meyer p. 3 Von Aachen nach Halle... Koeln? Aachen Halle 14. 6. 15.

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Gliederung. Algorithmen und Datenstrukturen II. Graphen: All-pairs shortest paths. Graphen: All-pairs shortest paths. Graphen: Kürzeste Pfade III

Gliederung. Algorithmen und Datenstrukturen II. Graphen: All-pairs shortest paths. Graphen: All-pairs shortest paths. Graphen: Kürzeste Pfade III Gliederung Algorithmen und Datenstrukturen II : Kürzeste Pfade III D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Problem Transitiver

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Systems of Distinct Representatives

Systems of Distinct Representatives Systems of Distinct Representatives Seminar: Extremal Combinatorics Peter Fritz Lehr- und Forschungsgebiet Theoretische Informatik RWTH Aachen Systems of Distinct Representatives p. 1/41 Gliederung Einführung

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

SS11 Effiziente Algorithmen 5. Kapitel: Dynamische Programmierung

SS11 Effiziente Algorithmen 5. Kapitel: Dynamische Programmierung SS11 Effiziente Algorithmen 5. Kapitel: Dynamische Programmierung Martin Dietzfelbinger Juni/Juli 2011 FG KTuEA, TU Ilmenau Effiziente Algorithmen SS11 Kapitel 5 Kapitel 5: Dynamische Programmierung Typische

Mehr

Kap. 5: Graphen. Carsten Gutwenger Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund. 17. VO DAP2 SS

Kap. 5: Graphen. Carsten Gutwenger Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund. 17. VO DAP2 SS Kap. 5: Graphen Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 17. VO DAP2 SS 2009 23. Juni 2008 1 Motivation Warum soll ich heute hier bleiben? Graphen sind wichtig und

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 266 Lastbalancierung Motivation! Ein paralleles System besteht aus! verschiedenen Recheneinheiten,! die miteinander kommunizieren können! Warum

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Teil 2: Graphenalgorithmen

Teil 2: Graphenalgorithmen Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Problemstellung Ungewichtete Graphen Distanzgraphen Gewichtete

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Graphalgorithmen Netzwerkalgorithmen. Laufzeit

Graphalgorithmen Netzwerkalgorithmen. Laufzeit Netzwerkalgorithmen Laufzeit (Folie 390, Seite 78 im Skript) Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

2. Übungsblatt zu Algorithmen II im WS 2016/2017

2. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann. Übungsblatt zu Algorithmen II im WS 016/017 Aufgabe

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Komplexität von Algorithmen:

Komplexität von Algorithmen: Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

Organisatorisches. Programmierpraktikum Das Canadian Traveller Problem. Organisatorisches. Organisatorisches

Organisatorisches. Programmierpraktikum Das Canadian Traveller Problem. Organisatorisches. Organisatorisches Organisatorisches Programmierpraktikum Das Canadian Traveller Problem Rainer Schrader Birgit Engels Anna Schulze Zentrum für Angewandte Informatik Köln. April 006 Prof. Dr. Rainer Schrader Tel.: 470-600

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 19. Vorlesung Kürzeste Wege & Dijkstras Algorithmus Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Wozu kürzeste Wege? 2 3-8 Modellierung

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG

Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG Vorlesung 7 GRAPHBASIERTE BILDSEGMENTIERUNG 195 Bildsegmentierung! Aufgabe: Bestimme inhaltlich zusammenhängende, homogene Bereiche eines Bildes! Weit verbreitetes Problem in der Bildverarbeitung! Viele

Mehr

Single Source Sortest Path Negative Kreise All-Pair Shortest Path Problem Minimum Mean Cycle Zusammenfassung. Shortest Paths

Single Source Sortest Path Negative Kreise All-Pair Shortest Path Problem Minimum Mean Cycle Zusammenfassung. Shortest Paths Shortest Paths Label Correcting Algorithms Florian Reitz Universität Trier Fachbereich IV Fach Informatik Seminar Netzwerkalgorithmen WS 2005/2006 Einleitung: Problemübersicht Eben: Schnelle Algorithmen

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 19.6.1 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=99 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1 Organisatorisches

Mehr

9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67

9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 9. November 2011 ZHK in dynamischen Graphen Zentralitäten H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 ZHK in dynamischen Graphen Ungerichteter schlichter dynamischer Graph Dynamisch:

Mehr

void bellford ( List adjlst [n], int n, int i, int j){ int d[n] = + inf ; d[i] = 0;

void bellford ( List adjlst [n], int n, int i, int j){ int d[n] = + inf ; d[i] = 0; für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS5 hristian Dehnert, Friedrich Gretz, enjamin Kaminski, Thomas Ströder Tutoraufgabe (ellman-ford Algorithmus): a) Passen

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 10

Grundlagen der Algorithmen und Datenstrukturen Kapitel 10 Grundlagen der Algorithmen und Datenstrukturen Kapitel 0 Christian Scheideler + Helmut Seidl SS 009 5.06.09 Kapitel 0 Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach B? B A 5.06.09

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Sortieren II / HeapSort Heaps

Sortieren II / HeapSort Heaps Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: dsal-i1@algo.rwth-aachen.de Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php

Mehr

Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen

Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen Effiziente Algorithmen Einführung 1 Inhalt 1. Flußprobleme 2. Matching. Lineares Programmieren 4. Ganzzahliges Programmieren 5. NP-Vollständigkeit 6. Approximationsalgorithmen 7. Backtracking und Branch-and-Bound

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965).

κ(k) k K S Algorithmus zur Bestimmung eines spannenden Baumes mit minimalen Kosten (Kruskal, 1965). 5. Graphenprobleme Im folgenden bezeichnen G = (E, K) einen endlichen Graphen mit der Eckenmenge E und der Kantenmenge K. G kann ungerichtet, gerichtet, schlicht oder nicht schlicht sein. 5.1 Spannende

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Inhaltsverzeichnis. - Kurzer Überblick Seite ) Einleitung Seite ) Vorbereitungen Seite 2. - ungewichtete und ungerichtete Graphen Seite 2

Inhaltsverzeichnis. - Kurzer Überblick Seite ) Einleitung Seite ) Vorbereitungen Seite 2. - ungewichtete und ungerichtete Graphen Seite 2 Inhaltsverzeichnis - Kurzer Überblick Seite 1-1) Einleitung Seite 1-2) Vorbereitungen Seite 2 - ungewichtete und ungerichtete Graphen Seite 2 - Erweiterung für gerichtete Graphen Seite 8-3) a) Abschätzung

Mehr

Kürzester Wege in Graphen

Kürzester Wege in Graphen Kürzester Wege in Graphen Zur Bestimmung von kürzesten Wegen in Graphen betrachten wir zwei unterschiedliche Algorithmen: Path Problem All Pairs Shortest Path-Problem Algorithmen und Datenstrukturen 336

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin

Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin Departement Mathematik und Informatik Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin 20. April 2017 Graphenalgorithmen III Robert Floyd Algorithmen und Datenstrukturen, FS17 20. April

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 19. Vorlesung Kürzeste Wege & Dijkstras Algorithmus Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Ergebnisse des 1. Kurztests 14 12 10

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datentrukturen Prof. Dr. Hanjo Täubig Lehrtuhl für Effiziente Algorithmen (Prof. Dr. Ernt W. Mayr) Intitut für Informatik Techniche Univerität München Sommeremeter H. Täubig

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr