Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013

Save this PDF as:
Größe: px
Ab Seite anzeigen:

Download "Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2013"

Transkript

1 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2013 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1

2 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Wir betrachten nun eine Unterklasse von Kellerautomaten, die dazu verwendet werden können, Sprachen deterministisch und damit effizient zu erkennen. Deterministischer Kellerautomat (Definition) En deterministischer Kellerautomat M ist ein 7-Tupel M = (Z, Σ, Γ, δ, z 0, #, E), wobei (Z, Σ, Γ, δ, z 0, #) ein Kellerautomat ist, E Z die Menge von Endzuständen ist und die Überführungsfunktion δ deterministisch ist, das heißt: für alle z Z, a Σ und A Γ gilt: δ(z, a, A) + δ(z, ε, A) 1. Sander Bruggink Automaten und Formale Sprachen 327

3 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Unterschiede zwischen Kellerautomaten und deterministischen Kellerautomaten: Deterministische Kellerautomaten haben eine Menge von Endzuständen und akzeptieren mit Endzustand und nicht mit leerem Keller. Für jeden Zustand z und jedes Kellersymbol A gilt: entweder gibt es höchstens einen ε-übergang oder es gibt für jedes Alphabetsymbol höchstens einen Übergang. Konfigurationen und Übergänge zwischen Konfigurationen bleiben jedoch gleich definiert. Sander Bruggink Automaten und Formale Sprachen 328

4 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Akzeptierte Sprache bei deterministischen Kellerautomaten (Definition) Sei M = (Z, Σ, Γ, δ, z 0, #, E) ein deterministischer Kellerautomat. Dann ist die von M akzeptierte Sprache: D(M) = {x Σ (z 0, x, #) (z, ε, γ) für ein z E, γ Γ }. Sander Bruggink Automaten und Formale Sprachen 329

5 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Deterministisch kontextfreie Sprachen Eine Sprache heißt deterministisch kontextfrei genau dann, wenn sie von einem deterministischen Kellerautomaten akzeptiert wird. Sander Bruggink Automaten und Formale Sprachen 330

6 Deterministisch kontextfreie Sprachen Deterministische Kellerautomaten Beispiel: Die Sprache L = {w$w R w {a, b} } ist deterministisch kontextfrei. M = ({z 1, z 2, z 3 }, {a, b, $}, {#, A, B}, δ, z 1, #, {z 3 }), wobei δ folgendermaßen definiert ist (wir schreiben (z, a, A) (z, x), falls (z, x) δ(z, a, A)). (z 1, a, #) (z 1, A#) (z 1, a, A) (z 1, AA) (z 1, a, B) (z 1, AB) (z 1, b, #) (z 1, B#) (z 1, b, A) (z 1, BA) (z 1, b, B) (z 1, BB) (z 1, $, #) (z 2, #) (z 1, $, A) (z 2, A) (z 1, $, B) (z 2, B) (z 2, a, A) (z 2, ε) (z 2, b, B) (z 2, ε) (z 2, ε, #) (z 3, #) Sander Bruggink Automaten und Formale Sprachen 331

7 Deterministisch kontextfreie Sprachen Deterministische Kellerautomaten Beispiel 2: Die Sprache L = {ww R w {a, b} } ist jedoch nicht deterministisch kontextfrei. (Ohne Beweis.) Wir haben letzte Woche schon gesehen, dass diese Sprache kontextfrei ist. Das heißt, die Klasse der kontextfreien Sprachen und die Klasse der deterministisch kontextfreien Sprachen sind nicht identisch! Die Klasse der deterministisch kontextfreien Sprachen ist eine echte Teilmenge der Klasse der kontextfreien Sprachen. Sander Bruggink Automaten und Formale Sprachen 332

8 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Weitere Bemerkungen: Effizienz: Mit Hilfe von deterministischen Kellerautomaten hat man jetzt ein Verfahren zur Lösung des Wortproblems, das eine lineare Anzahl von Schritten braucht (als Funktion der Länge des Eingabewortes). Dazu lässt man einfach den Automaten auf dem Wort arbeiten und überprüft, ob man in einen Endzustand gelangt. Deterministisch kontextfreie Grammatiken: Es gibt auch Grammatikklassen, die zu den deterministisch kontextfreien Sprachen passen. Dies ist aber nicht ganz trivial; daher gibt es hierzu mehrere Ansätze. Der bekannteste davon sind die sogenannten LR(k)-Grammatiken. Sander Bruggink Automaten und Formale Sprachen 333

9 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Die Abschlusseigenschaften bei deterministisch kontextfreien Sprachen sehen etwas anders aus als bei kontextfreien Sprachen. Abgeschlossenheit Sind die kontextfreien Sprachen abgeschlossen unter den folgenden Operationen? Vereinigung (L 1, L 2 kontextfrei L 1 L 2 kontextfrei)? Schnitt (L 1, L 2 kontextfrei L 1 L 2 kontextfrei)? Schnitt mit regulärer Sprache (L 1 kontextfrei, L 2 regulär L 1 L 2 kontextfrei)? Komplement (L kontextfrei L = Σ \L kontextfrei)? Sander Bruggink Automaten und Formale Sprachen 334

10 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Abschluss unter Komplement Wenn L eine deterministisch kontextfreie Sprache ist, dann ist auch L = Σ \L deterministisch kontextfrei. Informeller Beweisansatz: Wie bei DFAs, können wir einen deterministischen Kellerautomaten für das Komplement bauen, indem wir (mit ein bisschen rumbasteln) die Endzustände und Nicht-Endzustände vertauschen. Sander Bruggink Automaten und Formale Sprachen 335

11 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Kein Abschluss unter Schnitt Wenn L 1 und L 2 deterministisch kontextfreie Sprachen sind, dann ist L 1 L 2 nicht notwendigerweise deterministisch kontextfrei. Begründung: Die Beispiel-Sprachen aus dem Argument, dass die kontextfreien Sprachen unter Schnitt nicht abgeschlossen sind, sind sogar deterministisch kontextfrei, ihr Schnitt jedoch noch nicht einmal kontextfrei: L 1 = {a j b k c k j 0, k 0} L 2 = {a k b k c j j 0, k 0} L 1 L 2 = {a n b n c n n 0} Sander Bruggink Automaten und Formale Sprachen 336

12 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Abschluss unter Vereinigung Wenn L 1 und L 2 deterministisch kontextfreie Sprachen sind, dann ist auch L 1 L 2 eine deterministisch kontextfreie Sprache. (??) Kein Abschluss unter Vereinigung Wenn L 1 und L 2 deterministisch kontextfreie Sprachen sind, dann ist L 1 L 2 nicht notwendigerweise deterministisch kontextfrei. Begründung: Aus dem Abschluss unter Vereinigung und Komplement würde auch der Abschluss unter Schnitt folgen (wegen L 1 L 2 = L 1 L 2 ). Sander Bruggink Automaten und Formale Sprachen 337

13 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Deterministisch kontextfreie Sprachen sind unter Schnitt mit regulären Sprachen abgeschlossen. Abschluss unter Schnitt mit regulären Sprachen Sei L eine deterministisch kontextfreie Sprache und R eine reguläre Sprache. Dann gilt, dass L R eine deterministisch kontextfreie Sprache ist. Beweisidee: Analog zu kontextfreien Sprachen. Sander Bruggink Automaten und Formale Sprachen 338

14 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Zusammenfassung Abschlusseigenschaften Abgeschlossen unter Reguläre Spr. Det. KF Spr. KF Sprachen Vereinigung Konkatenation Kleene-Stern Schnitt Schnitt mit RS Komplement Sander Bruggink Automaten und Formale Sprachen 339

15 Deterministische Kellerautomaten Deterministisch kontextfreie Sprachen Entscheidbarkeit bei deterministisch kontextfreien Sprachen Folgende Probleme sind für deterministisch kontextfreie Sprachen (repräsentiert durch einen deterministischen Kellerautomaten) entscheidbar: Wortproblem: Gegeben eine deterministisch kontextfreie Sprache L und w Σ. Gilt w L? Mit einem deterministischen Kellerautomaten in O( w ) Zeit. Leerheitsproblem: Gegeben eine deterministisch kontextfreie Sprache L. Gilt L =? Siehe das entsprechende Entscheidungsverfahren für kontextfreie Sprachen. Sander Bruggink Automaten und Formale Sprachen 340

16 Deterministische Kellerautomaten Entscheidbarkeit Entscheidbarkeit bei deterministisch kontextfreien Sprachen Endlichkeitsproblem: Gegeben eine kontextfreie Sprache L. Ist L endlich? Siehe das entsprechende Entscheidungsverfahren für kontextfreie Sprachen. Äquivalenzproblem: Gegeben zwei deterministisch kontextfreie Sprachen L 1, L 2. Gilt L 1 = L 2? War lange offen und die Entscheidbarkeit wurde erst 1997 von Géraud Sénizergues gezeigt. Sander Bruggink Automaten und Formale Sprachen 341

17 Deterministische Kellerautomaten Entscheidbarkeit Unentscheidbarkeit bei deterministisch kontextfreien Sprachen Folgende Probleme sind für deterministisch kontextfreie Sprachen nicht entscheidbar, d.h., man kann zeigen, dass es kein entsprechendes Verfahren gibt: Schnittproblem: Gegeben zwei deterministisch kontextfreie Sprachen L 1, L 2. Gilt L 1 L 2 =? Wie bei kontextfreien Sprachen ist dieses Problem jedoch entscheidbar, wenn eine der beiden Sprachen regulär ist. Sander Bruggink Automaten und Formale Sprachen 342

18 Kontextfreie Sprachen in der Praxis Parsing mit ANTLR Kontextfreie Grammatiken werden häufig benutzt, um den Syntax von Computersprachen (Programmiersprachen, Markup-Sprachen, usw.) anzugeben. Ein Parser ist ein Programmmodul, das den Quellcode eines Programms als Eingabe nimmt und irgendwelche Repräsentation (z.b. einen Syntaxbaum) davon ausgibt. In dieser Vorlesung werden wir ANTLR v4 (ANother Tool for Language Recognition) kennenlernen, einen parser generator, mit dem man einfach einen Parser (in Java) erzeugen kann. Sander Bruggink Automaten und Formale Sprachen 343

19 Kontextfreie Sprachen in der Praxis Parsing mit ANTLR Der Parser eines Compilers bzw. eines Interpreters besteht im Allgemeinen aus zwei Komponenten: Der lexical analyser teilt die einzelnen Zeichen in Ketten auf, den sogenannten Tokens. Der Parser selbst analysiert die Folge von Tokens und konstruiert einen Syntaxbaum (bzw. eine andere Repräsentation). ANTLR erzeugt beide Komponenten. Sander Bruggink Automaten und Formale Sprachen 344

20 Parsing in der Praxis Kontextfreie Sprachen Kontextfreie Sprachen in der Praxis Eingabe: (8 + sqrt(16)) * 3 Lexikalische analyse Tokens: Syntaxbaum: ( 8 + sqrt ( 16 ) ) * 3 expr Parsen expr * expr ( expr ) expr + expr 8 sqrt ( expr 16 Weiterverarbeitung 3 ) Sander Bruggink Automaten und Formale Sprachen 345

21 Kontextfreie Sprachen in der Praxis Einschub: Extended Backus-Naur-Form In der Praxis wird oft die Extended Backus-Naur-Form (EBNF) benutzt, eine Abkürzung für kontextfreie Grammatiken. In EBNF sind die rechten Seiten der Regeln keine Zeichenketten, sondern reguläre Ausdrücke (die auch Variablen enthalten können). Sander Bruggink Automaten und Formale Sprachen 346

22 Kontextfreie Sprachen in der Praxis Einschub: Extended Backus-Naur-Form EBNF-Grammatiken können einfach in richtige kontextfreie Grammatiken umgewandelt werden: A α(β 1 β n )γ A αβ γ { A αbγ B β 1 β n { A αγ αbγ B β βb Abkürzungen: α + αα, α? (ε α), usw. Regeln anwenden bis die Grammatik keine - und (geschachtelten) -Operationen mehr enthält. Sander Bruggink Automaten und Formale Sprachen 347

23 Kontextfreie Sprachen in der Praxis Parsing mit ANTLR Wir werden einen Parser erzeugen, der die folgende Grammatik parst: program statement statement ID = expression expression expression expression * expression expression / expression expression + expression expression - expression sqrt ( expression ) ( expression ) ID NUMBER Terminalsymbole stehen in Anführungszeigen. Die Tokens ID und NUMBER werden vom Lexical Analyser erkannt. Ambiguitäten werden von ANTLR automatisch gelöst. Sander Bruggink Automaten und Formale Sprachen 348

24 Parsing mit ANTLR Kontextfreie Sprachen Kontextfreie Sprachen in der Praxis Beispieleingabe: a = * 5 b = (a / 2) * sqrt(16) a + b Sander Bruggink Automaten und Formale Sprachen 349

25 Kontextfreie Sprachen in der Praxis Parsing mit ANTLR Aufbau einer ANTLR Quelldatei: grammar Parser-Name ; Regeln des lexical analysers Regeln der Grammatik Sander Bruggink Automaten und Formale Sprachen 350

26 Kontextfreie Sprachen in der Praxis Parsing mit ANTLR Der lexical analyser: // lexical rules NUMBER : [0-9]+ [0-9]*. [0-9]+ ; NEWLINE : \r? \n ; SQRT : [ss][qq][rr][tt] ; ID : [a-za-z] [a-za-z0-9]* ; WHITESPACE : [ \t]+ -> skip ; Variablen des Lexical Analysers fangen mit einer Großbuchstabe an. Der Befehl -> skip sorgt dafür, dass Leerzeichen nicht an den Parser weitergeleitet werden. sqrt ist ein SQRT-Token, obwohl es auch von ID gematcht wird. Sander Bruggink Automaten und Formale Sprachen 351

27 Parsing mit ANTLR Kontextfreie Sprachen Kontextfreie Sprachen in der Praxis Übersetzung einer Regel statement ID = expression expression statement : var=id = expression NEWLINE # Assignment expression NEWLINE # PrintExpression NEWLINE # Empty ; Name des Teilbaums Name einer Alternative Variablen des Parsers fangen mit einem Kleinbuchstabe an. Sander Bruggink Automaten und Formale Sprachen 352

28 Kontextfreie Sprachen in der Praxis Parsing mit ANTLR ANTLR-Werkzeuge: antlr4: Liest eine Grammatik ein und erzeugt einen Lexical Analyser und einen Parser (und Java-Klassen die bei der Weiterverarbeitung des Syntaxbaum verwendet werden). grun: Programm, dass den Parser anruft und den Syntaxbaum zeigt. Sander Bruggink Automaten und Formale Sprachen 353

29 Kontextfreie Sprachen in der Praxis Parsing mit ANTLR Wir wollen jetzt den Syntaxbaum verarbeiten und das Programm ausführen. Dafür hat ANTLR schon einige Klassen erzeugt. Wir schreiben eine Implementation von ExpressionVisitor<T> um den Syntaxbaum zu durchlaufen und die Teilergebnisse auszurechnen. Für Grammatik Expression.g, Alternative X und Rückgabewert T : public T visitx (ExpressionParser.X Context ctx) { T wert =...; // Besuche Teilbäume return wert; } Sander Bruggink Automaten und Formale Sprachen 354

30 Kontextfreie Sprachen in der Praxis Beispiel für expression :... left=expression + right=expression # Plus... public Double visitplus(expressionparser.pluscontext ctx) { return visit(ctx.left) + visit(ctx.right); } Sander Bruggink Automaten und Formale Sprachen 355

31 Parsing mit ANTLR Kontextfreie Sprachen Kontextfreie Sprachen in der Praxis Zum Selbststudium: Sander Bruggink Automaten und Formale Sprachen 356

32 Konklusion Lösung des Wortproblems Kontextfreie Grammatiken Kellerautomaten Pumping Lemma für KFS Det. Kellerautomaten Reguläre Grammatiken DFAs und NFAs Reguläre Ausdrücke Pumping Lemma für RS Myhill Nerode-Äquivalenz Alle Sprachen Semi-Entscheidbare Spr. (0) Kontextsensitive Spr. (1) Kontextfreie Sprachen (2) Det. kontextfreie Sprachen Reguläre Sprachen (3) Sander Bruggink Automaten und Formale Sprachen 357

33 Konklusion Übersicht Abgeschlossen unter Reguläre Spr. Det. KF Spr. KF Sprachen Vereinigung Konkatenation Kleene-Stern Schnitt Schnitt mit RS Komplement Problem entscheidbar Reguläre Spr. Det. KF Spr. KF Sprachen Wortproblem Leerheit Endlichkeit Schnittproblem Schnittp. mit RS Äquivalenz Sander Bruggink Automaten und Formale Sprachen 358

34 Übersicht Konklusion Anwendungen: Reguläre Sprachen Verifikation Suchen und Ersetzen in Texteditoren Lexikalische Analyse Kontextfreie Sprachen Beschreibung von Computersprachen (Programmiersprachen, HTML, XML, arithmetische Ausdrücke,... ) Beschreibung natürlicher Sprachen Verifikation der Keller wird benutzt um Funktionsanrufe zu modellieren Sander Bruggink Automaten und Formale Sprachen 359

35 Konklusion Ausblick zu Berechenbarkeit und Komplexität Berechenbarkeit: Fokus liegt auf kontextsensitiven Sprachen, semi-entscheidbaren Sprachen und nicht-entscheidbare Sprachen Automatenmodell: Turing-Maschine Wortproblem lösen Entscheidungsproblem lösen Charakteristische Funktion berechnen Nicht-entscheidbare Probleme / Nicht-berechenbare Funktionen Komplexität: Komplexität von Algorithmen Komplexitätsklassen Sander Bruggink Automaten und Formale Sprachen 360

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2011 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Wir beschäftigen uns ab

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Einschub: Kellerautomaten

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Formale Sprachen und Grammatiken

Formale Sprachen und Grammatiken Formale Sprachen und Grammatiken Jede Sprache besitzt die Aspekte Semantik (Bedeutung) und Syntax (formaler Aufbau). Die zulässige und korrekte Form der Wörter und Sätze einer Sprache wird durch die Syntax

Mehr

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls 4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls δ(q, a, Z) + δ(q, ɛ, Z) 1 (q, a, Z) Q Σ. Die von einem DPDA, der mit leerem Keller akzeptiert,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.4 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibungsformen für Sprachen Mathematische Mengennotation Prädikate beschreiben Eigenschaften

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Was ist ein Compiler?

Was ist ein Compiler? Was ist ein Compiler? Was ist ein Compiler und worum geht es? Wie ist ein Compiler aufgebaut? Warum beschäftigen wir uns mit Compilerbau? Wie ist die Veranstaltung organisiert? Was interessiert Sie besonders?

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach 21.11.2013

Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach 21.11.2013 Übung Theoretische Grundlagen Nachtrag zur Vorlesung Dirk Achenbach 21.11.2013 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory of the

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Leichte-Sprache-Bilder

Leichte-Sprache-Bilder Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen. Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?

Mehr

Beweisidee: 1 Verwende den Keller zur Simulation der Grammatik. Leite ein Wort. 2 Problem: der Keller darf nicht beliebig verwendet werden, man kann

Beweisidee: 1 Verwende den Keller zur Simulation der Grammatik. Leite ein Wort. 2 Problem: der Keller darf nicht beliebig verwendet werden, man kann Automaten und Formale prachen alias Theoretische Informatik ommersemester 2011 Dr. ander Bruggink Übungsleitung: Jan tückrath Wir beschäftigen uns ab jetzt einige Wochen mit kontextfreien prachen: Kontextfreie

Mehr

Die Post hat eine Umfrage gemacht

Die Post hat eine Umfrage gemacht Die Post hat eine Umfrage gemacht Bei der Umfrage ging es um das Thema: Inklusion Die Post hat Menschen mit Behinderung und Menschen ohne Behinderung gefragt: Wie zufrieden sie in dieser Gesellschaft sind.

Mehr

1. Formale Sprachen 1.2 Grammatiken formaler Sprachen

1. Formale Sprachen 1.2 Grammatiken formaler Sprachen 1. Formale Sprachen 1.2 Grammatiken formaler Sprachen Die Regeln zur Bildung korrekter Wörter einer Sprache kann man in einer natürlichen Sprache formulieren. Da dies jedoch wieder Mehrdeutigkeiten mit

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Einführung in die Informatik Grammars & Parsers

Einführung in die Informatik Grammars & Parsers Einführung in die Informatik Grammars & Parsers Grammatiken, Parsen von Texten Wolfram Burgard Cyrill Stachniss 12.1 Einleitung Wir haben in den vorangehenden Kapiteln meistens vollständige Java- Programme

Mehr

Es sollte die MS-DOS Eingabeaufforderung starten. Geben Sie nun den Befehl javac ein.

Es sollte die MS-DOS Eingabeaufforderung starten. Geben Sie nun den Befehl javac ein. Schritt 1: Installation des Javacompilers JDK. Der erste Start mit Eclipse Bevor Sie den Java-Compiler installieren sollten Sie sich vergewissern, ob er eventuell schon installiert ist. Gehen sie wie folgt

Mehr

Informatik I Tutorial

Informatik I Tutorial ETH Zürich, D-INFK/D-BAUG Herbstsemester 2015 Dr. Martin Hirt Daniel Jost Informatik I Tutorial Dieses Tutorial hat zum Ziel, die notwendigen Tools auf dem eigenen Computer zu installieren, so dass ihr

Mehr

Version 0.3. Installation von MinGW und Eclipse CDT

Version 0.3. Installation von MinGW und Eclipse CDT Version 0.3 Installation von MinGW und Eclipse CDT 1. Stellen Sie fest, ob Sie Windows in der 32 Bit Version oder in der 64 Bit Version installiert haben. 2. Prüfen Sie, welche Java Runtime vorhanden ist.

Mehr

Kapitel 4. Einführung in den Scannergenerator Flex. Einführung in den Scannergenerator Flex Wintersemester 2008/09 1 / 9

Kapitel 4. Einführung in den Scannergenerator Flex. Einführung in den Scannergenerator Flex Wintersemester 2008/09 1 / 9 Kapitel 4 Einführung in den Scannergenerator Flex Einführung in den Scannergenerator Flex Wintersemester 2008/09 1 / 9 Generatoren für die lexikalische Analyse Scannergeneratoren werden eingesetzt um die

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Schrittweise Anleitung zur Erstellung einer Angebotseite 1. In Ihrem Dashboard klicken Sie auf Neu anlegen, um eine neue Seite zu erstellen.

Schrittweise Anleitung zur Erstellung einer Angebotseite 1. In Ihrem Dashboard klicken Sie auf Neu anlegen, um eine neue Seite zu erstellen. Schrittweise Anleitung zur Erstellung einer Angebotseite 1. In Ihrem Dashboard klicken Sie auf Neu anlegen, um eine neue Seite zu erstellen. Klicken Sie auf Neu anlegen, um Ihre neue Angebotseite zu erstellen..

Mehr

Zusammenfassung Grundzüge der Informatik 4

Zusammenfassung Grundzüge der Informatik 4 Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Objektorientierte Programmierung für Anfänger am Beispiel PHP

Objektorientierte Programmierung für Anfänger am Beispiel PHP Objektorientierte Programmierung für Anfänger am Beispiel PHP Johannes Mittendorfer http://jmittendorfer.hostingsociety.com 19. August 2012 Abstract Dieses Dokument soll die Vorteile der objektorientierten

Mehr

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Beamen in EEP Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Zuerst musst du dir 2 Programme besorgen und zwar: Albert, das

Mehr

Serienbrieferstellung in Word mit Kunden-Datenimport aus Excel

Serienbrieferstellung in Word mit Kunden-Datenimport aus Excel Sehr vielen Mitarbeitern fällt es schwer, Serienbriefe an Kunden zu verschicken, wenn sie die Serienbrieffunktion von Word nicht beherrschen. Wenn die Kunden mit Excel verwaltet werden, genügen nur ein

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup

Lehrstuhl Informatik VI Grundzüge der Informatik * WS 2008/2009 Prof. Dr. Joachim Biskup Universität Dortmund Lehrstuhl Informatik VI Grundzüge der Informatik * WS 28/29 Prof. Dr. Joachim Biskup Leitung der Übungen: Arno Pasternak Lösungs-Ideen Übungsblatt 6 A: Grammatiken, Syntaxdiagramme

Mehr

Informatik I Tutorium WS 07/08

Informatik I Tutorium WS 07/08 Informatik I Tutorium WS 07/08 Vorlesung: Prof. Dr. F. Bellosa Übungsleitung: Dipl.-Inform. A. Merkel Tutorium: 12 Tutor: Jens Kehne Tutorium 3: Dienstag 13. November 2007 Übersicht Tutorium Übersicht

Mehr

Übungsblatt 3: Algorithmen in Java & Grammatiken

Übungsblatt 3: Algorithmen in Java & Grammatiken Humboldt-Universität zu Berlin Grundlagen der Programmierung (Vorlesung von Prof. Bothe) Institut für Informatik WS 15/16 Übungsblatt 3: Algorithmen in Java & Grammatiken Abgabe: bis 9:00 Uhr am 30.11.2015

Mehr

IRF2000 Application Note Lösung von IP-Adresskonflikten bei zwei identischen Netzwerken

IRF2000 Application Note Lösung von IP-Adresskonflikten bei zwei identischen Netzwerken Version 2.0 1 Original-Application Note ads-tec GmbH IRF2000 Application Note Lösung von IP-Adresskonflikten bei zwei identischen Netzwerken Stand: 27.10.2014 ads-tec GmbH 2014 IRF2000 2 Inhaltsverzeichnis

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Äquivalente Grammatiken / attributierte Grammatik

Äquivalente Grammatiken / attributierte Grammatik Äquivalente Grammatiken / attributierte Grammatik Linksfaktorisierung Elimination von Linksrekursion Umwandlung von EBNF in BNF Attributierte Grammatik Semantikfunktionen und Übersetzungsschema Synthetisierte,

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Erstellen der Barcode-Etiketten:

Erstellen der Barcode-Etiketten: Erstellen der Barcode-Etiketten: 1.) Zuerst muss die Schriftart Code-39-Logitogo installiert werden! Das ist eine einmalige Sache und muss nicht zu jeder Börse gemacht werden! Dazu speichert man zunächst

Mehr

Ihre Interessentendatensätze bei inobroker. 1. Interessentendatensätze

Ihre Interessentendatensätze bei inobroker. 1. Interessentendatensätze Ihre Interessentendatensätze bei inobroker Wenn Sie oder Ihre Kunden die Prozesse von inobroker nutzen, werden Interessentendatensätze erzeugt. Diese können Sie direkt über inobroker bearbeiten oder mit

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Informatik 1 Tutorial

Informatik 1 Tutorial ETH Zürich, D-INFK/D-BAUG Herbstsemester 2014 Dr. Martin Hirt Christian Badertscher Informatik 1 Tutorial Dieses Tutorial hat zum Ziel, die notwendigen Tools auf dem eigenen Computer zu installieren, so

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Wichtige Forderungen für ein Bundes-Teilhabe-Gesetz

Wichtige Forderungen für ein Bundes-Teilhabe-Gesetz Wichtige Forderungen für ein Bundes-Teilhabe-Gesetz Die Parteien CDU, die SPD und die CSU haben versprochen: Es wird ein Bundes-Teilhabe-Gesetz geben. Bis jetzt gibt es das Gesetz noch nicht. Das dauert

Mehr

trivum Multiroom System Konfigurations- Anleitung Erstellen eines RS232 Protokolls am Bespiel eines Marantz SR7005

trivum Multiroom System Konfigurations- Anleitung Erstellen eines RS232 Protokolls am Bespiel eines Marantz SR7005 trivum Multiroom System Konfigurations- Anleitung Erstellen eines RS232 Protokolls am Bespiel eines Marantz SR7005 2 Inhalt 1. Anleitung zum Einbinden eines über RS232 zu steuernden Devices...3 1.2 Konfiguration

Mehr

Enigmail Konfiguration

Enigmail Konfiguration Enigmail Konfiguration 11.06.2006 Steffen.Teubner@Arcor.de Enigmail ist in der Grundkonfiguration so eingestellt, dass alles funktioniert ohne weitere Einstellungen vornehmen zu müssen. Für alle, die es

Mehr

Thüringer Kultusministerium. Abiturprüfung 2000

Thüringer Kultusministerium. Abiturprüfung 2000 Thüringer Kultusministerium Arbeitszeit: Hilfsmittel: Abiturprüfung 2000 270 Minuten Leistungsfach Informatik (Haupttermin) Formeln und Tabellen für die Sekundarstufen I und II/ Paetec, Gesellschaft für

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.)

Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.) Seite 1/7 Anleitung zur Erstellung von Serienbriefen (Word 2003) unter Berücksichtigung von Titeln (wie Dr., Dr. med. usw.) Hier sehen Sie eine Anleitung wie man einen Serienbrief erstellt. Die Anleitung

Mehr

Vorgehensweise bei Lastschriftverfahren

Vorgehensweise bei Lastschriftverfahren Vorgehensweise bei Lastschriftverfahren Voraussetzung hierfür sind nötige Einstellungen im ControlCenter. Sie finden dort unter Punkt 29 die Möglichkeit bis zu drei Banken für das Lastschriftverfahren

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Statuten in leichter Sprache

Statuten in leichter Sprache Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Regeln für das Qualitäts-Siegel

Regeln für das Qualitäts-Siegel Regeln für das Qualitäts-Siegel 1 Inhalt: Die Qualitäts-Regeln vom Netzwerk Leichte Sprache 3 Die Übersetzung in Leichte Sprache 5 Die Prüfung auf Leichte Sprache 6 Wir beantworten jede Anfrage 7 Wir schreiben

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

GeoPilot (Android) die App

GeoPilot (Android) die App GeoPilot (Android) die App Mit der neuen Rademacher GeoPilot App machen Sie Ihr Android Smartphone zum Sensor und steuern beliebige Szenen über den HomePilot. Die App beinhaltet zwei Funktionen, zum einen

Mehr

Die YouTube-Anmeldung

Die YouTube-Anmeldung Die YouTube-Anmeldung Schön, dass Sie sich anmelden wollen, um den Ortsverein Kirchrode-Bemerode-Wülferode zu abonnieren, d.h. regelmäßig Bescheid zu bekommen, wenn der Ortsverein etwas Neues an Videos

Mehr

Urlaubsregel in David

Urlaubsregel in David Urlaubsregel in David Inhaltsverzeichnis KlickDown Beitrag von Tobit...3 Präambel...3 Benachrichtigung externer Absender...3 Erstellen oder Anpassen des Anworttextes...3 Erstellen oder Anpassen der Auto-Reply-Regel...5

Mehr

Autoformat während der Eingabe

Autoformat während der Eingabe Vorbereitung der Arbeitsumgebung Herbert Utz Verlag Endlich! Der Text ist abgeschlossen und die letzten Korrekturen sind eingearbeitet. Herzlichen Glückwunsch. Jetzt bleibt nur noch die richtige Formatierung,

Mehr

Bedienungsanleitung. Matthias Haasler. Version 0.4. für die Arbeit mit der Gemeinde-Homepage der Paulus-Kirchengemeinde Tempelhof

Bedienungsanleitung. Matthias Haasler. Version 0.4. für die Arbeit mit der Gemeinde-Homepage der Paulus-Kirchengemeinde Tempelhof Bedienungsanleitung für die Arbeit mit der Gemeinde-Homepage der Paulus-Kirchengemeinde Tempelhof Matthias Haasler Version 0.4 Webadministrator, email: webadmin@rundkirche.de Inhaltsverzeichnis 1 Einführung

Mehr

Formale Sprachen, reguläre und kontextfreie Grammatiken

Formale Sprachen, reguläre und kontextfreie Grammatiken Formale Sprachen, reguläre und kontextfreie Grammatiken Alphabet A: endliche Menge von Zeichen Wort über A: endliche Folge von Zeichen aus A A : volle Sprache über A: Menge der A-Worte formale Sprache

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Arbeitsschritte EAÜ Leistungserbringer Einnahmen erfassen

Arbeitsschritte EAÜ Leistungserbringer Einnahmen erfassen Arbeitsschritte EAÜ Leistungserbringer Einnahmen erfassen 1. Das Projekt auswählen Nach dem Anmelden in der Datenbank im Menü [Vorhaben] den Untermenüpunkt [Vorhabenübersicht] wählen. Dort bitte das entsprechende

Mehr

Bei der Focus Methode handelt es sich um eine Analyse-Methode die der Erkennung und Abstellung von Fehlerzuständen dient.

Bei der Focus Methode handelt es sich um eine Analyse-Methode die der Erkennung und Abstellung von Fehlerzuständen dient. Beschreibung der Focus Methode Bei der Focus Methode handelt es sich um eine Analyse-Methode die der Erkennung und Abstellung von Fehlerzuständen dient. 1. F = Failure / Finding An dieser Stelle wird der

Mehr

Verwendung des IDS Backup Systems unter Windows 2000

Verwendung des IDS Backup Systems unter Windows 2000 Verwendung des IDS Backup Systems unter Windows 2000 1. Download der Software Netbackup2000 Unter der Adresse http://www.ids-mannheim.de/zdv/lokal/dienste/backup finden Sie die Software Netbackup2000.

Mehr

Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der

Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der Sichere E-Mail der Nutzung von Zertifikaten / Schlüsseln zur sicheren Kommunikation per E-Mail mit der Sparkasse Germersheim-Kandel Inhalt: 1. Voraussetzungen... 2 2. Registrierungsprozess... 2 3. Empfang

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr