Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Größe: px
Ab Seite anzeigen:

Download "Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining."

Transkript

1 Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen eingeordnet (Entscheidungsbaumverfahren) Hauptseminar Wintersemester 26/7 Universität Hildesheim Data Mining... Any algorithm that enumerates patterns from, or fits models to, data is a data mining algorithm (U. Fayyad 997, in Heft der Zeitschrift Data Mining and Knowledge Discovery) Data Mining... enumerates patterns... models... Data Mining befasst sich mit Mustern und Modellen über Daten d.h. Data Mining extrahiert Wissen, das nicht explizit in der Datenbasis gespeichert ist und abgefragt werden kann sondern dieses Wissen ergibt sich aus einer Gesamtschau auf sehr viele Daten Data Mining fasst viele Wissenseinheiten zu neuem Wissen zusammen Maschinelles Lernen: Definitionen Anpassung des Verhaltens (Output) an die Umwelt (Input) Lernen als Näherung Lernen als Fehlerminimierung einer komplexen Funktion Maschinelles Lernen: Definitionen... changes in the system... that... enable the system to do the same task... more efficiently and more effectively the next time (Simon 983 zitiert nach Rich & Knight 99) Maschinelles Lernen beschäftigt sich mit Computer-Programmen, die in der Lage sind, durch die Benutzung von Eingabeinformationen neues Wissen zu konstrurieren (Michalski & Kodratoff 99 zitiert nach Herrmann 997)

2 Maschinelles Lernen: Lernstrategien Induktives Lernen aus positiven (und negativen) Bespielen Klassifikation durch Beobachtung und Entdeckung Clustering Eingaben Komponenten der Eingaben: Konzept: was gelernt werden kann oder soll Ziel: verständliche und anwendbare Konzeptbeschreibung z.b. Gruppe der Kunden, die über 2 ausgeben Instanz: ein einzelnes, unabhängiges Beispiel für das zu erlernende Konzept Z.B. Konkreter Kunde, der einmal mehr als 2 ausgegeben hat Attribut: Eigenschaft einer Instanz zur Charakterisierung nominal, ordinal, Intervall, Ratio z.b. Alter des Kunden, Häufigkeit des Besuchs, Preiskategorie des als erstes angeklickten Produkts... Eingaben: Konzept Arten des Lernens: klassifizierendes Lernen aus bereits klassifizierten Beispielen lernen und neue Beispiele klassifizieren assoziierendes Lernen Assoziationen zwischen Attributen erkennen Clustering Suchen von Gruppen ähnlicher Beispiele numerische Vorhersage Ergebnis: numerische Größe statt Klasse Lineare Lineare Modelle für numerische Daten Ergebnis als lineare und gewichtete Kombination der Attribute Gewichte werden aus den Trainingsdaten berechnet Bsp.: Zusammenhang zwischen Körpergröße und Gewicht Zwischen den beiden Größen Körpergröße und Gewicht besteht eine Abhängigkeit Die eine Größe kann aus der anderen hergeleitet werden Die Abhängigkeit lässt sich mit einer Gerade darstellen (Die Größen sind nicht unabhängig) 2

3 Die Abhängigkeit lässt sich mit einer Gerade darstellen -> lineare Abhängigkeit Gerade: x = a + b y Parameter a und b müssen gefunden werden Liegen zwei Punkte vor, können die Parameter berechnet werden -> lineare Abhängigkeit natürlich können auch andere, komplexere Abhängigkeiten vorkommen z.b. Polynome Bei mehreren Punkten sollte die Gerade möglichst gut durch alle Punkte verlaufen -> Der Abstand der Punkte von der Geraden sollte im Durchschnitt verringert werden Auch bei mehreren Dimensionen kann mit linearer Abhängigkeit gearbeitet werden Gerade wird dann zu einer (evtl. mehrdimensionalen) Ebene Lineare Klasse als lineare Kombination aller Attributwerte Konvergenz Erfolgreiches Lernen: Minimierung des Fehlers sinkt der Fehler stetig, so spricht man von Konvergenz Dann hat das System die präsentierten Beispiele richtig gelernt 3

4 Generalisierbarkeit Die Leistungsfähigkeit eines Systems zeigt sich jedoch erst an unbekannten Beispielen kann ein System auch neue Muster, die nicht in der Trainingsmenge waren richtig zuordnen, dann generalisiert es Trainings- und Testmenge Um zu prüfen, wie gut ein System generalisiert, wird beim Lernen eine Testmenge mit unbekannten Beispielen genutzt Der Fehler in der Testmenge ist der Maßstab für die Qualität Overlearning Der Fehler in der Trainingsmenge konvergiert bei besserer Anpassung Der Testfehler sinkt nur bis zu einem bestimmten Wert und steigt dann bei weiterer Anpassung an die Trainingsmenge Durch zu starke Anpassung an die Trainingsmenge sinkt also oft die Generalisierungsfähigkeit. Das Training sollte daher bei einem Minimum in der Testmenge beendet werden Adaptivität im Information Retrieval cognitive structures authors cognitive structures information seeker documents resultdocuments query representation fusion processing representation matching functions Adaptivität im Information Retrieval Erschließung und Repräsentation unterschiedlich z.b. automatisch und manuell indexierte Dokumente gemeinsam in einer Digitalen Bibliothek semantische Probleme: Term bedeutet in verschiedenen Korpora etwas anderes Individuelle Unterschiede Benutzer erwarten unter gleichem Begriff etwas anderes Transformation zwischen verschiedenen Repräsentationen Relevanz-Bewertungen unterschiedlicher Benutzer stimmen oft nicht überein 4

5 Gewichtung Repräsentation: Term- Dokument Matrix Term A Reform Term B Partei Term C Ziel... Autoren Erstellung IR-Prozess Dokumenten- Bestand Text- Dokumente Indexierung Repräsentation Dokument Dokument 2 Dokument 3 /4 4/8 6/9 2/4 3/8 /9 /4 /8 2/9 Profil: Benutzer A Benutzungsoberfläche Relevanz- Bewertung Ähnlichkeitsberechnung Informations- Suchender Interaktion mehr Information Ergebnis- Dokumente Dokument-Term- Matrix Indexierung - Weitere Terme - Beispiel-Dokumente - Repräsentation mehr Information Interpretation im Vektorraum-Modell Verschiebung der hin zu den relevanten Dokumenten -> langfristiger Effekt: Aufbau Benutzermodell Gewicht von Term B relevant nicht relevant Gewicht von Term A Dokument- Term-Matrix Dok A Benutzer- Profil Adaptivität Haus Bank Geld Park,,6,4 Dok B,9,6 Ä ( t, t ) = n w dt w qt 2 2 d =,4 Lösungsmöglichkeit für Individualisierung bei wenig Wissen Privates Modell + Öffentliches Modell Beide Modelle tragen zum Gesamtergebnis bei Anfangs hohes Gewicht öffentliches Modell Mit steigender Anzahl individueller Urteile steigt der Einfluss des privaten Modells Gesamtergebnis berücksichtigt zwei Modelle Das private Modell: ( ω private, A ; ω private, B ; ω private, C ; ; ω private, N ) Das öffentliche Modell: (ω public, A ; ω public, B ; ω public, C ; ; ω public, N ) Integration der RSV des privaten und des öffentlichen Modells 5

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion Web Information Retrieval Hauptseminar Sommersemester 2003 Thomas Mandl Überblick Mehrsprachigkeit Multimedialität Heterogenität Qualität, semantisch, technisch Struktur Links HTML Struktur Technologische

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

1. Lernen von Konzepten

1. Lernen von Konzepten 1. Lernen von Konzepten Definition des Lernens 1. Lernen von Konzepten Lernziele: Definitionen des maschinellen Lernens kennen, Klassifikationen des maschinellen Lernens kennen, Das Prinzip des induktiven

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Opinion Mining in der Marktforschung

Opinion Mining in der Marktforschung Opinion Mining in der Marktforschung von andreas.boehnke@stud.uni-bamberg.de S. 1 Überblick I. Motivation Opinion Mining II. Grundlagen des Text Mining III. Grundlagen des Opinion Mining IV. Opinion Mining

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN T-SYSTEMS MULTIMEDIA SOLUTIONS GMBH, 16. FEBRUAR 2012 1. Schlüsselworte Semantic Web, Opinion Mining, Sentiment Analysis, Stimmungsanalyse,

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini TEXTKLASSIFIKATION WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini GLIEDERUNG 1. Allgemeines Was ist Textklassifikation? 2. Aufbau eines Textklassifikationssystems 3. Arten von Textklassifikationssystemen

Mehr

Innovative Information Retrieval Verfahren

Innovative Information Retrieval Verfahren Thomas Mandl Innovative Information Retrieval Verfahren Hauptseminar Wintersemester 2004/2005 Letzte Sitzung Grundlagen Heterogenität Ursachen Beispiele Lösungsansätze Visualisierung 2D-Karten heute Maschinelles

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Maschinelles Lernen und Data Mining: Methoden und Anwendungen

Maschinelles Lernen und Data Mining: Methoden und Anwendungen Maschinelles Lernen und Data Mining: Methoden und Anwendungen Eyke Hüllermeier Knowledge Engineering & Bioinformatics Fachbereich Mathematik und Informatik GFFT-Jahrestagung, Wesel, 17. Januar 2008 Knowledge

Mehr

Jan Parthey, Christin Seifert. 22. Mai 2003

Jan Parthey, Christin Seifert. 22. Mai 2003 Simulation Rekursiver Auto-Assoziativer Speicher (RAAM) durch Erweiterung eines klassischen Backpropagation-Simulators Jan Parthey, Christin Seifert jpar@hrz.tu-chemnitz.de, sech@hrz.tu-chemnitz.de 22.

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr Einführung Information Retrieval Norbert Fuhr 13. Oktober 2011 IR in Beispielen Was ist IR? Daten Information Wissen Dimensionen des IR Rahmenarchitektur für IR-Systeme Adhoc-Suche: Web IR in Beispielen

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Vektormodelle Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Gliederung Vektormodelle Vector-Space-Model Suffix Tree Document Model

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Ähnlichkeitssuche auf XML-Daten

Ähnlichkeitssuche auf XML-Daten Ähnlichkeitssuche auf XML-Daten Christine Lehmacher Gabriele Schlipköther Übersicht Information Retrieval Vektorraummodell Gewichtung Ähnlichkeitsfunktionen Ähnlichkeitssuche Definition, Anforderungen

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Mit KI gegen SPAM. Proseminar Künstliche Intelligenz

Mit KI gegen SPAM. Proseminar Künstliche Intelligenz Mit KI gegen SPAM Proseminar Künstliche Intelligenz SS 2006 Florian Laib Ausblick Was ist SPAM? Warum SPAM-Filter? Naive Bayes-Verfahren Fallbasiertes Schließen Fallbasierte Filter TiMBL Vergleich der

Mehr

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih Data Mining mit Rapidminer im Direktmarketing ein erster Versuch Hasan Tercan und Hans-Peter Weih Motivation und Ziele des Projekts Anwendung von Data Mining im Versicherungssektor Unternehmen: Standard

Mehr

XDOC Extraktion, Repräsentation und Auswertung von Informationen

XDOC Extraktion, Repräsentation und Auswertung von Informationen XDOC Extraktion, Repräsentation und Auswertung von Informationen Manuela Kunze Otto-von-Guericke Universität Magdeburg Fakultät für Informatik Institut für Wissens- und Sprachverarbeitung Gliederung Ausgangspunkt

Mehr

Requirements-Engineering Requirements-Engineering

Requirements-Engineering Requirements-Engineering -Engineering Copyright Chr. Schaffer, Fachhochschule Hagenberg, MTD 1 Was ist ein Requirement? IEEE-Standard (IEEE-726 83) A condition or capability needed by a user to solve a problem or achieve an objective.

Mehr

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval Kapitel IR:I I. Einführung Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval IR:I-1 Introduction STEIN 2005-2010 Retrieval-Szenarien Liefere Dokumente, die die Terme «Information» und

Mehr

2 Evaluierung von Retrievalsystemen

2 Evaluierung von Retrievalsystemen 2. Evaluierung von Retrievalsystemen Relevanz 2 Evaluierung von Retrievalsystemen Die Evaluierung von Verfahren und Systemen spielt im IR eine wichtige Rolle. Gemäß der Richtlinien für IR der GI gilt es,...

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Lazar (Lazy-Structure-Activity Relationships)

Lazar (Lazy-Structure-Activity Relationships) Lazar (Lazy-Structure-Activity Relationships) Martin Gütlein, Albert-Ludwigs-Universität Freiburg Dr. Christoph Helma, in silico toxicology gmbh, Basel Halle, 4.3.2013 Advanced Course des AK Regulatorische

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Suchmaschinen. Anwendung RN Semester 7. Christian Koczur

Suchmaschinen. Anwendung RN Semester 7. Christian Koczur Suchmaschinen Anwendung RN Semester 7 Christian Koczur Inhaltsverzeichnis 1. Historischer Hintergrund 2. Information Retrieval 3. Architektur einer Suchmaschine 4. Ranking von Webseiten 5. Quellenangabe

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012

Mehr

Text Mining mit LingPipe

Text Mining mit LingPipe Text Mining mit LingPipe Hauptseminar Information Retrieval PD Dr. Karin Haenelt Universität Heidelberg Vortrag von Alexander Kappe im Wintersemester 2008/2009 Übersicht Text Mining Definition & Abgrenzung

Mehr

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme

Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume. von Lars-Peter Meyer. im Seminar Methoden wissensbasierter Systeme Seminarvortrag zum Thema maschinelles Lernen I - Entscheidungsbäume von Lars-Peter Meyer im Seminar Methoden wissensbasierter Systeme bei Prof. Brewka im WS 2007/08 Übersicht Überblick maschinelles Lernen

Mehr

Informationsflut bewältigen - Textmining in der Praxis

Informationsflut bewältigen - Textmining in der Praxis Informationsflut bewältigen - Textmining in der Praxis Christiane Theusinger Business Unit Data Mining & CRM Solutions SAS Deutschland Ulrich Reincke Manager Business Data Mining Solutions SAS Deutschland

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

Recommender Systems. Stefan Beckers Praxisprojekt ASDL SS 2006 Universität Duisburg-Essen April 2006

Recommender Systems. Stefan Beckers Praxisprojekt ASDL SS 2006 Universität Duisburg-Essen April 2006 Recommender Systems Stefan Beckers Praxisprojekt ASDL SS 2006 Universität Duisburg-Essen April 2006 Inhalt 1 - Einführung 2 Arten von Recommender-Systemen 3 Beispiele für RCs 4 - Recommender-Systeme und

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Methodenkurs Text Mining 01: Know Your Data

Methodenkurs Text Mining 01: Know Your Data Methodenkurs Text Mining 01: Know Your Data Eva Enderichs SoSe2015 Eva EnderichsSoSe2015 01: Know Your Data 1 Eva EnderichsSoSe2015 01: Know Your Data 2 Typen von Korpora annotiert VS naturbelassen wenige

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Knowledge Discovery. Lösungsblatt 1

Knowledge Discovery. Lösungsblatt 1 Universität Kassel Fachbereich Mathematik/nformatik Fachgebiet Wissensverarbeitung Hertie-Stiftungslehrstuhl Wilhelmshöher Allee 73 34121 Kassel Email: hotho@cs.uni-kassel.de Tel.: ++49 561 804-6252 Dr.

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

Lernende Suchmaschinen

Lernende Suchmaschinen Lernende Suchmaschinen Qingchui Zhu PG 520 - Intelligence Service (WiSe 07 / SoSe 08) Verzeichnis 1 Einleitung Problemstellung und Zielsetzung 2 Was ist eine lernende Suchmaschine? Begriffsdefinition 3

Mehr

Digitale Bibliotheken. Informationssuche, Zugriff und Verbreitung

Digitale Bibliotheken. Informationssuche, Zugriff und Verbreitung Digitale Bibliotheken Informationssuche, Zugriff und Verbreitung Gliederung Einführung Informationssuche Problemstellung Boolesche Suche Vektorraumsuche Stemming Multilinguale Suche Fuzzy Suche Semantische

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

INEX. INitiative for the Evaluation of XML Retrieval. Sebastian Rassmann, Christian Michele

INEX. INitiative for the Evaluation of XML Retrieval. Sebastian Rassmann, Christian Michele INEX INitiative for the Evaluation of XML Retrieval Was ist INEX? 2002 gestartete Evaluierungsinitiative Evaluierung von Retrievalmethoden für XML Dokumente Berücksichtigt die hierarchische Dokumentstruktur

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Studienprojekt Invisible Web (Dipl.-Inform. Gudrun Fischer - WS 2003/04) Blockseminar

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Automatisierte Dossier- Erstellung mittels Text-Mining

Automatisierte Dossier- Erstellung mittels Text-Mining Automatisierte Dossier- Erstellung mittels Text-Mining Paul Assendorp Grundseminar 11.12.2014 Paul Assendorp Automatisierte Dossier-Erstellung 1 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick

Mehr

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006 Seminar Informationsintegration und Informationsqualität TU Kaiserslautern 30. Juni 2006 Gliederung Autonomie Verteilung führt zu Autonomie... Intra-Organisation: historisch Inter-Organisation: Internet

Mehr

Matrikelnr: Name: Vorname: Aufgabe 1 2 3 4 Summe Maximal erreichbare 20 30 30 20 100 Punktzahl Erreichte Punktzahl. Note:

Matrikelnr: Name: Vorname: Aufgabe 1 2 3 4 Summe Maximal erreichbare 20 30 30 20 100 Punktzahl Erreichte Punktzahl. Note: Fakultät für Wirtschaftswissenschaft Matrikelnr: Name: Vorname: : Modul 32711 Business Intelligence Termin: 28.03.2014, 9:00 11:00 Uhr Prüfer: Univ.-Prof. Dr. U. Baumöl Aufbau und Bewertung der Aufgabe

Mehr

Behavioral Targeting und selbstlernende Kampagnen. Aktuelle Herausforderungen für Data Mining. Dr. Alexander K. Seewald

Behavioral Targeting und selbstlernende Kampagnen. Aktuelle Herausforderungen für Data Mining. Dr. Alexander K. Seewald Behavioral Targeting und selbstlernende Kampagnen Aktuelle Herausforderungen für Data Mining Dr. Alexander K. Seewald Behavioral Targeting Kognitive Neurowissenschaften Verhalten aussagekräftiger als Erklärung

Mehr

Data Mining mit RapidMiner

Data Mining mit RapidMiner Motivation Data Mining mit RapidMiner CRISP: DM-Prozess besteht aus unterschiedlichen Teilaufgaben Datenvorverarbeitung spielt wichtige Rolle im DM-Prozess Systematische Evaluationen erfordern flexible

Mehr

Prozesse beim Data Mining. Relevante Fachgebiete für Data Mining. Beispiel: Datenquelle (relationale DB) Architektur eines Data Mining Systems

Prozesse beim Data Mining. Relevante Fachgebiete für Data Mining. Beispiel: Datenquelle (relationale DB) Architektur eines Data Mining Systems Relevante Fachgebiete für Data Mining Prozesse beim Data Mining 1. Data cleaning: Datensäuberung von Rauschen & Inkonsistenz 2. Data integration: Datenintegration aus multiplen Quellen 3. Data selection:

Mehr

Ebsco Business Source Premier: Recherche

Ebsco Business Source Premier: Recherche Ebsco Business Source Premier: Recherche Wenn Sie in der Datenbank Business Source Premier recherchieren wollen müssen Sie diese auf der Startseite auswählen: Choose Databases: Business Source Premier

Mehr

Informationstheorethisches Theorem nach Shannon

Informationstheorethisches Theorem nach Shannon Informationstheorethisches Theorem nach Shannon Beispiel zum Codierungsaufwand - Wiederholung: Informationstheorethisches Modell (Shannon) Sei x eine Aussage. Sei M ein Modell Wieviele Bits sind aussreichend,

Mehr

Web Mining und Farming

Web Mining und Farming Web Mining und Farming Shenwei Song Gliederung Übersicht über Web Mining und Farming Web Mining Klassifikation des Web Mining Wissensbasierte Wrapper-Induktion Web Farming Übersicht über Web-Farming-Systeme

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen. Teil 1: Einführung: Wissensbasis und Ontologie.

GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen. Teil 1: Einführung: Wissensbasis und Ontologie. GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen Teil 1: Einführung: Wissensbasis und Ontologie Was ist eine Wissensbasis? Unterschied zur Datenbank: Datenbank: strukturiert

Mehr

Text Mining und CRM. Hans Hermann Weber Univ. Erlangen IMMD 8, den 12.09.03

Text Mining und CRM. Hans Hermann Weber Univ. Erlangen IMMD 8, den 12.09.03 Text Mining und CRM Hans Hermann Weber Univ. Erlangen IMMD 8, den 12.09.03 Was ist Textmining Unstrukturierte Daten (Text) anreichern mit Strukturinformation: Metadaten hinzufügen Struktur (Segmentinformation)

Mehr

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Schätzung von Holzvorräten und Baumartenanteilen mittels Wahrscheinlichkeitsmodellen Haruth

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Datenbanken-Themen im OS "Data Mining" SS 2010

Datenbanken-Themen im OS Data Mining SS 2010 Prof. Dr.-Ing. Thomas Kudraß HTWK Leipzig, FIMN Datenbanken-Themen im OS "Data Mining" SS 2010 Die Vorträge sollten eine Dauer von 60 Minuten (Einzelvortrag) bzw. 45 Minuten (Doppelvortrag) haben. Nachfolgend

Mehr

VO 340088 Sprachtechnologien. Informations- und Wissensmanagement. Bartholomäus Wloka. Zentrum für Translationswissenschaft

VO 340088 Sprachtechnologien. Informations- und Wissensmanagement. Bartholomäus Wloka. Zentrum für Translationswissenschaft , Informations- und Wissensmanagement Zentrum für Translationswissenschaft Grundlagen und Definitionen Maschinelle Sprachverarbeitung Breites Spektrum an Methoden der Computerverarbeitung von Sprache.

Mehr

Übung Medienretrieval WS 07/08 Thomas Wilhelm, Medieninformatik, TU Chemnitz

Übung Medienretrieval WS 07/08 Thomas Wilhelm, Medieninformatik, TU Chemnitz 02_Grundlagen Lucene Übung Medienretrieval WS 07/08 Thomas Wilhelm, Medieninformatik, TU Chemnitz Was ist Lucene? (1) Apache Lucene is a high-performance, full-featured text search engine library written

Mehr

Text-Mining: Einführung

Text-Mining: Einführung Text-Mining: Einführung Claes Neuefeind Fabian Steeg 22. April 2010 Organisatorisches Was ist Text-Mining? Definitionen Anwendungsbeispiele Textuelle Daten Aufgaben u. Teilbereiche Literatur Kontakt Sprechstunde:

Mehr

Detecting Near Duplicates for Web Crawling

Detecting Near Duplicates for Web Crawling Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen

Mehr

Stellen Sie sich vor, sie haben eine Testabteilung - und alle gehen hin!

Stellen Sie sich vor, sie haben eine Testabteilung - und alle gehen hin! Stellen Sie sich vor, sie haben eine Testabteilung - und alle gehen hin! Bruno Linder, Leiter Testfactory SBB IT Bern, 01.09.2011 Autor(en): Bruno Linder Status: Final Version: V 1.0 Letzte Änderung: 20.08.2011

Mehr

Fragenkatalog zur Vorlesung "Grundlagen des Data Mining" (WS 2006/07)

Fragenkatalog zur Vorlesung Grundlagen des Data Mining (WS 2006/07) Fragenkatalog zur Vorlesung "Grundlagen des Data Mining" (WS 2006/07) 1. Grenzen Sie die Begriffe "Daten" und "Wissen" mit je 3 charakteristischen Eigenschaften gegeander ab. 2. Nennen Sie vier verschiedene

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Text Mining 4. Seminar Klassifikation

Text Mining 4. Seminar Klassifikation Text Mining 4. Seminar Klassifikation Stefan Bordag 1. Klassifikation Stringklassifikation (männliche-weibliche Vornamen) Dokument klassifikation Bayesian Neuronal network (Decision tree) (Rule learner)

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert:

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: 1 des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval Information

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

Softwareschnittstellen

Softwareschnittstellen P4.1. Gliederung Rechnerpraktikum zu Kapitel 4 Softwareschnittstellen Einleitung, Component Object Model (COM) Zugriff auf Microsoft Excel Zugriff auf MATLAB Zugriff auf CATIA Folie 1 P4.2. Einleitung

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr