Halbleiter, Dioden. wyrs, Halbleiter, 1

Größe: px
Ab Seite anzeigen:

Download "Halbleiter, Dioden. wyrs, Halbleiter, 1"

Transkript

1 Halbleiter, Dioden Halbleiter, 1

2 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten des pn-übergangs Ideale / reale Dioden Halbleiter, 2

3 Einleitung: spezifische Leitfähigkeit R = ρ l A = l κ A l: Länge des Materials A: Querschnittsfläche des Materials : Spezifischer Widerstand : Spezifische Leitfähigkeit Die spezifische Leitfähigkeit ist proportional zur Elementarladung q, zur Ladungsträgerdichte n und zur Beweglichkeit der Ladungsträger µ: κ = n q μ u. A. hängt die spezifische Leitfähigkeit von der Temperatur ab. Die Einheit von ist 1/ m oder S/m (S: Siemens). Bem.: Elektronenladung q: q= e-19 As Halbleiter, 3

4 Einleitung: spezifische Leitfähigkeit Nach der spezifischen Leitfähigkeit unterteilt man Stoffe in: a) Supraleiter Unterhalb einer materialabhängigen Temperatur sinkt der elektrische Widerstand auf null und die Leitfähigkeit strebt gegen. b) Leiter (z.b. alle Metalle) Typischerweise (bei 25 C): > 10 6 S/m. c) Halbleiter (z.b. Silizium, Germanium) Die spezifischen Leitfähigkeit liegt zwischen den Leitern und Nichtleitern. d) Isolatoren (z.b. die meisten Nichtmetalle) Typischerweise < 10 8 S/m. Halbleiter, 4

5 Einleitung: spezifische Leitfähigkeit Material Bezeichnung in S/m Silber Leiter Kupfer Leiter Gold Leiter Aluminium Leiter Zink Leiter Nickel Leiter Kobalt Leiter Messing Leiter Eisen Leiter Platin Leiter Zinn Leiter Stahl Leiter Chrom Leiter Blei Leiter Konstantan Leiter Quecksilber Leiter Germanium Halbleiter 2 Tellur Halbleiter Silizium (undotiert) Halbleiter Selen Halbleiter Glas Isolator Porzellan Isolator Quelle: wikipedia Halbleiter, 5

6 Eigenschaften Halbleiter Germanium und Silizium sind chemisch vierwertig. Halbleiter, 6

7 Eigenschaften Halbleiter: Gitterstruktur Germanium und Silizium sind chemisch vierwertig. Damit ergibt sich ein störungsfrei aufgebautes, symmetrisches Kristallgitter in Diamantgitterstruktur. Dreidimensional Zweidimensional Halbleiter, 7

8 Halbleiter: Silizium Siliziumgitter Halbleiter, 8

9 Halbleiter: Silizium Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch. Stromfluss ist möglich. Halbleiter, 9

10 Halbleiter: Slilzium Typ n Siliziumgitter dotiert mit 5-wertigem Atom ein Elektron ist frei verfügbar. kann mit Loch aus kovalenter Bindung kombinieren, dessen Elektron frei ist z.b. Phosphor Halbleiter, 10

11 Halbleiter: Silizium Typ p Siliziumgitter dotiert mit 3-wertigem Atom ein Loch ist frei verfügbar. kann mit Elektron aus kovalenter Bindung kombinieren, dessen Loch frei ist + z.b. Bor Halbleiter, 11

12 Halbleiter pn-übergang E Verhalten am pn-übergang: Die freien Ladungen in der Grenzzone pn (Raumladungszone) rekombinieren Zone verarmt (Depletion) an freier Ladung, d.h. Elektronen im n und Löcher im p Material verschwinden. Die gebundene Ladungen - + der Atome der Gegenseite stossen die hinteren freien Ladungen +, - von der Grenze weg. Das pn-übergang sperrt den Strom, über der Zone liegt ein elektrisches Feld. Halbleiter, 12

13 Sperrender Halbleiter E Zur Erinnerung: Elektronen fliessen von - nach +. Stromrichtung ist von + nach Bounded charges increase Bei Anregen mit einem Strom I in Sperrrichtung fliesst nur ein geringer Strom I S, der den winzigen Strom I D von diffundierenden Ladungsträgern aufwiegt. Mehr freie Elektronen bzw. Löcher in p- bzw. n- Zone vergrössern die Rekombination. Die Sperrschicht verbreitert sich, eine Spannung V R baut sich auf. Die Diode sperrt. Halbleiter, 13

14 Leitender Halbleiter E Bounded charges decrease Bei Anregen mit einem Strom I in Flussrichtung fliesst ein Strom I D, der Diffusion an Ladungsträgern verstärkt, d.h. viele freie Elektronen bzw. Löcher in n- bzw. p- Zone überschwemmen die Sperrschicht. Die Sperrschicht baut sich ab, eine kleine Flussspannung V entsteht. Die Diode leitet. Halbleiter, 14

15 Halbleiterbezeichnungen Löcher in der p-region und Elektronen in der n-region heissen Majoritätsträger Elektronen in der p-region und Löcher in der n-region heissen Minoritätsträger Durch den Abbau der Sperrspannung werden Minoritätsträger leichter über die ladungsfreie Zone diffundieren und dort mit den Majoritätsträgern rekombinieren. Ein dauerhafter Strom I D fliesst um das Ladungsgleichgewicht zu erhalten. Halbleiter, 15

16 Ideale Diode Halbleiter, 16

17 Ideale Diode: Analyse Analysemethode: 1. Feststellen ob positive Spannung über der pn-strecke liegt 2. Falls ja, Flussstrom I berechnen, falls nein I = 0 Tipp: manchmal muss man eine Hypothese machen und dann verifizieren. Halbleiter, 17

18 Bauformen von Dioden SOD80 SOT23 DO35 DO41 TO220 Dioden sind die einfachsten diskreten Halbleiterbauelemente. Sie werden als Gleichrichter und Spannungsreferenzen in Stromversorgungen, für diverse Signalverarbeitungsanwendungen (z.b. Signalpfadschalter) und zu Schutzzwecken (Überspannungsschutz) eingesetzt Halbleiter, 18

19 Die ideale Diode Durchlassbereich Sperrbereich Halbleiter, 19

20 Beispiele: ideale Diode a) 0V; 2mA b) 5V; 0A c) 5V; 0A d) 0V; 2mA e) 3V; 3mA f) 1V; 4mA +3V: Rot; -3V: Grün Halbleiter, 20

21 Aufgaben: ideale Diode Bestimmen Sie für beide Schaltungen jeweils I und V. Halbleiter, 22

22 Aufgaben: ideale Diode Bestimmen Sie für beide Schaltungen jeweils I und V. D 1 off, D 2 on, I = 0 ma, V = V D 1 on, D 2 on, I = 0.5 ma, V = 0 V Halbleiter, 22

23 Die reale Diode Die «reale» Diode wird in 3 Regionen unterteilt: - Flussbetrieb (Forward-Bias) - Sperrbetrieb (Reverse-Bias) - Zenerbetrieb (Breakdown) Halbleiter, 23

24 Beispiel: 1N914 Zenerbetrieb (Breakdown); Sperrbetrieb (Reverse-Bias); Flussbetrieb (Forward-Bias) Halbleiter, 24

25 Reale Diode: Forward(-Bias) Region Gleichung: i D v D I S exp 1 n VT mit V T Approximation (für i D >>I S ) und n=1: i D I S e v V D T kt q I S = Sättigungssperrstrom der Diode V T = Temperaturspannung n = Korrekturfaktor; 1 n 2 q = Ladung Elektron As k = Boltzmann Konstante J/K Typische Werte: I S = A V T = ca mv bei 20 C Folge von Temperaturabhängigkeit von I S und V T : Flussspannung v D nimmt um 2mV/ C ab bei wachsender Temperatur und konstant bleibendem Strom Halbleiter, 25

26 Reale Diode: Reverse(-Bias) Region Unter der Annahme, dass die Diodenspannung v D negativ ist und betragsmässig einiges grösser als V T, aber kleiner als die Breakdown-Spannung, dann können wir diese Region sehr grob approximieren mit: Darum auch die Bezeichnung Sättigungssperrstrom für I S. i D I S i D v D I S exp 1 n VT Reale Dioden können aber Sperrströme haben, die wesentlich grösser als I S sind. Eine Faustregel besagt, dass sich der Sperrstrom u.a. pro 10 K Temperaturzunahme verdoppelt. Halbleiter, 26

27 Die reale Diode: Vereinfachtes Model #1 Vereinfachte Kennlinie (blau) Ersatzbild im Schema Halbleiter, 28

28 Vergleich reale Diode und vereinfachte Modelle V rd I T D Halbleiter, 33

29 Einige Diodentypen & deren Eigenschaften Gleichrichterdiode z.b. 1N4004 Sperrspannung 400 V Flussspannung 1 V@ 1A Flussstrom (Peak) 30 A Schaltzeit 1 s Schaltdiode z.b. 1N4448 Sperrspannung 100 V Flussspannung 1 V@ 0.1A Flussstrom (Peak) 0.5 A Schaltzeit 10 ns Schottky Diode z.b. 1N5819 Sperrspannung 30 V Flussspannung 0.5 V@ 1A Flussstrom (Peak) 1A Schaltzeit 0 ns Halbleiter, 35

30 Limiter-Schaltungen: Beispiele jeweils Konstantspannungsmodell (v D =0.7V) Halbleiter, 36

31 Zusammenfassung Dioden sperren bei negativer Spannung Dioden leiteten bei positiver Spannung Analyse: Annahme v D ist in Flussrichtung bestimmen von i D. Ist i D in Flussrichtung stimmt Annahme sonst mit v D in Sperrrichtung weiterfahren. Jede Anwendung braucht die dafür optimierte Diode: Netzteil, Schnelle Logik, Signaldetektion Halbleiter, 40

32 Labor: Superdiode Messen Sie v O & v A für sinusförmige Eingangssignale mit 4Vpp (0V DC) für die Frequenzen f=10hz, 100Hz, 1kHz & 10kHz. Wählen Sie R=33k. (OP: 741 mit ±12V, Diode: z.b. 1N4148) Stellen Sie mit dem KO auch die Kennlinie v O /v I dar. Was stellen Sie fest? Woher kommt dieser Effekt? Halbleiter, 41

33 Labor: Diodenschaltungen Diodenschaltung 1 (V Quelle =5V pp, f=200 Hz, R i =50 ) a) Messen Sie die Spannung V out mit dem Voltmeter in DC-Stellung (Mittelwert). b) Messen Sie den Ripple V r in mv mit dem Oszilloskop für R L = 47k, 4k7, 470. c) Für R L = 470 erhöhe man f auf 2 khz und C auf 100 F. Quelle Diodenschaltung 2 (V Quelle =5V pp, f=1 khz, R i =50 ) Quelle a) Messen Sie die Spannung über C 1 und C 2 mit dem Voltmeter (DC-Stellung). b) Messen Sie die Spannungsverläufe am Generator, über D 1 und R L mit dem Oszilloskop c) Was macht diese Schaltung? Halbleiter, 46

34 Aufgaben: i D I S e v V D T V T = 25.3 mv bei 20 C Bestimmen Sie v D und i D einmal für das Konstantspannungsmodell und einmal für die vereinfachte Exponentialform. Nehmen Sie an, dass v D =0.7V, wenn der Strom i D =1mA. Konstantspannungsmodell: a) 0.7V; 1.72mA c) 5V; 0A b) 5V; 0A e) 2.3V; 2.3mA d) 0.7V; 1.72mA f) 1.7V; 3.3mA Vereinfachte Exponentialform: e) V; mA b) V; mA c) 5V; 0A b) 5V; 0A d) V; mA f) V; mA Halbleiter, 55

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

4. Dioden Der pn-übergang

4. Dioden Der pn-übergang 4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position! FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.

Mehr

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren

Mehr

Elektrizitätsleitung in Halbleitern

Elektrizitätsleitung in Halbleitern Elektrizitätsleitung in Halbleitern Halbleiter sind chemische Elemente, die elektrischen Strom schlecht leiten. Germanium, Silicium und Selen sind die technisch wichtigsten Halbleiterelemente; aber auch

Mehr

Transistor BJT I. Roland Küng, 2009

Transistor BJT I. Roland Küng, 2009 Transistor BJT I Roland Küng, 2009 Aufbau-Bezeichnungen Typ NPN Typ PNP Aufbau Praktisch Typ NPN B Schicht dünn E Schicht hoch dotiert (viel Phosphor bei n, Bor bei p) B E C Funktionsweise I E hoch dotiert

Mehr

Übungsserie 5: Diode

Übungsserie 5: Diode 24. Juni 2014 Elektronik 1 Martin Weisenhorn Übungsserie 5: Diode Aufgabe 1. Ideale Dioden Nehmen sie für die folgenden Schaltungen an, dass die Dioden ideal sind. Berechnen Sie jeweils die Spannung V

Mehr

Übungsserie: Diode 2

Übungsserie: Diode 2 15. März 2016 Elektronik 1 Martin Weisenhorn Übungsserie: Diode 2 Aufgabe 1. Ideale Dioden Nehmen sie für die folgenden Schaltungen an, dass die Dioden ideal entsprechend Modell (a) aus dem Abschnitt 2.6

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Die folgenden Aufgaben dienen der Vorbereitung auf das Praktikum Halbleiterbauelemente der Hochleistungselektronik. Bitte bearbeiten

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

h-bestimmung mit LEDs

h-bestimmung mit LEDs Aufbau und Funktion der 13. März 2006 Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Aufbau und Funktion

Mehr

5.1.0 Grundlagen 5.2.0 Dioden

5.1.0 Grundlagen 5.2.0 Dioden 5.0 Halbleiter 5.1.0 Grundlagen 5.2.0 Dioden 5.3.0 Bipolare Transistoren 5.4.0 Feldeffekttransistoren 5.5.0 Integrierte Schaltungen 5.6.0 Schaltungstechnik 5.1.0 Grundlagen Was sind Halbleiter? Stoffe,

Mehr

Halbleiter und Transistoren - Prinzip und Funktionsweise

Halbleiter und Transistoren - Prinzip und Funktionsweise Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien

Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien UniversitätQOsnabrück Fachbereich Physik Dr. W. Bodenberger Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien Betrachtet man die Kontakstelle zweier Metallischer Leiter mit unterschiedlichen

Mehr

Kapitel 1: Diode. Abb. 1.1. Schaltzeichen und Aufbau einer Diode. Metall

Kapitel 1: Diode. Abb. 1.1. Schaltzeichen und Aufbau einer Diode. Metall Kapitel 1: Diode Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen, die mit Anode (anode,a) und Kathode (cathode,k) bezeichnet werden. Man unterscheidet zwischen Einzeldioden, die für die Montage

Mehr

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen

Mehr

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Christoph Hansen chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Mehr

6/2 Halbleiter Ganz wichtige Bauteile

6/2 Halbleiter Ganz wichtige Bauteile Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz

Mehr

Dielektrizitätskonstante

Dielektrizitätskonstante Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -

Mehr

1. Diode und Transistor

1. Diode und Transistor 1. Diode und Transistor Vergleichen Sie Diode und Transistor aus Bild 1. a) Wie groß sind jeweils die Elektronenströme? b) Wie groß sind jeweils die Löcherströme? E B C 18-3 N = A 17-3 10 cm 16-3 Basislänge

Mehr

Arbeitsblatt: U-I-Kennlinien von Dioden

Arbeitsblatt: U-I-Kennlinien von Dioden Arbeitsblatt: U-I-Kennlinien von Dioden Mit dem folgenden Versuch soll die U-I-Kennlinie von Dioden (Si-Diode, Leuchtdiode, Infrarot-Diode (IR-Diode) aufgenommen werden. Aus der Kennlinie der IR-Diode

Mehr

Entstehung der Diffusionsspannung beim pn-übergang

Entstehung der Diffusionsspannung beim pn-übergang 2. Halbleiterdiode 2.1 pn-übergang Die elementare Struktur für den Aufbau elektronischer Schaltungen sind aneinander grenzende komplementär dotierte Halbleitermaterialien. Beim Übergang eines n-dotierten

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone 2 Diode 2.1 Formelsammlung Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone ( q ) ] p n( n )=p n0 [ep kt U pn 1 bzw. (2.2) ( q ) ] n

Mehr

-Dioden- -Strom- und Spannungsmessung bei einer Halbleiterdiode-

-Dioden- -Strom- und Spannungsmessung bei einer Halbleiterdiode- -Dioden- Dioden sind Bauelemente, durch die der Strom nur in eine Richtung fliessen kann. Sie werden daher häufig in Gleichrichterschaltungen eingesetzt. Die Bezeichnung Diode ist aus der griechischen

Mehr

LABORÜBUNG Diodenkennlinie

LABORÜBUNG Diodenkennlinie LABORÜBUNG Diodenkennlinie Letzte Änderung: 30.11.2004 Lothar Kerbl Inhaltsverzeichnis Messaufgabe 1: Kennlinie im Durchlassbereich... 2 Theoretische Kennlinie... 3 Messaufgabe 2 : Kennlinie einer Zenerdiode...

Mehr

Viel Erfolg!! Aufgabe 1: Operationsverstärker (ca. 10 Punkte) Seite 1 von 8. Wintersemester 2016/17 Elektronik

Viel Erfolg!! Aufgabe 1: Operationsverstärker (ca. 10 Punkte) Seite 1 von 8. Wintersemester 2016/17 Elektronik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Wintersemester 2016/17 Elektronik Matr.-Nr.: Name, Vorname: Hörsaal: Unterschrift: Prof. Dr.-Ing. Tilman

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Geschichte der Halbleitertechnik

Geschichte der Halbleitertechnik Geschichte der Halbleitertechnik Die Geschichte der Halbleitertechnik beginnt im Jahr 1823 als ein Mann namens v. J. J. Berzellus das Silizium entdeckte. Silizium ist heute das bestimmende Halbleitermaterial

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

Das Ohmsche Gesetz. Selina Malacarne Nicola Ramagnano. 1 von 15

Das Ohmsche Gesetz. Selina Malacarne Nicola Ramagnano. 1 von 15 Das Ohmsche Gesetz Selina Malacarne Nicola Ramagnano 1 von 15 21./22. März 2011 Programm Spannung, Strom und Widerstand Das Ohmsche Gesetz Widerstandsprint bestücken Funktion des Wechselblinkers 2 von

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

F02. Bandabstand von Germanium

F02. Bandabstand von Germanium F02 Bandabstand von Germanium Im Versuch wird der elektrische Widerstand eines Halbleiterstücks aus Germanium in Abhängigkeit von der Temperatur gemessen. Mit höherer Temperatur werden gemäß Gleichung

Mehr

Schaltzeichen. Schaltzeichen

Schaltzeichen. Schaltzeichen Die Eigenschaften des pn-übergangs werden in Halbleiterdioden genutzt. Halbleiterdioden bestehen aus einer p- und einer n-leitenden Schicht. Die Schichten sind in einem Gehäuse miteinander verbunden und

Mehr

5. Kennlinien elektrischer Leiter

5. Kennlinien elektrischer Leiter KL 5. Kennlinien elektrischer Leiter 5.1 Einleitung Wird an einen elektrischen Leiter eine Spannung angelegt, so fliesst ein Strom. Als Widerstand des Leiters wird der Quotient aus Spannung und Strom definiert:

Mehr

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren.

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren. Elektrizitätslehre 1 Ein elektrischer Strom fließt nur dann, wenn ein geschlossener Stromkreis vorliegt. Batterie Grundlagen Schaltzeichen für Netzgerät, Steckdose: Glühlampe Schalter Stoffe, durch die

Mehr

Versuch E21 - Transistor als Schalter. Abgabedatum: 24. April 2007

Versuch E21 - Transistor als Schalter. Abgabedatum: 24. April 2007 Versuch E21 - Transistor als Schalter Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Kontext 3 2.1 Halbleiter und ihre Eigenschaften..................

Mehr

Fototransistor. Der Fototransistor. von Philip Jastrzebski. Betreuer: Christian Brose Philip Jastrzebski 1

Fototransistor. Der Fototransistor. von Philip Jastrzebski. Betreuer: Christian Brose Philip Jastrzebski 1 Der Fototransistor von Philip Jastrzebski Betreuer: Christian Brose 17.11.2008 Philip Jastrzebski 1 Gliederung: I. Aufbau & Funktionsweise Fotodiode Fototransistor V. Vor- und Nachteile VII. Bsp: Reflexkoppler

Mehr

Halbleiterphysik. 1. Physikalische Definition des elektrischen Stromes

Halbleiterphysik. 1. Physikalische Definition des elektrischen Stromes Halbleiterphysik 1. Physikalische Definition des elektrischen Stromes Nach dem Bohr schen Atommodell sind Atome aus positiven und negativen Ladungsträgern aufgebaut. Die positiven Ladungsträger (Protonen)

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel

Mehr

Z-Diode u.a. Roland Küng, 2010

Z-Diode u.a. Roland Küng, 2010 Z-Diode u.a. Roland Küng, 2010 Diode Review Überlegen in 2 Schritten: v I negativ: Ersatzbild vo v I positiv: Ersatzbild vo L: Zweiweggleichrichter v 0 = v i Diode Review Wechselspannungswiderstand LED

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E8 Kennlinien Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 08.01.2001 INHALTSVERZEICHNIS 1. Einleitung 2. Theoretische Grundlagen 2.1 Metalle 2.2 Halbleiter 2.3 Gasentzladugen 3.

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam 9. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben............................... 2 2 Vorbetrachtungen

Mehr

Lernaufgabe: Halbleiterdiode 1

Lernaufgabe: Halbleiterdiode 1 1 Organisation Gruppeneinteilung nach Plan / Zeit für die Bearbeitung: 60 Minuten Lernziele - Die Funktionsweise und das Schaltverhalten einiger Diodentypen angeben können - Schaltkreise mit Dioden aufbauen

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der Technischen Informatik Dr. Wolfgang Koch Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Rechnerarchitektur wolfgang.koch@uni-jena.de Inhalt Grundlagen der Techn.

Mehr

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone 2 Diode 2.1 Formelsammlung Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone ( q ) ] p n(x n )=p n0 [exp kt U pn 1 bzw. (2.2) ( q ) ]

Mehr

Elektrische Leitung. Strom

Elektrische Leitung. Strom lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)

Mehr

Prüfung Elektronik 1

Prüfung Elektronik 1 Prof. Dr.-Ing. J. Siegl 01. Februar 2007 Georg Simon Ohm Fachhochschule Nürnberg FB Elektrotechnik-Feinwerktechnik-Informationstechnik; Vorname: Unterschrift Name: Matrikelnummer: Prüfung Elektronik 1

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Kristallgitter von Metallen

Kristallgitter von Metallen R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 I. Elektronik 10. Wiederholung wichtiger Grundsachverhalte aus der Elektrik 10.1 Leiter und Nichtleiter. 10.1.1 Metallische Leiter und Nichtleiter.

Mehr

Diode und OpAmp. Roland Küng, 2009

Diode und OpAmp. Roland Küng, 2009 Diode und OpAmp Roland Küng, 2009 1 Diode Review Diodenmodelle: weiss: ideal schwarz: Flussspannung V D = 0.7 V V O, I D1? V out (t)? 2 Limiter Kennlinien für Diodenmodell V D = 0.7 V 3 DC-Restorer v c

Mehr

Waldschmidt, K.: Schaltungen der Datenverarbeitung, Teubner, 1980, ISBN

Waldschmidt, K.: Schaltungen der Datenverarbeitung, Teubner, 1980, ISBN Computersysteme 2. Grundlagen digitaler Schaltungen 2.1 Boole sche Funktionen 2.2 Darstellung Boole scher Funktionen 2.3 Funktionen mit einer Eingabevariablen 2.4 Funktionen mit zwei Eingabevariablen 2.5

Mehr

Leiter, Halbleiter, Isolatoren

Leiter, Halbleiter, Isolatoren eiter, Halbleiter, Isolatoren lektronen in Festkörpern: In einzelnem Atom: diskrete erlaubte nergieniveaus der lektronen. In Kristallgittern: Bänder erlaubter nergie: gap = Bandlücke, pot Positionen der

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Tobias Scheinert / (Heiko Falk) Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität

Mehr

Bauelemente der Elektronik Teil 1

Bauelemente der Elektronik Teil 1 Bauelemente der Elektronik Teil 1 Widerstände Allgemeines Jeder Werkstoff setzt dem Strom einen mehr oder weniger großen elektrischen Widerstand entgegen. Wie du ja schon weißt, ist der Strom nichts anderes

Mehr

Atom Strom Elektron Stromkreis

Atom Strom Elektron Stromkreis Atom Strom Elektron Stromkreis Aufbau eines Atoms Name Ort Ladung Proton Kern positiv + Neutron Kern neutral n Elektron Hülle negativ - Elektroskop Elektrische Ladungen können mit dem Elektroskop nachgewiesen

Mehr

Ausarbeitung: MOSFET

Ausarbeitung: MOSFET Ausarbeitung: MOSFET Inhaltverzeichnis: 1. Einleitung 2. Definition 3. Aufbau 4. Kennlinien 5. Anwendungen 6. Vor- & Nachteile 7. Quellen 1 1.Einleitung: Die erste begrifflich ähnliche MOSFET- Struktur

Mehr

Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version

Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version Grundlagen-Vertiefung PW10 Ladungstransport und Leitfähigkeit Version 2007-10-11 Inhaltsverzeichnis 1 1.1 Klassische Theorie des Ladungstransports.................. 1 1.2 Temperaturabhängigkeit der elektrischen

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A 1 Wiederholung: Stromstärke: I = Q t Einheit 1 Ampere, C = A s Elektrischer Widerstand: R = U I U = R I Einheit 1 Ohm, Ω = V/A Standard Widerstände: 2 Aber auch dies sind Widerstände: Verstellbare Widerstände

Mehr

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #6 am 3.05.007 Vladimir Dyakonov (Klausur-)Frage des Tages n einem Blitz kann die Potentialdifferenz

Mehr

Präsentation SSP Immanuel Mayrhuber, Boris Scherwitzl

Präsentation SSP Immanuel Mayrhuber, Boris Scherwitzl Präsentation SSP Immanuel Mayrhuber, Boris Scherwitzl Übersicht Erklärung eines pn Übergangs Halbleiterdioden Photodioden Leuchtdioden Bipolartransistor JFET MOSFET pn Übergang y y y y y y Übergang von

Mehr

5. Halbleiter und P-N-Übergang

5. Halbleiter und P-N-Übergang 5. Halbleiter und P-N-Übergang Thomas Zimmer, Universität Bordeaux, Frankreich Inhaltverzeichnis Lernziele... 2 Physikalischer Hintergrund von Halbleitern... 2 Der Siliziumkristall... 2 Die Energiebänder...

Mehr

GRUNDLAGENLABOR CLASSIC SPEZIFISCHER WIDERSTAND

GRUNDLAGENLABOR CLASSIC SPEZIFISCHER WIDERSTAND GRUNDLGENLBOR CLSSIC SPEZIFISCHER WIDERSTND Inhalt: 1. Einleitung und Zielsetzung...2 2. Theoretische ufgaben Vorbereitung...2 3. Praktische Messaufgaben...4 nhang: Übersicht der Leitfähigkeiten (kein

Mehr

Lösung zu Aufgabe 3.1

Lösung zu Aufgabe 3.1 Lösung zu Aufgabe 3.1 (a) Die an der Anordnung anliegende Spannung ist groß im Vergleich zur Schleusenspannung der Diode. Für eine Abschätzung des Diodenstroms wird zunächst die Näherung V = 0.7 V verwendet,

Mehr

Dotierung. = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau. von Atomen mit 3 Valenzelektronen

Dotierung. = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau. von Atomen mit 3 Valenzelektronen Halbleiter Dotierung = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau von Atomen mit 5 Valenzelektronen = Donatoren Elektronengeber (P, Sb, As) p-dotierung Einbau

Mehr

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1 1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus

Mehr

Universität - GH Essen Fachbereich 7 Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 7 - Dioden

Universität - GH Essen Fachbereich 7 Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 7 - Dioden niversität - GH Essen Fachbereich 7 Physik 20.9.01 PHYSIKALISCHES PRAKTIKM FÜR ANFÄNGER Versuch: E 7 - Dioden 1. Grundlagen nterschied zwischen Leitern, Halbleitern und Isolatoren, Dotierung von Halbleitern

Mehr

Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals

Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals Halbleiter Halbleiter sind stark abhängig von : - der mechanischen Kraft (beeinflusst die Beweglichkeit der Ladungsträger) - der Temperatur (Zahl und Beweglichkeit der Ladungsträger) - Belichtung (Anzahl

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die

Mehr

Transistorkennlinien 1 (TRA 1)

Transistorkennlinien 1 (TRA 1) Physikalisches Praktikum Transistorkennlinien 1 (TRA 1) Ausarbeitung von: Manuel Staebel 2236632 Michael Wack 2234088 1. Messungen, Diagramme und Auswertungen Der Versuch TRA 1 soll uns durch das Aufstellen

Mehr

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen das PLANCKsche Wirkungsquantum h.

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

Die kovalente Bindung

Die kovalente Bindung Die kovalente Bindung Atome, die keine abgeschlossene Elektronenschale besitzen, können über eine kovalente Bindung dieses Ziel erreichen. Beispiel: 4 H H + C H H C H H Die Wasserstoffatome erreichen damit

Mehr

Der MosFET. Referent: Dominik Tuszyoski

Der MosFET. Referent: Dominik Tuszyoski Der MosFET Referent: Dominik Tuszyoski 27.05.2010 1. Geschichte 1.1.Erfinder 1.2.Ein paar Fakten 2. Einsatzgebiete 3. Aufbau 3.1. Schaltzeichen 3.2. physikalischer Aufbau 3.3. Funktionsweise 3.4.1. Kennlinienfeld

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

Leistungsbauelemente

Leistungsbauelemente I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Einführung in die Elektronik Leiter und Nichtleiter. Metallische Leiter und Nichtleiter. Alle Werkstoffe, die in der Elektrotechnik verwendet werden

Mehr

Halbleiter. pn-übergang Solarzelle Leuchtdiode

Halbleiter. pn-übergang Solarzelle Leuchtdiode Halbleiter pn-übergang Solarzelle Leuchtdiode Energie der Elektronenzustände von Natrium als Funktion des Abstandes a der Natriumatome a 0 ist der Abstand im festen Natrium 3.1a Spezifischer elektrischer

Mehr

Auswertung: Eigenschaften elektrischer Bauelemente

Auswertung: Eigenschaften elektrischer Bauelemente Auswertung: Eigenschaften elektrischer Bauelemente Christine Dörflinger (christinedoerflinger@gmail.com) Frederik Mayer (fmayer163@gmail.com) Gruppe Do-9 4. Juli 2012 1 Inhaltsverzeichnis 1 Untersuchung

Mehr

Aufgabe 1: Induktion Schlaumeiers Transformator

Aufgabe 1: Induktion Schlaumeiers Transformator Aufgabe 1: Induktion Schlaumeiers Transformator Gleichspannung führt nicht zu einer induzierten Spannung in der Spule (keine Änderung des Magnetfelds) Windungsanzahl der Primär und Sekundärspulen sind

Mehr

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis:

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis: Schulversuchspraktikum WS 2000/2001 Redl Günther 9655337 Widerstände 3. und 7.Klasse Inhaltsverzeichnis: 1) Vorraussetzungen 2) Lernziele 3) Verwendete Quellen 4) Ohmsches Gesetz 5) Spezifischer Widerstand

Mehr

Grundlagen der Elektrotechnik LF-2

Grundlagen der Elektrotechnik LF-2 Grundbildung IT-Systemelektroniker Grundlagen der Elektrotechnik LF-2 Mitschriften der Ausbildung Jörg Schumann 13. Februar 2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Ladungsträger 3 2 elektrische Spannung

Mehr

2 Einfacher elektrischer Stromkreis, elektrisches Strömungsfeld, Strom und Spannung, Verbraucherzählpfeilsystem

2 Einfacher elektrischer Stromkreis, elektrisches Strömungsfeld, Strom und Spannung, Verbraucherzählpfeilsystem 2 Einfacher elektrischer Stromkreis, elektrisches Strömungsfeld, Strom und Spannung, Verbraucherzählpfeilsystem Der elektrische Stromkreis a) Kreislauf des Wassers b) Kreislauf des elektrischen Stromes

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8. Sommersemester Elektronik

Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8. Sommersemester Elektronik Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Matr.-Nr.: Hörsaal: Sommersemester

Mehr