3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1

Größe: px
Ab Seite anzeigen:

Download "3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1"

Transkript

1 1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus in N benachbarte: Band Aufspaltung (Bandbreite) der oberen Niveaus am stärksten Ob der FK ein Leiter oder Nichtleiter ist, hängt von der Besetzung der Bänder mit Elektronen ab. Ist das Band voll besetzt, können die Elektronen nicht am Stromtransport teilnehmen. Die Elektronen werden durch das elektrische Feld beschleunigt, d.h. ihre kinetische Energie wird erhöht. Eine Anhebung auf ein höheres Energieniveau ist aber in einem vollbesetzten Band nicht möglich. Elektrische Leiter sind daher nur FK mit teilweise besetztem Band. Das oberste vollständig besetzte Band ist das Valenzband (VB), das darüberliegende teilweise gefüllte oder leere Band ist das Leitungsband (LB). Bei Halbleitern (HL) und Isolatoren ist das leere LB durch eine mehr oder weniger breite Zone (Gap) vom vollen VB getrennt. Substanzen mit Gapenergien 3 ev werden als Isolatoren gezählt. Bei HL tritt bei endlichen Temperaturen ein merklicher Anstieg der Ladungsträgerdichte auf: Elektronen n (negativ) im LB, Löcher p (positiv) im VB, n = p. F 3.2 Ladungsträgerdichte kann durch Dotierung erhöht werden (Dotierungsatome haben andere Wertigkeit als Wirtsatome). Donatoren geben leicht Elektronen ab: n Akzeptoren nehmen leicht Elektronen auf: p Ionisationsenergien E D, E A sind klein (mev), Zustände liegen knapp unterhalb LB-Kante bzw. oberhalb VB-Kante. Intrinsischer HL: n = p exp(-e g /2kT) n-hl: n exp(-e D /2kT) p-hl: p exp(-e A /2kT) 3.2 pn-übergang Für technische Anwendungen sind inhomogene HL interessant, d.h. solche bei denen die Konzentration der Donator- und Akzeptorstörstellen innerhalb des Kristalls vom Ort abhängt. Dies ist z.b. der Fall, wenn ein n- und p-leitender Bereich aneinandergrenzen. (Herstellung: z.b. durch Ionenimplantation) F 3.3 Grenzfläche: Beide Ladungsträgerarten haben großen Konzentrationsgradienten. Diffusion der Elektronen von n p: Rekombination mit Löchern Diffusion der Löcher von p n: Rekombination mit Elektronen Ladung der ionisierten, unbeweglichen Störstellen bleibt unkompensiert: Ausbildung einer Raumladung, + in n, - in p.

2 2 Elektrisches Feld: Potentialunterschied (Diffusionsspannung V D ) am pn-übergang In p sind Elektronen, in n sind auch Löcher vorhanden. Sie gelangen durch das elektrische Feld nach n bzw. p und werden durch thermische Anregung ständig nachgeliefert. Strom wird als Generationsstrom bezeichnet Störung des Ladungsgleichgewichts Elektronen bzw. Löcher in umgekehrter Richtung über Potentialschwelle ev D : Rekombinationsstrom. Thermodynamisches Gleichgewicht: j e,r (0) + j e,g (0) = 0 j p,r (0) + j p,g (0) = 0 R = Rekombination, G = Generation, (0) = keine äußere Spannung Die Bildung der Potentialschwelle bedeutet, daß sich die Bänderschemata der ursprünglich gedachten p- und n-typ-hl gegeneinander verschieben bis ihre Ferminiveaus denselben Wert erreichen. Elektronen von n p E n Löcher von p n E p Höhe der Potentialschwelle (= Differenz der ursprünglichen Ferminiveaus) steht in Beziehung mit Ladungsträgerkonzentration des n- und p-gebiets außerhalb der Raumladungszone: n n, p n und n p, p p : ev D = kt ln(n n /n p ) = kt ln(p p /p n ) kt ln(n n p p /n i 2 ) (*) n n» n i n p» n i ev D E g Anlegen einer Spannung U am pn-übergang verändert die Potentialschwelle (F 3.4): p+, n- ev D -eu p-, n+ ev D +eu Thermische Generationsströme sind unabhängig von U. Sie sind proportional zu den Gleichgewichtskonzentrationen n p, p n : j e,g = C 1 n p j p,g = C 3 p n C i = const Thermische Rekombinationsströme sind proportional zu jenem Bruchteil der Ladungsträger, der die Potentialstufe ev D ± eu überwindet: j e,r = C 2 n n exp[-(ev D ± eu)/kt] = j e,r (0) exp(±eu/kt) j p,r = C 4 p p exp[-(ev D ± eu)/kt] = j p,r (0) exp(±eu/kt)

3 3 Thermodynamisches Gleichgewicht (U = 0): - j e,r (0) = j e,g (0) = j e,g (U) - j p,r (0) = j p,g (0) = j p,g (U) mit (*) C 1 = -C 2, C 3 = -C 4 Gesamtstrom durch pn-übergang: j = j e,r + j e,g + j p,r + j p,g = (j e,g + j p,g )[exp(±eu/kt)-1] Strom-Spannungscharakteristik des pn-übergangs U > 0 (+): j exponentiell mit U : Durchlaßstrom U < 0 (-): j ( j e,g + j p,g ) mit U : Sperrstrom Gleichrichtung von Wechselströmen Oberhalb der Durchbruchspannung: 1) Sperrspannung elektrische Feldstärke am Übergang hat hohe Werte. Ladungsträger werden in den hohen Feldern so stark beschleunigt, daß ihre Energie zur Anregung von zusätzlichen Elektronen aus dem VB ausreicht (Erzeugung von Sekundärelektronen durch Stoßionisation, Ladungsträgermultiplikation). Die dadurch erzeugten Löcher und Elektronen vergrößern den Sperrstrom. 2) Innere Feldemission (Zener-Effekt) Energiebereich E V p -E L n gehört sowohl dem VB als auch dem LB an pn-übergang mit steilem Störstellenprofil Tunneleffekt Erhöhung des Sperrstroms für U. 3.3 Solarzelle F 3.5 Licht fällt auf pn-übergang ohne äußere Vorspannung Jedes absorbierte Photon erzeugt Elektron und Loch. (Vss: Spekrale Verteilung des Lichtes im Wellenlängenintervall λ 1...λ 2 erfüllt die Anforderung des HL-Materials mit dem Bandabstand E g für Absorption). Diffusion der Ladungsträger zum pn-übergang; Trennung durch V D : Elektronen vom p-gebiet n-seite Löcher vom n-gebiet p-seite Ladungstrennung Spannung in Durchlaßrichtung (elektrisches Feld der entgegengesetzt geladenen verbleibenden Partner entgegengesetzt zum eingebauten Feld): Photospannung V ph = -kt/e[ln(1 +g ph /g th )] ln(lichtintensität) für g ph groß g ph = Generationsrate von Ladungsträgern durch inneren Photoeffekt g th = thermische Generationsrate

4 4 Sättigung, da V ph V D Photospannung kann an Elektroden abgenommen werden. Kennliniengleichung ist die um Photostrom I ph verschobene Diodenkennlinie: 4. Quadrant Generationsbereich, in dem Photostrom I A und Photospannung U A im Vorzeichen entgegengesetzt sind und an einem Lastwiderstand R L Arbeit leisten können. Für die optimale Anpassung von R L ist die entnommene Energie maximal (U A,opt. I A,opt ) Wandlungswirkungsgrad η = (U A,opt. I A,opt )/p E λ 2 p E = c λ1 u(λ)dλ, λ 2 > λ 1, hc/λ 2 E g = Strahlungsleistungsdichte u(λ)dλ = Dichte der spektralen Strahlungsenergie im Inkrement dλ c = Vakuumlichtgeschwindigkeit Si: η Grenz 40% Industrielles grobkristallines ( kolumnares ) Si: η = 15% amorphes Si: η = 8% F 3.6 η = η( E g ): I K maximal für E g = 0 I K mit E g U L = 0 für E g = 0 U L mit E g η = 0 für E g = 0 und E g, dazwischen Maximum 3.4 Leuchtdiode (Light Emitting Diode, LED) F 3.7 pn-übergang in Flußrichtung betrieben V D wird abgebaut Elektronen p-gebiet, Löcher n-gebiet Rekombination in der Nähe des Übergangs Energieabgabe E g = hf, λ g = hc/e g = 1.24 µm ev/e g Linienbreite λ 40 nm, steigt mit T, d.h. thermischer Energie der Ladungsträger. Farbe hängt von E g, d.h von der Wahl des HL ab. Mischkristalle GaAs und GaP: GaAs x P 1-x x = 0: E g =2.24 ev (grün) x = 1: E g = 1.43 ev (IR) Idealfall: Jedes externe Elektron rekombiniert mit externem p Anzahl der generierten Photonen = Anzahl injezierter Elektronen Strahlungsleistung Flußstrom Unterschiedlicher Aufbau und Bauform von LEDs.

5 Lebensdauer von LEDs 10 6 h (Abfall der Strahlungsleistung auf ½ Neuwert) 5

Die Physik der Solarzelle

Die Physik der Solarzelle Die Physik der Solarzelle Bedingungen für die direkte Umwandlung von Strahlung in elektrische Energie: 1) Die Strahlung muß eingefangen werden (Absorption) 2) Die Lichtabsorption muß zur Anregung beweglicher

Mehr

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

Elektrische Leitung. Strom

Elektrische Leitung. Strom lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)

Mehr

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone 2 Diode 2.1 Formelsammlung Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone ( q ) ] p n( n )=p n0 [ep kt U pn 1 bzw. (2.2) ( q ) ] n

Mehr

Halbleitergrundlagen

Halbleitergrundlagen Halbleitergrundlagen Energie W Leiter Halbleiter Isolator Leitungsband Verbotenes Band bzw. Bandlücke VB und LB überlappen sich oder LB nur teilweise mit Elektronen gefüllt Anzahl der Elektronen im LB

Mehr

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters...

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... ...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... 1 Temperaturerhöhung Je größer die Gitterkonstante, desto kleiner die Bandlücke. Temperaturerhöhung führt

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

q : Ladung v : Geschwindigkeit n : Dichte der Ladungsträger

q : Ladung v : Geschwindigkeit n : Dichte der Ladungsträger D07 Fotoeffekt D07 1. ZIELE Beim Fotoeffekt werden frei bewegliche Ladungsträger durch die Absorption von Licht erzeugt. Man nutzt den Effekt, um Beleuchtungsstärken elektrisch zu messen. Im Versuch werden

Mehr

Vorbereitung: Eigenschaften elektrischer Bauelemente

Vorbereitung: Eigenschaften elektrischer Bauelemente Vorbereitung: Eigenschaften elektrischer Bauelemente Marcel Köpke & Axel Müller 15.06.2012 Inhaltsverzeichnis 1 Grundlagen 3 2 Aufgaben 7 2.1 Temperaturabhängigkeit............................ 7 2.2 Kennlinien....................................

Mehr

Eigenleitung von Germanium

Eigenleitung von Germanium Eigenleitung von Germanium Fortgeschrittenen Praktikum I Zusammenfassung In diesem Versuch wird an einem undotierten Halbleiter die Temperaturabhängigkeit der elektrischen Leitfähigkeit bestimmt. Im Gegensatz

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Lernaufgabe: Halbleiterdiode 1

Lernaufgabe: Halbleiterdiode 1 1 Organisation Gruppeneinteilung nach Plan / Zeit für die Bearbeitung: 60 Minuten Lernziele - Die Funktionsweise und das Schaltverhalten einiger Diodentypen angeben können - Schaltkreise mit Dioden aufbauen

Mehr

8.5. Störstellenleitung

8.5. Störstellenleitung 8.5. Störstellenleitung Hochreiner HL ist auch bei Zimmertemperatur schlecht leitfähig geringste Verunreinigungen ändern das dramatisch Frühe Forschung an HL gab widersprüchliche Ergebnisse, HL galten

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

Versuch 42: Photovoltaik

Versuch 42: Photovoltaik Martin-Luther-Universität Halle-Wittenberg Institut für Physik Fortgeschrittenen- Praktikum Versuch 42: Photovoltaik An einer Silizium-Solarzelle sind folgende Messungen durchzuführen: 1) Messen Sie die

Mehr

3. Stromtransport in Gasen i) Erzeugung von Ladungsträgern ii) Unselbständige Entladung iii) Selbständige Entladung

3. Stromtransport in Gasen i) Erzeugung von Ladungsträgern ii) Unselbständige Entladung iii) Selbständige Entladung Netz Hochspannung 0 1 0 20 Elektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) Eigen- und Fremdleitung in Halbleitern iii) Stromtransport

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Solarzellen INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Abb. 1: Aufbau einer Silizium-Solarzelle 1 Warum geben

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I E24 Name: Halbleiterdioden Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

Praktikumsversuch: Elektrische Charakterisierung von Silizium-Solarzellen

Praktikumsversuch: Elektrische Charakterisierung von Silizium-Solarzellen Praktikumsversuch: Elektrische Charakterisierung von Silizium-Solarzellen 1) Einführung Das heutige Angebot an kommerziell erhältlichen Solarzellen wird durch das Halbleitermaterial Silizium bestimmt.

Mehr

E06. Diodenkennlinien

E06. Diodenkennlinien E06 Diodenkennlinien Dieser Versuch bietet eine erste Einführung in die Elektronik. Nach Untersuchungen von charakteristischen Kennlinien verschiedenartiger Dioden werden einfache Gleichrichterschaltungen

Mehr

Versuch 21. Der Transistor

Versuch 21. Der Transistor Physikalisches Praktikum Versuch 21 Der Transistor Name: Christian Köhler Datum der Durchführung: 07.02.2007 Gruppe Mitarbeiter: Henning Hansen Assistent: Jakob Walowski testiert: 3 1 Einleitung Der Transistor

Mehr

LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR

LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR LEDs und Laserdioden: die Lichtrevolution Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR Wie erhält man verschiedenfarbige LEDs? Warum ist die Farbe blau so wichtig? Wo werden HL-Laser Im Alltag

Mehr

Kennlinien von Halbleiterdioden

Kennlinien von Halbleiterdioden ELS-27-1 Kennlinien von Halbleiterdioden 1 Vorbereitung Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre Bohrsches Atommodell Lit.: HAMMER 8.4.2.1-8.4.2.3 Grundlagen der Halbleiterphysik

Mehr

Transistorkennlinien

Transistorkennlinien Transistorkennlinien Grolik Benno, Kopp Joachim 2. Januar 2003 1 Grundlagen des Versuchs Die Eigenschaften von Halbleiterbauelementen erkennt man am besten an sogenannten Kennlinien, die bestimmte Spannungs-

Mehr

Grundlagen der Datenverarbeitung

Grundlagen der Datenverarbeitung Grundlagen der Datenverarbeitung Bauelemente Mag. Christian Gürtler 5. Oktober 2014 Mag. Christian Gürtler Grundlagen der Datenverarbeitung 5. Oktober 2014 1 / 34 Inhaltsverzeichnis I 1 Einleitung 2 Halbleiter

Mehr

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse 4.2 Metallkristalle - 75 % aller Elemente sind Metalle - hohe thermische und elektrische Leitfähigkeit - metallischer Glanz - Duktilität (Zähigkeit, Verformungsvermögen): Fähigkeit eines Werkstoffs, sich

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

Vorbereitung: Elektrische Bauelemente. Christine Dörflinger und Frederik Mayer, Gruppe Do-9 27. Juni 2012

Vorbereitung: Elektrische Bauelemente. Christine Dörflinger und Frederik Mayer, Gruppe Do-9 27. Juni 2012 Vorbereitung: Elektrische Bauelemente Christine Dörflinger und Frederik Mayer, Gruppe Do-9 27. Juni 2012 1 Inhaltsverzeichnis 0 Allgemeines 3 0.1 Bändermodell..............................................

Mehr

Übung zum Elektronikpraktikum Lösung 1 - Diode

Übung zum Elektronikpraktikum Lösung 1 - Diode Universität Göttingen Sommersemester 2010 Prof. Dr. Arnulf Quadt aum D1.119 aquadt@uni-goettingen.de Übung zum Elektronikpraktikum Lösung 1 - Diode 13. September - 1. Oktober 2010 1. Können die Elektronen

Mehr

Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben.

Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters.

Mehr

VL 17. VL16. Hyperfeinstruktur. 16.1. Elektronspinresonanz 16.2. Kernspinresonanz VL 17

VL 17. VL16. Hyperfeinstruktur. 16.1. Elektronspinresonanz 16.2. Kernspinresonanz VL 17 VL16. Hyperfeinstruktur VL 17 VL 18 VL 17 16.1. Elektronspinresonanz 16.2. Kernspinresonanz 17.1. Laser (Light Amplification by Stimulated t Emission i of Radiation) Maser = Laser im Mikrowellenbereich,

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

Zusammenfassung Diodenlaser

Zusammenfassung Diodenlaser Zusammenfassung Diodenlaser von Simon Stützer Stand: 12. November 2008 Grundlagen zu Halbleitern Abgrenzung von Leitern, Halbleitern, Isolatoren Halbleiter sind wie elektrische Isolatoren bei T = 0 K nichtleitend

Mehr

Die Versuchsanleitung umfasst 8 Seiten und 1 Anlage Stand 2010

Die Versuchsanleitung umfasst 8 Seiten und 1 Anlage Stand 2010 Elektronikpraktikum Versuch EP1 Halbleiterdioden Institut für Mikro- und Nanoelektronik Kirchhoff-Bau K1084 Die Versuchsanleitung umfasst 8 Seiten und 1 Anlage Stand 2010 Versuchsziele: Vertiefung der

Mehr

Weitere Anwendungen einer Diode:

Weitere Anwendungen einer Diode: Diode Diode, elektronisches Bauteil, das Strom nur in einer Richtung durchfließen lässt. Die ersten Dioden waren Vakuumröhrendioden, die aus einer luftleeren Glasoder Stahlhülle mit zwei Elektroden (einer

Mehr

Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen

Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen Technische Universität Chemnitz Institut für Physik Physikalisches Praktikum: Computergestütztes Messen Elektrische Charakterisierung von Solarzellen mittels Strom-Spannungsmessungen Ort: Neues Physikgebäude,

Mehr

3 Grundlagen der Halbleitertechnik

3 Grundlagen der Halbleitertechnik 12 3 Grundlagen der Halbleitertechnik Um die Funktionsweise von Halbleitern verstehen zu können, ist ein gewisses Grundverständnis vom Aufbau der Elemente, insbesondere vom Atomaufbau erforderlich. Hierbei

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

7.4 Elektrische Leitfähigkeit in Festkörpern

7.4 Elektrische Leitfähigkeit in Festkörpern V7_4Leit_Fest-1.DOC 1 7.4 Elektrische Leitfähigkeit in Festkörpern Die entscheidende Eigenschaft elektrisch interessanter Festkörper ist ihr kristalliner Aufbau. In der Naturwissenschaft steht kristallin,

Mehr

Bandabstand von Germanium

Bandabstand von Germanium von Germanium Stichworte: Leitfähigkeit, Bändermodell der Halbleiter, Eigenleitung, Störstellenleitung, Dotierung Einführung und Themenstellung Sehr reine, undotierte Halbleiter verhalten sich bei sehr

Mehr

Versuch B1/5: Die Halbleiterdiode als Gleichrichter

Versuch B1/5: Die Halbleiterdiode als Gleichrichter Versuch B1/5: Die Halbleiterdiode als Gleichrichter 5.1 Physik der Halbleiterdiode 5.1.1 n und p Leitung im Halbleiter Wie auch in isolierenden Materialien findet man in Halbleitern für die Elektronen

Mehr

Bericht zum Versuch Hall-Effekt

Bericht zum Versuch Hall-Effekt Bericht zum Versuch Hall-Effekt Michael Goerz, Anton Haase 20. September 2005 GP II Tutor: K. Lenz 1 Einführung Hall-Effekt Als Hall-Effekt bezeichnet man das Auftreten einer Spannung in einem stromdurchflossenen

Mehr

FK06 Elektrische Leitfähigkeit

FK06 Elektrische Leitfähigkeit FK06 Elektrische Leitfähigkeit in Metallen, Halbleitern und Supraleitern Vorausgesetzte Kenntnisse: Boltzmann- und Fermi-Dirac-Statistik, Bänderschema für Metalle, undotierte und dotierte Halbleiter, grundlegende

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Physiker Versuch E11: Kennlinien von Halbleiterdioden Name: Versuchsgruppe: Datum: Mitarbeiter

Mehr

Versuchsvorbereitung P1-51

Versuchsvorbereitung P1-51 Versuchsvorbereitung P1-51 Tobias Volkenandt 22. Januar 2006 Im Versuch zu TRANSISTOREN soll weniger die Physik dieses Bauteils erläutern, sondern eher Einblicke in die Anwendung von Transistoren bieten.

Mehr

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

2/2: AUFBAU DER ATOMHÜLLE Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle

2/2: AUFBAU DER ATOMHÜLLE Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle Informationsblatt: Zusammenhang von Farbe und des Lichts Die der Lichtteilchen nimmt vom roten über gelbes und grünes Licht bis hin zum

Mehr

Entstehung der Diffusionsspannung beim pn-übergang

Entstehung der Diffusionsspannung beim pn-übergang 2. Halbleiterdiode 2.1 pn-übergang Die elementare Struktur für den Aufbau elektronischer Schaltungen sind aneinander grenzende komplementär dotierte Halbleitermaterialien. Beim Übergang eines n-dotierten

Mehr

Versuch 42: Fotovoltaik

Versuch 42: Fotovoltaik Martin-Luther-Universität Halle-Wittenberg Institut für Physik Fortgeschrittenen- Praktikum Versuch 42: Fotovoltaik 1. Aufgaben An einer Silizium-Solarzelle sind folgende Messungen durchzuführen: 1. Messen

Mehr

Organische Solarzellen auf der Basis von Polymer-Fulleren- Kompositabsorbern

Organische Solarzellen auf der Basis von Polymer-Fulleren- Kompositabsorbern Organische Solarzellen auf der Basis von Polymer-Fulleren- Kompositabsorbern I. Riedel J. Parisi V. Dyakonov Universität Oldenburg ingo.riedel@ uni-oldenburg.de Flüssigkeitsprozessierbare, halbleitende

Mehr

Dies ist die Zone beim p- n- Übergang wo sich auf der p- Seite ionisierte Akzeptoren und auf der n- Seite ionisierte Donatoren befinden.

Dies ist die Zone beim p- n- Übergang wo sich auf der p- Seite ionisierte Akzeptoren und auf der n- Seite ionisierte Donatoren befinden. Elektronik Allgemein n-halbleiter Beim n- dotierten Halbleiter ist ein Elektron nicht in eine Bindung eingegangen. Dieses Valenzelektron ist somit das energiereichste von allen. Die Elektronen sind Majoritätsträger

Mehr

Lass die Sonne in Dein Haus Sauberer Strom mittels Fotovoltaik

Lass die Sonne in Dein Haus Sauberer Strom mittels Fotovoltaik Quanten.de Newsletter Mai/Juni 2002, ISSN 1618-3770 Lass die Sonne in Dein Haus Sauberer Strom mittels Fotovoltaik Birgit Bomfleur, ScienceUp Sturm und Bomfleur GbR Camerloherstraße 19, 85737 Ismaning

Mehr

Elektrische Leitfähigkeit

Elektrische Leitfähigkeit Technische Universität Dresden Fachrichtung Physik P. Eckstein, T. Schwieger 03/2003 bearbeitet: P. Eckstein, K. Richter 03/2009 Physikalisches Praktikum Grundpraktikum Versuch: EL Elektrische Leitfähigkeit

Mehr

E l e k t r o n i k I

E l e k t r o n i k I Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k I Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig im WS 2002/03 Elektronik I Mob.:

Mehr

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode Dioden - Anwendungen vereinfachte Diodenkennlinie Für die meisten Anwendungen von Dioden ist die exakte Berechnung des Diodenstroms nach der Shockley-Gleichung nicht erforderlich. In diesen Fällen kann

Mehr

Temperaturabhängigkeit von ρ s (T) für einige Stoffe. ρ s = spezifischer Widerstand. Variation mit Temperatur bezogen auf T = 300 K

Temperaturabhängigkeit von ρ s (T) für einige Stoffe. ρ s = spezifischer Widerstand. Variation mit Temperatur bezogen auf T = 300 K Temperaturabhängigkeit von ρ s (T) für einige Stoffe ρ s = spezifischer Widerstand Variation mit Temperatur bezogen auf T = 300 K 77 Temperatur-Abhängigkeit von Widerständen normaler (ohmscher) Widerstand:

Mehr

Neue Solarzellenkonzepte

Neue Solarzellenkonzepte Neue Solarzellenkonzepte Prof. Dr. Peter Würfel Universität Karlsruhe peter.wuerfel@ phys.uni-karlsruhe.de Einleitung Der beste Wirkungsgrad, mit dem Solarzellen nicht-konzentrierte Sonnenstrahlung umgewandelt

Mehr

Photovoltaik: Strom aus der Sonne. Dr. Dietmar Borchert Fraunhofer ISE Labor- und Servicecenter Gelsenkirchen

Photovoltaik: Strom aus der Sonne. Dr. Dietmar Borchert Fraunhofer ISE Labor- und Servicecenter Gelsenkirchen Photovoltaik: Strom aus der Sonne Dr. Dietmar Borchert Fraunhofer ISE Labor- und Servicecenter Gelsenkirchen Gründe für die Notwendigkeit der Transformation der globalen Energiesysteme Schutz der natürlichen

Mehr

Statische Kennlinien von Halbleiterbauelementen

Statische Kennlinien von Halbleiterbauelementen Elektrotechnisches rundlagen-labor I Statische Kennlinien von Halbleiterbauelementen Versuch Nr. 9 Erforderliche eräte Anzahl ezeichnung, Daten L-Nr. 1 Netzgerät 0... 15V 103 1 Netzgerät 0... 30V 227 3

Mehr

E5 Gleichrichterschaltungen

E5 Gleichrichterschaltungen E5 Gleichrichterschaltungen 28. Oktober 2010 Marcel Lauhoff - Informatik BA Matnr: xxxxxxx xxx@xxxx.xx 1 Einleitung 2 2 Theoretische Grundlagen 3 2.1 Das Bändermodell der Festkörper...............................

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

P3 - Widerstandsmessung

P3 - Widerstandsmessung 64 P3 - Widerstandsmessung 1. Der spezifische Widerstand Der spezifische Widerstand von Materialien ist ihre Eigenschaft auf ein angelegtes elektrisches Feld E mit einer von Material abhängigen elektrischen

Mehr

Inhaltsverzeichnis. 01.12.01 [PRTM] Seite1

Inhaltsverzeichnis. 01.12.01 [PRTM] Seite1 Inhaltsverzeichnis Dioden...2 Allgemein...2 Kenngrößen...2 Anlaufstrom...2 Bahnwiderstand...2 Sperrschichtkapazität...2 Stromkapazität...3 Durchbruchspannung...3 Rückerholungszeit...3 Diodenarten...3 Backward-Diode...3

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Fachbereich Elektrotechnik u. Informatik Praktikum Elektronik I

Fachbereich Elektrotechnik u. Informatik Praktikum Elektronik I Fachbereich Elektrotechnik u. Informatik Praktikum Elektronik I Fachhochschule Münster niversity of Applied Sciences Versuch: 1 Gruppe: Datum: Antestat: Teilnehmer: Abtestat: (Name) (Vorname) Versuch 1:

Mehr

Technische Universität München. Walter Schottky Institut Zentralinstitut für Physikalische Grundlagen der Halbleiterelektronik

Technische Universität München. Walter Schottky Institut Zentralinstitut für Physikalische Grundlagen der Halbleiterelektronik Technische Universität München Walter Schottky Institut Zentralinstitut für Physikalische Grundlagen der Halbleiterelektronik Lehrstuhl für Experimentelle Halbleiterphysik II, E25 Prof. Martin Stutzmann

Mehr

Die Solarzelle. Passivated Emitter and Rear Locally diffused solar cell. 25% c-si Zelle erhältlich bei der University of New South Wales: ~1000EUR/W p

Die Solarzelle. Passivated Emitter and Rear Locally diffused solar cell. 25% c-si Zelle erhältlich bei der University of New South Wales: ~1000EUR/W p Die Passivated Emitter and Rear Locally diffused solar cell 25% c-si Zelle erhältlich bei der University of New South Wales: ~1000EUR/W p Übersicht Definition des Problems Zellaufbau Absorber Emitter Oberflächenpassivierung

Mehr

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil.

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Diffusion und Drif Die Halbleierdiode Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

Physikalisches Grundpraktikum Probestudium Physik 2015. Innerer Photoeffekt und Plancksches Wirkungsquantum UNIVERSITÄT DES SAARLANDES

Physikalisches Grundpraktikum Probestudium Physik 2015. Innerer Photoeffekt und Plancksches Wirkungsquantum UNIVERSITÄT DES SAARLANDES Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum Probestudium Physik 2015 Innerer Photoeffekt und Plancksches Wirkungsquantum 2 Innerer Photoeffekt Ziel des Versuchs In

Mehr

Druckversion des Kapitels Halbleitertechnik aus www.radartutorial.eu von Dipl.-Ing. (FH) Christian Wolff

Druckversion des Kapitels Halbleitertechnik aus www.radartutorial.eu von Dipl.-Ing. (FH) Christian Wolff Halbleitertechnik Wie man sich vom Namen schon vorstellen kann, liegen Halbleiter in ihren elektrischen Eigenschaften irgendwo zwischen Leitern und Nichtleitern (Isolatoren). Zwei der meist bekannten Halbleiterbauelemente

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 01/13 Christoph Wölper Universität Duisburg-Essen Koordinationszahlen Ionenradien # dichteste Packung mit 1 Nachbarn -> in Ionengittern weniger

Mehr

4. Halbleiterdetektoren. Detektoren in der Hochenergiephysik Univ.Doz.DI.Dr. Manfred Krammer Institut für Hochenergiephysik der ÖAW, Wien

4. Halbleiterdetektoren. Detektoren in der Hochenergiephysik Univ.Doz.DI.Dr. Manfred Krammer Institut für Hochenergiephysik der ÖAW, Wien 4. Halbleiterdetektoren Detektoren in der Hochenergiephysik Univ.Doz.DI.Dr. Manfred Krammer Institut für Hochenergiephysik der ÖAW, Wien 4. Halbleiterdetektoren Inhalt 4.1 Allgemeine Grundlagen 4.1.1 Detektionsprinzip

Mehr

Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung / Salzstrukturen

Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung / Salzstrukturen Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung / Salzstrukturen Der metallische Zustand, Dichtestpackung von Kugeln, hexagonal-, kubischdichte Packung, Oktaeder-, Tetraederlücken, kubisch-innenzentrierte

Mehr

Physikalische Grundlagen Herstellung, verschiedene Typen Ökonomische und ökologische Betrachtung

Physikalische Grundlagen Herstellung, verschiedene Typen Ökonomische und ökologische Betrachtung Von Philipp Assum Physikalische Grundlagen Herstellung, verschiedene Typen Ökonomische und ökologische Betrachtung Bandlücke Elementare Festkörperphysik und Halbleiterelektronik Elementare Festkörperphysik

Mehr

Si-Solarzellen. Präsentation von: Frank Hokamp & Fabian Rüthing

Si-Solarzellen. Präsentation von: Frank Hokamp & Fabian Rüthing Si-Solarzellen Präsentation von: Frank Hokamp & Fabian Rüthing Inhaltsverzeichnis Vorteile / Nachteile Anwendungsgebiete / Potential Geschichte Silicium Wirkungsweise / Funktionsprinzip Typen / Herstellungsverfahren

Mehr

Formelsammlung Baugruppen

Formelsammlung Baugruppen Formelsammlung Baugruppen RCL-Schaltungen. Kondensator Das Ersatzschaltbild eines Kondensators C besteht aus einem Widerstand R p parallel zu C, einem Serienwiderstand R s und einer Induktivität L s in

Mehr

Thermosensoren Sensoren

Thermosensoren Sensoren Thermosensoren Sensoren (Fühler, Wandler) sind Einrichtungen, die eine physikalische Grösse normalerweise in ein elektrisches Signal umformen. Die Messung der Temperatur gehört wohl zu den häufigsten Aufgaben

Mehr

Hall-Effekt. Aufgaben

Hall-Effekt. Aufgaben Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E8a all-effekt Aufgaben 1. Messen Sie die all-spannung und die Probenspannung einer Germaniumprobe bei konstanter Temperatur und

Mehr

Eigenschaften elektrischer Bauelemente

Eigenschaften elektrischer Bauelemente Versuch P2-50 Eigenschaften elektrischer Bauelemente Raum F1-17 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Leitung 2 1.1 Das Bändermodell................................... 2 1.2 Metalle.........................................

Mehr

Aufnahme der Kennlinien und einiger Arbeitskennlinien der dem Versuch beigegebenen Dioden, Ermittlung der Durchbruchspannung einer Zenerdiode.

Aufnahme der Kennlinien und einiger Arbeitskennlinien der dem Versuch beigegebenen Dioden, Ermittlung der Durchbruchspannung einer Zenerdiode. Die Aufgaben: Meßverfahren: Vorkenntnisse: Aufnahme der Kennlinien und einiger Arbeitskennlinien der dem Versuch beigegebenen Dioden, Ermittlung der Durchbruchsannung einer Zenerdiode. Registrierung der

Mehr

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie (ausreichend groß) das Bändermodell eines n-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur,

Mehr

Versuch 26. Gruppe D14. Grundpraktikum Physik. Autor: Kay Jahnke Mail: kay.jahnke@uni-ulm.de. Unterschrift:...

Versuch 26. Gruppe D14. Grundpraktikum Physik. Autor: Kay Jahnke Mail: kay.jahnke@uni-ulm.de. Unterschrift:... Versuch 26 (Kennlinien von Glühlampen, Z-Diode und Transistor) Gruppe D14 Grundpraktikum Physik Autor: Kay Jahnke Mail: kay.jahnke@uni-ulm.de Unterschrift:... Autor: Simon Laibacher Mail: simon.laibacher@uni-ulm.de

Mehr

Ziel: Erhöhung der Grenzfrequenz, erreicht mit PIN-, Lawinen-, Metall-Halbleiter- und Heterodioden

Ziel: Erhöhung der Grenzfrequenz, erreicht mit PIN-, Lawinen-, Metall-Halbleiter- und Heterodioden PIN-Photodiode Ziel: Erhöhug der Grezfrequez, erreicht mit PIN-, Lawie-, Metall-Halbleiter- ud Heterodiode PIN-Photodiode: breite eigeleitede Mittelschicht (I) zwische - ud -Teil, Hautsaugsabfall über

Mehr

ELEKTRONIK...1. 2.2.1 Eigenleitung...2 2.2.2 Störstellenleitung...3 2.2.2.1 n-halbleiter...4 2.2.2.2 p-halbleiter...4

ELEKTRONIK...1. 2.2.1 Eigenleitung...2 2.2.2 Störstellenleitung...3 2.2.2.1 n-halbleiter...4 2.2.2.2 p-halbleiter...4 Elektronik Inhaltsverzeichnis ELEKTRONIK...1 SKRIPT...1 1. UNTERSCHEIDUNG VON METALLEN, HALBLEITERN UND ISOLATOREN...1 2. MODELLE ZUR ELEKTRISCHEN LEITUNG...2 2.1 Metalle: Das klassische Elektronengas...2

Mehr

Versuch 21 Transistor

Versuch 21 Transistor Physikalisches Praktikum Versuch 21 Transistor Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 27.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

E14a Halbleiterdioden

E14a Halbleiterdioden Fakultät für Physik und Geowissenschaften Physikalisches Grundraktikum E14a Halbleiterdioden Aufgaben 1. Nehmen Sie die Strom-Sannungs-Kennlinie einer Si-iode, einer Zener-iode (Z-iode) und einer Leuchtdiode

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

Strategien zur Optimierung organischer Solarzellen:

Strategien zur Optimierung organischer Solarzellen: Institut für Angewandte Photophysik Fachrichtung Physik Fakultät Mathematik und Naturwissenschaften Technische Universität Dresden Strategien zur Optimierung organischer Solarzellen: Dotierte Transportschichten

Mehr

Photovoltaik. Teil I - Theorie

Photovoltaik. Teil I - Theorie Photovoltaik Teil I - Theorie Das Sonnenspektrum: Das Sonnenspektrum wird in Air- Mass- x-klassen eingeteilt: Dabei steht das x für den Einfallswinkel! - AM0: Spektrum außerhalb der Atmosphäre - AM1: Spektrum

Mehr

Fakultät für Physik Physikalisches Praktikum für Fortgeschrittene. Si-Solarzelle. Kevin Edelmann, Julian Stöckel Gruppe 109 15.6.2011.

Fakultät für Physik Physikalisches Praktikum für Fortgeschrittene. Si-Solarzelle. Kevin Edelmann, Julian Stöckel Gruppe 109 15.6.2011. Fakultät für Physik Physikalisches Praktikum für Fortgeschrittene Si-Solarzelle Kevin Edelmann, Julian Stöckel Gruppe 109 15.6.2011 Zusammenfassung pn-übergänge aus Halbleitern wie z. B. Silizium ermöglichen

Mehr

Skript für die Vorlesung. Elektronik. Schaltverluste und Grenzlastintegral

Skript für die Vorlesung. Elektronik. Schaltverluste und Grenzlastintegral Skript für die Vorlesung Elektronik Schaltverluste und Grenzlastintegral Ein- und Ausschaltverluste Der Einschaltvorgang eines Halbleiterbauelements vollzieht sich aufgrund der begrenzten Diffusionsgeschwindigkeit

Mehr

Besondere Lernleistung Thema: Umkehrung des lichtelektrischen Effekts in Leuchtdioden von Florian Kantelberg und Michael Winkler

Besondere Lernleistung Thema: Umkehrung des lichtelektrischen Effekts in Leuchtdioden von Florian Kantelberg und Michael Winkler Besondere Lernleistung Thema: Umkehrung des lichtelektrischen Effekts in Leuchtdioden von Florian Kantelberg und Michael Winkler Gliederung: 1. Einleitung 2. Lichtelektrischer Effekt - Bestimmung des Plankschen

Mehr

Inhalt. Institut für Leistungselektronik und Elektrische Antriebe. Universität Stuttgart

Inhalt. Institut für Leistungselektronik und Elektrische Antriebe. Universität Stuttgart Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Inhalt 4 Halbleiterelektronik Diode... 4-1 4.1 Leitungsmechanismus

Mehr

3 Elektrochemisches Ätzen von Silizium

3 Elektrochemisches Ätzen von Silizium 3 Elektrochemisches Ätzen von Silizium 3.1 Einführung Für das Auftreten von breiten photonischen Bandlücken ist ein hoher Brechungsindexkontrast zwischen den Materialien eines photonischen Kristalls nötig.

Mehr

ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION

ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION Dieter Neher Physik weicher Materie Institut für Physik und Astronomie Potsdam-Golm Potsdam, 23.4.2013 Weltweiter Energiebedarf Energiebedarf (weltweit)

Mehr