Magnetresonanztomographie (MRT) Grundlagen der Tomographie

Größe: px
Ab Seite anzeigen:

Download "Magnetresonanztomographie (MRT) Grundlagen der Tomographie"

Transkript

1 Gegeben: Körper in einem starken B 0 -Feld - Folge von HF-Pulsen erzeugt rotierende Quermagnetisierung M T - M T variiert je nach Gewebetyp ortsabhängige Observable: M T (x,y,z) - kleine Volumenelemente (Voxel) haben eigenes M T -alle Voxel tragen zum Antennensignal bei Aufgabe der MRT: Erzeugung von Schnittbildern der Quermagnetisierung M T (x,y) durch Kodierung der Signale jedes Voxels mittels geeigneter Pulssequenzen

2 Pulssequenzen

3 Grundschemata der MRT-Pulssequenzen: Ortskodierung: selektive Anregung einer Schicht (oft mit G z -Gradientenfeld) Signalkodierung in einer Schicht: Phasenkodierung (oft mit G y -Gradientenfeld) (zwischen Anregung und Auslesen der Antennensignale) Frequenzkodierung (oft mit G x -Gradientenfeld) (während des Auslesens der Antennensignale) typische Werte der Gradientenfelder: ~ 40 mt/m

4

5 G z : Schichtselektion (z-richtung) G y : Phasenkodierung (y-richtung) G x : Frequenzkodierung (x-richtung) Gesamtsignal je Voxel: frequenz- und phasenmoduliertes FID oder Spin-Echo (abh. von T1, T2)

6 Ortskodierung durch selektive Anregung (I) - HF-Puls klappt Spins in x-y-ebene messbare M T - G z -Feld B 0 -Feld ω 0 in jeder z-ebene verschieden ω = + γ 0 ( B + 00 G z z - Anregung = Resonanzphänomen Umklappen von Spins mit passendem ω 0 - Resonanzlinie hat endliche Breite (Lorentz-Form) Frequenz der HF-Welle muss nicht exakt sein ) - anregende HF-Welle hat endliche spektrale Breite ω (kurzer Puls) HF-Anregung mit Gradientenfeld klappt Spins in einer breiten Schicht der Probe: z = ω γg 2π f = γ z G z Variation der Schichtdicke z : Änderung der Bandbreite f des HF-Pulses ( z 0?? beachte Boltzmann-Statistik!!) Wahl der Lage der Schicht: Änderung der Gradientenstärke G z

7 Ortskodierung durch selektive Anregung (II) unterschiedliche Gradientenstärken bilden denselben Puls auf Schichten mit unterschiedlichen Schichtdicken ab. ω

8 Ortskodierung durch selektive Anregung (III) Ein scharfer Übergang zwischen angeregter Schicht und angrenzenden nicht-angeregten Bereichen kann durch Verwendung einer sin(x)/x Amplitudenfunktion B(t) des HF-Pulses erzielt werden: FT ω D = -γg z. z B( t) = 1 sin γgz z t A 2 1 γgz z t 2 Profil der Quermagnetisierung mt ω D = Differenzwinkelgeschw. zur Lamorfrequenz bei z=0

9 Ortskodierung durch selektive Anregung (IV) Unipolarer Puls führt zu ungleichmäßiger Quermagnetisierung z-gradient und HF-Puls führen zu gleichmäßiger Quermagnetisierung

10 Ortskodierung durch selektive Anregung (V)

11 Ortskodierung durch selektive Anregung (VI)

12 Phasenkodierung (I) - HF-Puls klappt Spins in x-y-ebene Annahme: es gibt keine Relaxationsphänomene - G y -Feld zwischen HF-Anregung und Auslesen - Schritt 0: G y -Feld für Zeit T y Präzessionsgeschwindigkeit = f(y) wähle G y so, dass Magnetisierung am rechten und linken Bildrand um 2π verdreht nach Abschalten des Gradienten Präzession mit alter Winkelgeschw. ( Einfrieren des Spin-Orientierungsbildes) - Schritt 1 3: n-fache Wiederholung (schrittweise Erhöhung von G y ) bis benachbarte Voxel entgegen gesetzte Magnetisierung aufweisen (bei 256 x 256 Bildgröße n=256!!) Kodierung der Ortsinformation (y-richtung) über Phase!! - Anzahl der Phasenkodierschritte bestimmt Messzeit!!

13 Phasenkodierung (II) - Phasendrehwinkelgeschwindigkeit ω p 00 y ) 00 = γ ( B + G y + γb = γ G y y - Phasendrehwinkel nach T y : ϕ p = γ G y y T - Magnetisierung in y-richtung zur Zeit T y : M ' T ( y) M ' T0 y = ( y) e iγg y yt y große Gradienten u. kleine Zeiten oder kleine Gradienten u. große Zeiten beachte: M T(y) komplex! - maximal benötigter Gradient (für entgegen gesetzte Orientierung): ϕ p, max = π = γ Gy, max y T y y = Pixelabstand 1 y = 2γ * G y,max T y = Anzahl Pixel in y -Richtung Breite des Bildes in y -Richtung γ in [MHz/T]

14 Frequenzkodierung (I) - HF-Puls klappt Spins in x-y-ebene Annahme: es gibt keine Relaxationsphänomene -G x -Feld während des Auslesens: schnellere Präzession der Spins in +x-richtung langsamere Präzession der Spins in -x-richtung - jedes Voxel sendet während der Messung Signal mit unterschiedlicher Frequenz Kodierung der Ortsinformation (x-richtung) über Frequenz!! - Magnetisierung in x-richtung: ' T ( x) M ' T0 - Antennensignal sieht Frequenzgemisch Decodierung via Fourier-Transformation M = ( y) e iγg x xt beachte: M T(x) komplex! - Bandbreite der Antenne = γ. G x. Breite des Bildes in x-richtung

15 Frequenzkodierung (II)

16 Signal in der Antenne - Schichtselektion mit z-gradient (Signal = Quermagnetisierung) - x-y-kodierung mit x-gradient (Frequenz) und y-gradient (Phase) - Gesamtsignal in Antenne: S t iγg xt iγg x y y ( t, Ty ) = M ' T ( x, y) e dxdy 0 - mit k x = γ. G x. t und k y =γ. G y. T y ( normierte Zeiten mit Einheit m -1 ) folgt: S k, k i( k x k y = M ' ( x, y) e dxdy ( x y ) T0 y x ) yt beachte: da M T(x,y) komplex S(k x,k y ) komplex!! M ' T 0 ( x, y) 2D-FT S( k x, k y ) Das Signal hinter dem Quadraturdetektor ist die Fourier-Transformierte des Bildes

17 k-raum (I) - k x = γ. G x. t und k y =γ. G y. T y ( normierte Zeiten mit Einheit m -1 ) - Übergang vom Zeit-Bereich in den Orts-Frequenz-Bereich - k-raum identisch mit u-v-ebene für Fouriertransformierte des Bildes in Röntgentechnik: kx = 2pu, ky = 2pv - mit zunehmender Zeit liefert Signal Beiträge immer größerer Ortsfrequenzen (bzw. Phasen) zum Bild feinere Strukturen, die kürzere Wellenlänge haben: k x = 2π/λ x, k y = 2π/λ y

18 k-raum (II) Ortsfrequenzen Rohdatenwert im k-raum gibt an, ob und wie stark ein bestimmtes Streifenmuster zum Bild beiträgt. Grobes Streifenmuster: niedrige Ortsfrequenz (nahe Koordinatenursprung) Feine Streifenmuster: hohe Ortsfrequenz (bei höheren k x -, k y - Werten)

19 k-raum (III) Ortsfrequenzen

20 k-raum (III) Ortsfrequenzen Ein Wert im k-raum entspricht nicht! einem Pixel im Bild Daten im k-raum um den Koordinatenursprung definieren grobe Struktur und Kontrast Daten im äußeren Bereich des k-raums definieren feinere Strukturen: Ränder, Kantenübergänge, Umrisse, etc. und damit die Auflösung

21 Caveat: Filterung der k-raum Daten! k-raum MRT-Bild Hochpass-Filter ohne Filter Tiefpass-Filter

22

23 k-raum (IV) kartesische Abtastung des k-raums mit Spin-Echo- Puls-Sequenz Beachte: vorherige Annahme: Es gibt keine Relaxation! Jetzt: Verwendung von Echos!!

24 k-raum (V) vom Meßsignal über den k-raum zum Bild

25 k-raum (VI) Relation zur Radon-Transformation Annahme: keine Phasenkodierung (G y =0) Signal in der Antenne: S t 0 ( t) ' = M ( x, y) e k-raum Darstellung: S ( k x ) t 0 iγg x xt dxdy ( ) ' ik x M ( x, y dy e dx = ) 0 0 t x äquivalent zu Projektion in CT unter Winkel Θ=0 und x variabel p 0 (x) S 0 (k x ) ist 1D-Fouriertransformierte der Projektion

26 k-raum (VII) Relation zum Fourier-Scheiben-Theorem Wdh.: 1D-Fouriertransformierte einer Projektion ergibt die Daten im fouriertransformierten Bild auf einem Strahl durch den Koordinatenursprung CT: - vollständiger Datensatz im k-raum durch Aufnahme vieler Projektionen unter verschiedenen Winkeln Θ - gemessenen Projektionen müssen fouriertransformiert werden, bevor sie ins fouriertransformierte Bild eingetragen werden können MRT: - vollständiger Datensatz im k-raum durch gleichzeitiges Schalten eines Gx- und Gy- Gradienten während des Auslesens (Projektionen laufen schräg durch den Raum) - weitere Drehung: einfacher Gx-Gradient im gedrehten System durch Drehung des Koordinatensystems um z-achse - Meßdaten selbst sind (komplexe) Fouriertransformierte der Projektionen und können daher direkt in das Bild im k-raum eingetragen werden

27 k-raum (VIII) Relation zum Fourier-Scheiben-Theorem

28 k-raum (XI) Relation zum Fourier-Scheiben-Theorem - Es gilt: Die Fouriertransformierte (FT) eines gedrehten Bildes ergibt das um den gleichen Winkel gedrehte fouriertransformierte Bild - Fouriertransformierte einer gedrehten Projektion ergibt Werte eines fouriertransformierten Bildes auf einem gedrehten Strahl durch den Koordinatenursprung - Abtasten des gesamten Fourier-Raums eines Bildes durch sukzessives Drehen des Feldgradienten - Bilderzeugung durch Rücktransformation

29 k-raum (X) kartesische Abtastung 1) beliebiger Startwert im k-raum durch Phasenkodierung 2) k y wird variiert (wg. G y -Gradient), jedoch k x fest bei jeder Abtastung (Magnetisierungsvektor variiert mit k y =γ. G y. T y ) 3) Einschalten des G x -Gradienten (Frequenzkodierung) Auslesen auf Parallelen zur k x -Achse 4) usw.

30 k-raum (XI) Abtastung mit Projektionen 1) Fixer Startwert im k-raum (Koordinatenursprung) da keine Phasenkodierung 2) Schräge Feldgradienten (G x - und G y -Gradient): Ausrichtung der Magnetisierungsvektoren auf den Rand des k-raums. 3) Abtastung auf Radialstrahl 4) usw.

31 k-raum (XII) Spiral Imaging 1) Fixer Startwert im k-raum (Koordinatenursprung) da keine Phasenkodierung 2) Abtastung auf beliebigen Kurven durch Veränderung der G x - und G y -Gradienten während des Auslesens - rampenförmig - sinusförmig - etc.

Grundlagen der MR-Tomographie

Grundlagen der MR-Tomographie Grundlagen der MR-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT Universität des Landes

Mehr

Magnetresonanztomographie (MRT) * =

Magnetresonanztomographie (MRT) * = γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)

Mehr

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Physikalische Grundlagen der Bildgebung Röntgen, CT Ultraschall Szintigraphie MR-Tomographie Absorption von Röntgenstrahlen Änderung der

Mehr

Grundlagen der magnetischen Kernresonanz

Grundlagen der magnetischen Kernresonanz Grundlagen der magnetischen Kernresonanz 26.05.2014 Spin und gyromagnetisches Verhältnis Zeeman-Effekt Spin-Präzession Magnetisierung Teilchen haben Spin S Erfüllt Eigenwertgleichungen ˆ S 2 Ψ = s(s +

Mehr

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation

Mehr

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM MRT Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM WARUM SIND RÖNTGEN UND CT NICHT GENUG? MAGNETRESONANZTOMOGRAPHIE Die Große Frage? "Image by AZRainman.com Wie schaffen wir das überhaupt?

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung 2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57

Mehr

4.6 Bildgebende NMR. s(t) = ρ(x, y, z) e -i ω L t dx dy dz = ρ x (x) e -i γ G x t dx,

4.6 Bildgebende NMR. s(t) = ρ(x, y, z) e -i ω L t dx dy dz = ρ x (x) e -i γ G x t dx, Prof. D. Suter / Prof. R. Böhmer Magnetische Resonanz SS 2003 4.6 Bildgebende NMR 4.6.1 MRI: Grundlagen Wenn man die Stärke der Resonanzabsorption als Funktion des Ortes misst, d.h. ein Dichtebild einer

Mehr

epulste Feldgradienten (PFG)-NMR zur Bestimmung von Diffusionskoeffizienten

epulste Feldgradienten (PFG)-NMR zur Bestimmung von Diffusionskoeffizienten Seminar: epulste Feldgradienten (PFG)-NMR zur Bestimmung von Diffusionskoeffizienten von Roman Seyer und Benedikt Neue 1.Grundlagen 1.1. Diffusion 1.. NMR-Grundlagen für die Inhalt.Einführung in die.1.wozu

Mehr

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster Prof. Dr. med. P. Schramm Röntgen- Computer-Tomografie Magnet-Resonanz-Tomografie Physikalisches Prinzip Dr. rer. nat. Uwe H. Melchert Röntgen - Computer-Tomografie Bildbeispiele Physikalisches Prinzip

Mehr

Multipuls-NMR in der Organischen Chemie. Puls und FID

Multipuls-NMR in der Organischen Chemie. Puls und FID Puls und FID Obwohl der Puls eine bestimmte, am NMR-Spektrometer vorab eingestellte Sendefrequenz ν 1 hat, ist er in der Lage, über einen relativ weiten Frequenzbereich von mehreren khz, den gesamten Resonanzbereich

Mehr

Bildgebende Verfahren in der Medizin MRT-Tomographie

Bildgebende Verfahren in der Medizin MRT-Tomographie Bildgebende Verfahren in der Medizin MRT-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Sta Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Andreas Bünning 9. Januar 2012 Betreuer: Dr. Andreas Thomas Seite 1 3 PHYSIKALISCHE GRUNDLAGEN 1 Motivation Die nuclear magnetic resonance,

Mehr

Das NMR-Experiment in der Vektordarstellung

Das NMR-Experiment in der Vektordarstellung Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½

Mehr

Physikalische Grundlagen der Kernspin-Tomographie

Physikalische Grundlagen der Kernspin-Tomographie Vorlesung: Bildgebende Diagnoseverfahren SS 2008 Physikalische Grundlagen der Kernspin-Tomographie Hans-Jochen Foth TU Kaiserslautern Für diese Bildgebende Diagnosemethode werden auch andere Begriffe verwendet:

Mehr

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne Der Zusammenhang zwischen dem magnetischen Moment eines Atomkerns und seines mechanischen Drehimpulses lautet: μ=γ J, wobei γ das gyromagnetische Verhältnis ist. Der mechanische Drehimpuls ist durch die

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Magnetresonanztomographie (MRT)

Magnetresonanztomographie (MRT) Kontrast - MRT-Bilder zeigen lokale Stärke der Quermagnetisierung M T (x,y) zum Zeitpunkt des Echo-Maximums - M T (x,y) abhängig von Gewebeeigenschaften und Parameter der Pulssequenz K I = I - Def. Kontrast:

Mehr

Magnetic-Resonance-Imaging (MRI)

Magnetic-Resonance-Imaging (MRI) Magnetic-Resonance-Imaging (MRI) Skript zum Lehrstuhlversuch Lehrstuhl Experimentelle Physik III Autoren: Michael Schliwka, Andreas Wiemann, Jörg Lambert, Soheyla Eshlaghi Inhaltsverzeichnis 1 Theoretische

Mehr

Bilderzeugung und Bildrekonstruktion

Bilderzeugung und Bildrekonstruktion Medizinische Bilder werden auf vielerlei Arten erstellt. Wir stellen einige kurz vor. In der Tomographie werden die gemessenen Signale einem Rekonstruktionsschritt unterworfen, bevor ein Bild entsteht.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Bilderzeugung und Bildrekonstruktion

Bilderzeugung und Bildrekonstruktion und Bildrekonstruktion Medizinische Bilder werden auf vielerlei Arten erstellt. Wir stellen einige kurz vor. In der Tomographie werden die gemessenen Signale einem Rekonstruktionsschritt unterworfen, bevor

Mehr

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Das Magnetische Feld als Folge von Ladungsverschiebungen Gerader stromdurchflossener Leiter Spulenförmiger Leiter Wichtige Kenngrößen

Mehr

Wo ist der magnetische Nordpol der Erde?

Wo ist der magnetische Nordpol der Erde? Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums

NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums Martin Fuchs 1 Motivation Die Nuclear Magnetic Resonance, oder zu deutsch Kernspinresonanz ist vor allem durch die aus der Medizin nicht mehr wegzudenkende

Mehr

Räumlich aufgelöste MR

Räumlich aufgelöste MR Räumlich aufgelöste MR Doktoranden Training der Deutschen Sektion der ISMRM O. Speck Sektion MR-Physik Diagnostische Radiologie Universitätsklinik Freiburg Übersicht Einleitung Gradienten und Bildgebung

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer MRT-GRUNDLAGEN Dr. Felix Breuer 64. Heidelberger Bildverarbeitungsforum, Fürth, 07.03.2017 Fraunhofer INHALT NMR (Nuclear Magnetic Resonance) Grundlagen Signalentstehung/Detektion NMR Bildgebung Schichtselektion

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Magnetresonanztherapie Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2

Magnetresonanztherapie Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2 Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2 Magnetisches Moment von Protonen - µ = y * h * m(i) (m = magn. Quantenzahl, y = gyromag. Verhältnis) - m(i)

Mehr

Magnetresonanzbildgebung (MRI) II

Magnetresonanzbildgebung (MRI) II Verwandte Themen Kernspins, Magnetisierung, Resonanzbedingung, MR-Frequenz, HF-Pulstechnik (High Frequency), FID- Signal (Free Induction Decay), Spin-Echo (2D, 3D), Magnetische Gradientenfelder, Explizite

Mehr

Was wir heute daher vorhaben: Was Sie heute lernen sollen...

Was wir heute daher vorhaben: Was Sie heute lernen sollen... 18.05.16 Technik der MRT MRT in klinischer Routine und Forschung Magnet Resonanz Tomographie Kernspintomographie PD Dr. Alex Frydrychowicz Was wir heute daher vorhaben: Was Sie heute lernen sollen... Allgemeine

Mehr

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen C6.3 Fourier-Transformation Entspricht Fourier-Reihe für 'Fourier-Integral' Für endliches L: (C6.1b.3) Für stellt eine kontinuierliche Funktion dar: und Fourier-Summe wird ein Integral: 'Fourier-Transformation'

Mehr

Bildgebende Verfahren in der Medizinischen Physik

Bildgebende Verfahren in der Medizinischen Physik -1- Einführung in die Medizinische Physik Sommersemester 25, Fr 8-1, W2 1-148 Stichworte zur Vorlesung am 1.7.25 Bildgebende Verfahren in der Medizinischen Physik Dr. Stefan Uppenkamp

Mehr

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT)

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Prof. Dr. Willi Kalender, Ph.D. Institut für Medizinische Physik Universität Erlangen-Nürnberg www.imp.uni-erlangen.de 3D

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Hauptseminar Experimentalphysik Sommersemester 2006

Hauptseminar Experimentalphysik Sommersemester 2006 Hauptseminar Experimentalphysik Sommersemester 2006 Physikalische Grundlagen der medizinischen Diagnostik Thema: Magnetresonanztomografie von: Kay Fremuth 20.04.2006 2 Inhalt: I. Einführung II. Historische

Mehr

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π] Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten

Mehr

MR Grundlagen. Marco Lawrenz

MR Grundlagen. Marco Lawrenz MR Grundlagen Marco Lawrenz Department of Systems Neuroscience University Medical Center Hamburg-Eppendorf Hamburg, Germany and Neuroimage Nord University Medical Centers Hamburg Kiel Lübeck Hamburg Kiel

Mehr

Kernspintomographie (MRT)

Kernspintomographie (MRT) Kernspintomographie (MRT) Wichtig! Der physikalische Hintergrund (NMR) müssen Sie bei diesem Titel auch wissen (Spin, Auswirkungen des Spins im Magnetfeld, Zeemann-Effekt, Präzession von Elementarteilchen

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Grundlagen der Computertomographie. Dr. Stephan Scheidegger, 2006

Grundlagen der Computertomographie. Dr. Stephan Scheidegger, 2006 Grundlagen der Computertomographie Dr. Stephan Scheidegger, 2006 Computertomographie Inhalt Technik der Computertomographie Bild-Rekonstruktion Scanning-Methoden Dentale Volumentomographie ROENTGENTECHNIK

Mehr

NEUTRONEN RESONANZ SPIN ECHO NRSE

NEUTRONEN RESONANZ SPIN ECHO NRSE NEUTRONEN RESONANZ SPIN ECHO NRSE Inhaltsverzeichnis 1. Warum NRSE? 2. Flipper Spulen 3. NRSE-Instrument 4. Das Auflösungsellipsoid 5. Ablauf einer Messung 6. Anwendung NRSE: Phononen Lebensdauer 7. MIEZE-Instrument

Mehr

4Schnelle Bildgebung. Verschiedene Methoden der schnellen Bildgebung. Schnelle Bildgebungssequenzen. Beschleunigte k-raum-füllung und -Auslese

4Schnelle Bildgebung. Verschiedene Methoden der schnellen Bildgebung. Schnelle Bildgebungssequenzen. Beschleunigte k-raum-füllung und -Auslese 4Schnelle Bildgebung Verschiedene Methoden der schnellen Bildgebung Übersicht über die Methoden schneller Bildgebung: Bildgebungssequenzen: Turbogradientenecho, Turbospinecho, Echo Planar Imaging (EPI),

Mehr

Magnetresonanztomographie (MRT)

Magnetresonanztomographie (MRT) Prinzip - aktiver Abbildungsvorgang durch Zuführung von Energie (starkes konstantes Magnetfeld + elektromagnetische Pulse) und - passiver Abbildungsvorgang durch Ausnutzung körpereigener Signale (Spin-Ensembles

Mehr

MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin

MaReCuM MRT. OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin MaReCuM MRT OA PD Dr. med Dietmar Dinter Leiter des Geschäftsfelds Onkologische Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie = MRI Magnetic

Mehr

Fortgeschrittenenpraktikum

Fortgeschrittenenpraktikum Fortgeschrittenenpraktikum Nuclear Magnetic Resonance (NMR) Standort: Physikgebäude, Raum PHY D012 Versuchsdurchführung: - Donnerstag: 11-17 Uhr - Freitag: 8-16 Uhr - Im Sommersemester können die Anfangszeiten

Mehr

Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8

Relaxation. Dominik Weishaupt. 2.1 T1: Longitudinale Relaxation T2/T2*: Transversale Relaxation 8 2 Relaxation 7 7 2 Relaxation Dominik Weishaupt 2.1 T1: Longitudinale Relaxation 8 2.2 T2/T2*: Transversale Relaxation 8 D. Weishaupt, V. D. Köchli, B. Marincek, Wie funktioniert MRI?, DOI 10.1007/978-3-642-41616-3_2,

Mehr

Kernspinresonanz, Kernspin-Tomographie

Kernspinresonanz, Kernspin-Tomographie Kernspinresonanz, Kernspin-Tomographie nützt die Wechselwirkungen von Kerndipolmomenten mit elektromagnetischen Feldern NMRS... Nuclear Magnetic Resonance Spectroscopy MRT... Magnetic Resonance Tomography

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

1. Allgemeine Grundlagen Quantenmechanik

1. Allgemeine Grundlagen Quantenmechanik 1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( L)

Sessionsprüfung Elektromagnetische Felder und Wellen ( L) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10L) 22. August 2013, 14-17 Uhr, HIL F41 Prof. Dr. L. Novotny Bitte Beachten Sie: Diese Prüfung besteht aus 5 Aufgaben und hat 3 beidseitig

Mehr

NMR- Konzepte und Methoden

NMR- Konzepte und Methoden Daniel Canet NMR- Konzepte und Methoden Übersetzt aus dem Französischen von E. Krähe Mit 157 Abbildungen und 21 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona

Mehr

Teil 1: Röntgen-Computertomographie CT

Teil 1: Röntgen-Computertomographie CT 11/12/2008 Page 1 HeiCuMed: Blockkurs Bildgebende Verfahren, Strahlenbehandlung, Strahlenschut Teil 1: Röntgen-Computertomographie CT Lehrstuhl für Computerunterstütte Klinische Mediin Mediinische Fakultät

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

1972: Raymond Damadian, US patent : Erstes MRI Bild (2 Zylinder H 2. O in D 2. Lauterbur, Nature 1973

1972: Raymond Damadian, US patent : Erstes MRI Bild (2 Zylinder H 2. O in D 2. Lauterbur, Nature 1973 9) Kernspintomographie (MRI) Historisches 1972: Raymond Damadian, US patent 3789832 1973: Erstes MRI Bild (2 Zylinder H 2 O in D 2 O) Lauterbur, Nature 1973 MRI From Picture to Proton D. W. McRobbie, E.

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Gepulste NMR zur Polarisationsmessung

Gepulste NMR zur Polarisationsmessung Gepulste NMR zur Polarisationsmessung Grundlagen der magnetischen Kernresonanz Konzeption des gebauten NMR-Systems Einzelne Komponenten - Kryostateinsatz - HF-Dioden Erste NMR-Messungen Messung der TE-Aufbaukurve

Mehr

MRT. Funktionsweise MRT

MRT. Funktionsweise MRT MRT 1 25.07.08 MRT Funktionsweise Wofür steht MRT? Magnetische Resonanz Tomographie. Alternative Bezeichnung: Kernspintomographie. Das Gerät heißt dann Kernspintomograph. S N Womit wird der Körper bei

Mehr

Digitale Signalverarbeitung Übungsaufgaben

Digitale Signalverarbeitung Übungsaufgaben Kapitel : Einleitung -: Analoger Tiefpass Dieser Tiefpass mit den Werten R = Ω, L =.5mH R L und C =.5µF ist wie folgt zu analysieren: U e C R. Es springe U e bei t =.5ms auf 5V und bei t = ms wieder auf.

Mehr

Kurven. injektiv, dann heißt K eine Jordan-Kurve.

Kurven. injektiv, dann heißt K eine Jordan-Kurve. Kurven Der Begriff der Kurve, zunächst etwa im R 2 oder R 3, kann auf zwei Arten gebildet werden. Der geometrische Zugang definiert eine Kurve als den geometrischen Ort von Punkten in der Ebene bzw. im

Mehr

9 Kernspintomographie (MRI)

9 Kernspintomographie (MRI) Literatur zu diesem Kapitel Bildgebende Verfahren in der Medizin O. Dössel Springer-Verlag MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince Cambridge University Press

Mehr

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 05.04.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt., 97%)

Mehr

Compact MRT Softwareanleitung INHALTSVERZEICHNIS DER ERSTE START DAS MENÜ DIE MESSUNG KURSE FEHLERBEHEBUNG PRODUKTINFORMATION

Compact MRT Softwareanleitung INHALTSVERZEICHNIS DER ERSTE START DAS MENÜ DIE MESSUNG KURSE FEHLERBEHEBUNG PRODUKTINFORMATION Compact MRT 09500-99 PHYWE Systeme GmbH & Co. KG Robert-Bosch-Breite 10 D-37079 Göttingen Telefon Fax E-mail +49 (0) 551 604-0 +49 (0) 551 604-107 info@phywe.de Softwareanleitung Das Gerät entspricht den

Mehr

Fourier Optik. Zeit. Zeit

Fourier Optik. Zeit. Zeit Fourier Optik Beispiel zur Fourier-Zerlegung: diskretes Spektrum von Sinus-Funktionen liefert in einer gewichteten Überlagerung näherungsweise eine Rechteckfunktion Sin t Sin 3t Sin 5t Sin 7t Sin 9t Sin

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

MRT in der Gastroenterologie

MRT in der Gastroenterologie MRT in der Gastroenterologie MRT und bildgebende Differenzialdiagnose Bearbeitet von Henning Ernst Adamek, Thomas Lauenstein, Jörg Albert, Regina Beets-Tan, Jürgen Bunke, Siegbert Faiss, Lucas Greiner,

Mehr

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.) Datum: 13.4.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung 1 Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

Magnetresonanztomographie (MR/MRT)

Magnetresonanztomographie (MR/MRT) Magnetresonanztomographie (MR/MRT) Historie 1946 Kernmagnetische Resonanz (NMR) Technisches Prinzip von Bloch und Purcell unabhängig voneinander entdeckt 1952 Nobelpreis an Bloch und Purcell 1970 Erstes

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Auswertung des Versuches Gepulste Kernspinresonanz

Auswertung des Versuches Gepulste Kernspinresonanz Auswertung des Versuches Gepulste Kernspinresonanz Andreas Buhr, Matrikelnummer 1229903 9. Mai 2006 Inhaltsverzeichnis Gepulste Kernspinresonanz 1 Formales 3 2 Überblick über den Versuch 4 3 Grundlagen

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Diffusionstensor-Magnetresonanz-Tomographie des menschlichen Gehirns zur Rekonstruktion von Nervenfaserbahnen

Diffusionstensor-Magnetresonanz-Tomographie des menschlichen Gehirns zur Rekonstruktion von Nervenfaserbahnen Diffusionstensor-Magnetresonanz-Tomographie des menschlichen Gehirns zur Rekonstruktion von Nervenfaserbahnen Jan-Philip Gehrcke Universität Würzburg 13. Juni 2008 1 / 37 Übersicht 1 Biologie und Diffusion

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Differential und Integralrechnung 6 6. (Herbst 200, Thema 2, Aufgabe 4) Suchen Sie für alle c R einen Punkt auf der Parabel P := { (x,y) : y

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Grundlagen der MR-Bildgebung

Grundlagen der MR-Bildgebung Grundlagen der MR-ildgebung Jürgen Finsterbusch Slide 1 Klinik für Neurologie, UKE, Hamburg Übersicht Kernspinresonanz Ortskodierung ildgebungsverfahren Slide 2 fmri Sicherheit Kernspinresonanz Nuclear

Mehr

Grundlagen der Magnetresonanz

Grundlagen der Magnetresonanz Kapitel Grundlagen der Magnetresonanz In einem statischen Magnetfeld ermöglicht die Kernmagnetische Resonanz (Nuclear Magnetic Resonance, NMR) durch die Wechselwirkung von externen magnetischen Hochfrequenzfeldern

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 2)

Molekulare Biophysik. NMR-Spektroskopie (Teil 2) Molekulare Biophysik NMR-Spektroskopie (Teil 2) NMR-Parameter NMR-Parameter 3/88 Folgenden NMR-Parameter sind von Interesse chemische Verschiebung skalare Kopplung Relaxation / NOE-Effekt NMR-Parameter

Mehr

9 Kernspintomographie (MRI)

9 Kernspintomographie (MRI) 9.1 Einführung 9.1.1 Prinzip Die bildgebende Kernspinresonanz erlaubt die Darstellung der Dichte von Kernspins (in fast allen Fällen Waserstoff, d.h. Protonen) als Funktion des Ortes. Dazu werden Übergänge

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Vorlesung 3. Karim Kouz SS Semester Biophysik MRT. Karim Kouz

Vorlesung 3. Karim Kouz SS Semester Biophysik MRT. Karim Kouz Vorlesung 3 Karim Kouz SS2017 2. Semester Biophysik MRT Karim Kouz SS2017 2. Semester Biophysik 1 Grundlagen der MRT MRT = Magnetresonanztomographie Bildgebendes Verfahren, das Schnittbilder liefert, wobei

Mehr

NMR-Bildgebung an fallenden Filmen und reaktiven Gelkugeln

NMR-Bildgebung an fallenden Filmen und reaktiven Gelkugeln NMR-Bildgebung an fallenden Filmen und reaktiven Gelkugeln Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des

Mehr

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Beweisen Sie aus den Axiomen für komplexe Zahlen, dass für alle z, w C gilt: zw = z w; b) Schreiben

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält.

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. 4 Kurven im R n Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. Definition 4.1. (a) Unter einer Kurve im R n versteht

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Mathematik III - Blatt 6

Mathematik III - Blatt 6 Mathematik III - Blatt Christopher Bronner, Frank Essenberger 8. November Aufgabe Wir suchen erstmal im inneren des Vierecks nach Punkten, die für einen Extremwert in Frage kommen, danach auf den Rändern

Mehr