ist Scheitelwinkel des Dreiecks CDE.

Größe: px
Ab Seite anzeigen:

Download "ist Scheitelwinkel des Dreiecks CDE."

Transkript

1 MATHEMATIK-WETTBEWERB 008/009 DES LANDES HESSEN 3. RUNDE LÖSUNGEN. a) L = { 5; ; }, denn: (x + ) = 0 oder (x 4) = 0 oder (x 3 + 5) = 0 b) L = { 4; 3; ; 0;...}, denn: (x + ) ist gleich Null für x =, sonst immer positiv, deshalb (x 3 + 5) > 0 x > 5 c) L = {... ; 4; 3; ; 3;...}, denn: (x + ) = 0 oder (x )(x + ) x = oder x 4 x = oder 5 x x = oder x 3 oder x 3 d) L = { ; 0; ; 4; 5; 6;...}, denn: (x + ) ist immer positiv, aber für ungleich Null muss x sein oder: x 3 > 0 und (x 4) > 0 oder x 3 < 0 und (x 4) < 0 x > 3 und x > 4 oder x < 3 und x < 4 x > 3 und (x > oder x < ) oder x < 3 und ( < x < ) x > 3 oder < x <. a) Hinweise zur Konstruktion des Trapezes: <) BAC =<) DBA = 45 Strecke AB mit Parallelen zur Mittelsenkrechten m im Abstand 3,5 cm von m b) Konstruktion des Umkreises c) Thaleskreis über AB d) Kreisbogen um M mit Radius MD (= MC ), denn: CD ist Diagonale eines Sehnenvierecks mit Mittelpunkt M. Mittelpunktswinkel beträgt 40. Dreieck DM C ist gleichschenklig mit <) MDC = 0 e) R und R sind die Schnittpunkte des Thaleskreises aus c) und des Kreisbogens aus d). 3. a) Die Winkel an der Basis betragen beide 70, denn: 70 =<) ADF =<) EDC <) ACF = 50 (alternativ: <) CBA = 50 ) <) F CB = = 40 <) CED = = 70 b) () γ = 0, denn: 70 =<) ADF =<) EDC <) DCE = 70, da Dreieck CDE gleichschenklig γ =<) ACF + 70 = () γ = 05, denn: 70 =<) ADF =<) EDC Basiswinkel <) CED =<) DCE = 55 γ =<) ACF + 55 = c) γ = α (alternativ: α = γ), denn: <) ADF =<) EDC = 90 α ist Scheitelwinkel des Dreiecks CDE. AUFGABENGRUPPE A

2 Basiswinkel <) CED =<) DCE = 90 + α = α γ =<) ACF + <) DCE = 90 α+ <) DCE ( ( α )) 4. a) Das Alter ist 84, denn: a + b = und a b = 4 b) Das Alter ist 6, denn: a + b = 8 und 0b + a = (0a + b) + 0 a = ; b = 6 c) () Christina ist dann 5, ihr Vater 5 Jahre alt. Regel: Das ist alle Jahre der Fall. () Funktioniert nur, wenn die Altersdifferenz durch 9 teilbar ist: x = Alter Vater, x = 0a + b y = Alter Andreas; y = 0b + a Es gilt: x y = 35 0a + b (0b + a) = 35 9a 9b = 35 a b = 35/9, aber a b muss ganzzahlig sein. 5. a) () 0; ; 5; 6 () Man muss bis zur zweiten Potenz testen, denn: Die letzte Ziffer der quadrierten Zahl lässt sich wieder als Ausgangszahl verwenden. b) () Wenn x eine zweistellige idempotente Zahl ist, dann findet sich am Ende von x wieder die Zahl x. Subtrahiert man von x die Zahl x, so bleibt nur ein Vielfaches von 00 übrig. () Umformung der Gleichung (3) Wenn x durch 5 teilbar sein soll, dann kann x = 5, 50 oder 75 sein. Dann ist x = 4, 49 oder 74 und muss durch 4 teilbar sein, das ist nur bei x = 5 der Fall. Wenn x durch 5 teilbar sein soll, dann kann x =6, 5 oder 76 sein. Die Zahl x muss durch 4 teilbar sein, das ist nur bei x = 76 der Fall. (4) k = 5 x x 8 oder k = x 5 x8 6. a) () 36 Klötzchen, denn: kgv(; ; 3) = () x x ; x 4 x 6 (oder x x 6 oder x 3 x 4), denn: V W ürfel = ( cm) 3 = 78 cm 3 V Klötzchen = 78 cm 3 : 7 = 4 cm 3 b) () z.b.: 7 Klötzchen vom Typ A, Klötzchen vom Typ B Beschreibung: Die Klötzchen vom Typ A bilden einen Quader mit der Kantenlänge x x 0 (cm), diejenigen vom Typ B einen Quader mit den Kantenlängen x x (cm). () z.b.: kgv(; 3; 4; 5) = a) () p = 3 = 8 () p = 3 3 (3) p = = 5 64 (alternativ: p = 78 = 5 64 ) b) p = 3 0,3 0,7 = 0,89 c) x = 0, 4, denn: x + ( x) + x = 0, 35 4 x x + 4 x = 0, 35 4 x = 0, =

3 MATHEMATIK-WETTBEWERB 008/009 DES LANDES HESSEN 3. RUNDE LÖSUNGEN. a) L = {6}, denn: 3 = 0, 3 b) L = Z, denn: 6x = 4x 8x + x + 8x 6x = 6x c) L = { ; 0;...}, denn: x + 6x + 9 x + 3 6x x 6 x d) L = { ; 0; }, denn: 4 = x (für x 0). a) 900 m 3, denn: 700 : 7,8 b) () 3 cm, denn: 5 : cm () A = 65 cm Die Seitenlänge der Grundfläche ist 5 cm. c) () Maßstab : 50, denn: Die Seitenlänge der Grundfläche ist 0 cm 0 cm : 5 m bzw. 0, m : 5 m () Die Höhe beträgt 6 cm, denn: 35 : 5 0 cm (3) V = 0,4608 cm 3, denn: 900 m 3 : (50) 3 alternativ: g : (50) 3 = 3,5944 g 3. a) Hinweise zur Konstruktion beider Parallelogramme: Seite a und Parallele im Abstand 5 cm Kreis um A mit r = 7 cm b) Hinweise zur Konstruktion des Parallelogramms: Seite a und Mittelsenkrechte zu a Kreis um A mit r = 7 cm c) Hinweise zur Konstruktion des Parallelogramms: Seite a und Mittelsenkrechte von a Kreis um A mit r = 3, 5 cm Konstruktion von D d) Hinweise zur Konstruktion eines Parallelogramms: Seite a und Mittelsenkrechte von a Parallele zur Mittelsenkrechten von a im Abstand von cm Kreis um Mittelpunkt von AB mit r = 7 cm 4. a) Autos, denn:,5 Mrd e : 500 e b) 0 %, denn: 500 e : 500 e c) e, denn: 500 e : 0,5 d) 5500 e, denn: 0 % von e sind 8000 e. AUFGABENGRUPPE B

4 8000 e e e) Es ist immer günstiger, zuerst den Preisnachlass und dann die AWP zu wählen, denn: 0, 75x 500 < (x 500) 0, 75 0, 75x 500 < 0, 75x a) x = 4 bzw. C(4 5) und Trapez (a + c) h A = c = 3 cm b) A(AMD) = 5 cm, A(DMC) = 6 cm, A(MBC) = 5 cm c) () Es können höchstens zwei Dreiecke dieselbe Grundseitenlänge bei gleicher Höhe besitzen. (.) B(7 ) und N(4 ) (.) A( 3, 5 ) und B(, 5 ) 6. a) () Augensumme 7, weil gegenüber liegende Augenzahlen nicht gleichzeitig sichtbar sind. () minimal 6, maximal 5 Augensumme 8 und 3 b) () ist nicht sichtbar, denn: 5 gewürfelt () 3; 4; 6; 5 c) Spieler sieht 9, denn: 3 gewürfelt 7. a) () 4 () z.b. OTTOANNN (3) 4 4 = 56 (4) 4 8 = b) P(Einsatz zurück) = 0 P(Trostpreis) = 0 P(Hauptpreis) = 4 ( ) 4 = 56

5 MATHEMATIK-WETTBEWERB 008/009 DES LANDES HESSEN 3. RUNDE LÖSUNGEN. a) () x = 0, 4, denn: 4x = 5, 6 x = 5, 6 : 4 () x = 3, denn: 8 + x = (7 3x) ( 0) 8 + x = x 4 + x = x 84 + x = 30x 84 = 8x (3) x = 9, denn: x 8 = 4 3x x = 48 b) () 8x + 4y + 4z () 56 cm AUFGABENGRUPPE C. a) 96 e, denn: 33,60 00 : 35 b) 449 e, denn: 65 % 9,85 00 : 65 c) () 70 e, denn: 00 : = = : 0 = 78 () 4,5 %, denn: = : a) () 00 min () 8 km (3) Uhr (40 min): km Uhr (40 min): Pause Uhr (0 min): 6 km b) () Diagramm mit richtiger Einteilung Pausen () 3.7 Uhr c) um 0.40 Uhr nach 6 km 4. a) Koordinatensystem Punkte eintragen Viereck zeichnen b) Eintrag A Spiegelachse c) Spiegelung B ( ), C ( 4 3), D ( 5) d) A = 38 cm A = 8 cm (Viereck CDD C ) A = 0 cm (Viereck BCC B ) 5. a) geringster Verbrauch auf Strecke, denn:

6 3,8 l : 4 = 8, l 39,5 l : 5 = 7,9 l 46, : 5,5 = 8,4 l b) () Durchschnittsgeschwindigkeit 75 km/h, denn: 90 km : 5 min =,5 km/min,5 km/min 60 min/h () 4 min, denn: 90 : (3) 38,30 e, denn: 8,4 : ,9 3,9,0 = 38,304 c) Nein, denn: 35 : 4 = 7,5 7,5 5 = 37,5 < a) Würfel : p(6)= 6 = 3 0, 33 b) Würfel, da die Wahrscheinlichkeit, eine Zahl kleiner als 4 zu würfeln, nahe an der relativen Häufigkeit liegt: Würfel : p(<4) = 6 4 = 3 0, 67 Würfel : p(<4) = 0 Würfel 3: p(<4) = 3 6 = = 0, 5 relative Häufigkeit des Zufallsexperimentes: , 674 c) Bahar soll Würfel wählen. Da Würfel immer Zahlen größer 3 hat, hat sie mit diesem eine Wahrscheinlichkeit von 67 % zu gewinnen. Gewinnwahrscheinlichkeit Würfel gegenüber Würfel : p(3) = 6 4 = 3 0, 67 Gewinnwahrscheinlichkeit Würfel 3 gegenüber Würfel : p(9) = 6 3 = = 0, 5 d) p(4;0) = 0,5 0,5 = 0,5 = 5 %, denn: p(4) = 6 3 = = 0, 5 7. a) () 749 () 594 (3) 8935 (4) 478 p(0) = 3 6 = = 0, 5

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) 1) L = { 3; 2} 2) L = { 3; 1; 2; 3} 3) L = { 2; 1; 0; 1}, denn x 2 < 0 und x + 3 > 0 oder x 2 > 0 und x + 3 < 0, somit x < 2 und

Mehr

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN. 1. a) x = a + 1 ax + 3x = ax + x + 2a + 2 2x = 2a + 2. für a 1 und L = für a = 1

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN. 1. a) x = a + 1 ax + 3x = ax + x + 2a + 2 2x = 2a + 2. für a 1 und L = für a = 1 MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) x = a + ax + 3x = ax + x + 2a + 2 2x = 2a + 2 b) x = 7 für a und L = Q für a = x( + a) = 7( + a) c) x = a a für

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = { 5; 0; 5}, denn: x = 0 oder x = ±5 oder x = 5 b) L = {1; 2; 3; 4}, denn: x > 0 und 125 x 3 > 0 oder x < 0

Mehr

MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 20/202 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L = {0; ; 2; 3}, denn: x (3 x) 0 Fall : x (3 x) = 0 x = 0 oder x = 3 Fall 2: x (3 x) > 0 (x > 0 und 3 x > 0) oder (x

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L = { 1; 0; 1}, denn: x 2 < 36 25 5 6 < x < 6 5 b) L = {... ; 3; 2; 1}, denn: 1 4 x(9 25x2 ) > 0 Fall 1: x > 0 und (9 25x 2 ) >

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = { 5; 0; 5}, denn x = 0 oder x 5 = 0 oder x 3 + 125 = 0 x = 0 oder x = 5 oder x 3 = 125 x = 0 oder x = 5 oder

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 48 b) 4 c) z. B. (4 1) oder x = 4, y = 1 (auch möglich: (2 8), (1 19), (5 1) ( 4 1), (0, 5 39,

Mehr

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = {2; 5} b) L = {3; 4; 6; 7;...}, denn (x 5) 10 (x 5 32) < 0 (x 5) 10 < 0 gilt immer für x 5 deshalb (x 5 32)

Mehr

MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A. 1. a) L = { a; a} für a 0: L = {0; a} d) für a = 0: L = { 1; 1}

MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A. 1. a) L = { a; a} für a 0: L = {0; a} d) für a = 0: L = { 1; 1} MATHEMATIK-WETTBEWERB 2006/2007 DES LANDES HESSEN AUFGABENGRUPPE A 3. RUNDE LÖSUNGEN 1. a) L = { a; a} b) für a = 0: L = {0} für a 0: L = {} c) für a = 0: L = { 3; 3} für a = 4: L = { 5; 5} a 0 und a 4:

Mehr

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2008/2009 DES LANDES HESSEN 3. RUNDE AUFGABENGRUPPE A 19.05.2009 Hinweis: Von jeder Schülerin/jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet,

Mehr

MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. Anzahl 12 3 15 8 Preis (e),20 1,05 5,25 2,80 P2. a) 12,5 % b) 0 g 28 g entsprechen 70 % P3. a) (1),

Mehr

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L = {... ; ; 0; ; ; }, denn x 4 + 4 > 0 gilt immer, somit x 4) < 0 x < 4 b) L = { ; 0; }, denn x 4) x + 6) x 4 6) < 0

Mehr

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE A. L = { 5} oder x = 5, denn x 5 = 0 oder x 5 = 0 x = 5 oder x = 5 x = 5 oder x = 5 L = {... ; ; ; 0; 4; 5;...}, denn x 5 >

Mehr

Mathematik-Wettbewerb 2003/2004 des Landes Hessen

Mathematik-Wettbewerb 2003/2004 des Landes Hessen Mathematik-Wettbewerb 003/004 des Landes Hessen 1. RUNDE - LÖSUNGEN DER AUFGABENGRUPPE A - PFLICHTAUFGABEN P1. a) (45 48) = + 3 = 19 b) 5@[ 60 + ( 38 )] = 5@[ 60 40] = 500 c) 4 : (1 60) = 4 : ( 48) = 0,5

Mehr

Abschlussprüfung 2012 Mathematik 1. Serie

Abschlussprüfung 2012 Mathematik 1. Serie Abschlussprüfung 01 Mathematik 1. Serie 1. a) Löse folgende Gleichung nach x auf: 5 x x 6 x 6x HN : x( x 6) ( x6) 5x HN HN HN x18 5x HN 18 8x 16 :8 x L b) Nenne die drei grössten ganzen Zahlen, welche

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = { 6; 6; 7} (x 6) (x + 6) = 0 oder (x 7) = 0 b) L = {2; 8} (x 3 7) = 1 (oder (x 3 8) (x 8) = 0) c) L = {...

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2007/2008 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) x = 3 b) y = 35 c) z = 200 % oder 2 P2. β = 70 δ = 15 ε = 75 P3. Sie betrug 250 g. (300 g entsprechen

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 16; 0; 9} b) L = { 2; 2; 3} c) L = Z (x + 1)(x + 1)(x 1)(x 1) = (x + 1)(x 1)(x + 1)(x 1) d) L = {... ; 1; 0; 1; 2; 3; 4}

Mehr

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN 3. RUNDE LÖSUNGEN DER AUFGABENGRUPPE A 1. a) x 2 (1 x 2 ) > (x 2 + 7) (x 2 7) L = {8, 9, 10, } c { 8, 9, 10, } b) (x 4 16) (x + 3) (x 2 + 25) = 0 L = { 3, 2, 2} c) (x 3 4) 2 16 > 0 L = Z ( {0, 1, 2} d)

Mehr

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) L = {2} oder x = 2 x + 1 = 3 b) L = { 3; 2; 1; 0; 1; 2; 3} (x 2 9) 3 < 27 (oder (x 3)(x + 3) < 3) x 2 9 < 3 x

Mehr

Mathematik-Wettbewerb 2004/2005 des Landes Hessen

Mathematik-Wettbewerb 2004/2005 des Landes Hessen Mathematik-Wettbewerb 2004/2005 des Landes Hessen 2. RUNDE LÖSUNGEN DER AUFGABENGRUPPE A 1. a) L = {0, 12} b) 16@x 3 x 5 = 0 Y x 3 (16 x 2 ) = 0 Y L = { 4, 0, 4} c) L = {13, 14, 15, } da immer (x 2 + 5)

Mehr

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. 2. a) L = { 81; 0; 9} x + 81 = 0 oder 27x 2 = 0 oder x 9 = 0 b) L = { 8;... ; 1; 1;... ; 8} 27x 2 > 0 (gilt immer

Mehr

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 203/204 DES LANDES HESSEN 3. RUNDE LÖSUNGEN. a) L = { 2; 2} oder x = 2 und x = 2, denn x 7 28 = 0 oder x + 2) 7 = 0 b) L = { 3; 0; }, denn x = 0 oder x 3) 2 = 4x 2 x = 0 oder x 3

Mehr

Lösungen zu den Aufgaben 7. Klasse

Lösungen zu den Aufgaben 7. Klasse Lösungen zu den Aufgaben 7. Klasse Beachte: Einheit bei allen Geometrieaufgaben: 1 Kästchenlänge 1 cm 1. Achsen- und Punktsymmetrie Achsenspiegelung: Punktspiegelung: 1 Lösungen zu den Aufgaben 7. Klasse

Mehr

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN 2. RUNDE - LÖSUNGEN DER AUFGABENGRUPPE A 1. a) x 2 (x 3) $ 0 L = {0} c {3, 4, 5, } b) x(x 3) $ 0 L = {, 2, 1, 0} c {3, 4, 5, } c) x 3 9x = 0 x(x 2 9) =

Mehr

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 60 b) 11 c) eine Lösung aus z. B. {(8 3); (8 5); ( 8 3); ( 8 5); (16 1); (16 15); (30,5 30);...}

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 5; 3}, denn: (x + 5) 2 = 0 oder x 3 = 0 x + 5 = 0 oder x 3 = 0 x = 5 oder x = 3 b) L = {... ; 7; 6; 4; 5;...}, denn: x +

Mehr

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2012/2013 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 16 b) 11 c) 16 P2. a) 5 % b) 70 % P3. a) x ist das Taschengeld (in e), das Jonas (pro Woche)

Mehr

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = {1} oder x = 1, denn: x + 2 = 3 b) L = {... ; 7, 6, 2, 3,...}, denn: x + 2 > 3 oder x + 2 < 3 x > 1 oder x < 5 c) L = { 4;

Mehr

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE:

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE: BMT8 2009-1 - A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN NAME: KLASSE: PUNKTE: 1 NOTE: Aufgabe 1 Ein Würfel der Kantenlänge 2 cm wird, wie in der Abbildung dargestellt, durch

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2015/2016

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2015/2016 Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen. Runde 05/06 Aufgabe Paul will sich eine zehnstellige Geheimzahl für sein Handy ausdenken. Als erste Ziffer von links wählt er die 3. Die weiteren

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Begründen in der Geometrie

Begründen in der Geometrie Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten

Mehr

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN Hinweis : Von jeder Schülerin/jedem Schüler werden 4 Aufgaben gewertet. Werden mehr als 4 Aufgaben bearbeitet, so werden die mit der besten Punktzahl berücksichtigt.

Mehr

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 7,50 b) 3 c) z. B. (1 1,25) P2. a) 528 b) um 150 % 84 entsprechen 100 % oder 210 entsprechen

Mehr

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die

Mehr

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 9; 7; 7}, denn: x 2 49 = 0 oder x + 9 = 0 x 2 = 49 oder x = 9 b) L = {... ; 9; 8; 6; 5;... ; 5; 6; 8;...}, denn: x 2 49 >

Mehr

A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.

A B. Geometrische Grundbegriffe zuordnen.  Geometrische Grundbegriffe zuordnen. Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das

Mehr

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an: G = Z. a) (x + 7) 2 = 100 b) (x + 7) 2 > 18 c) (2x 4) 2 (2x + 4) 2 < 64

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a 8 b 24 c z. B. 4 1 2 P2. a 20 % b 28 % 22 + 20 110 + 40 = 22 110 oder = 42 150 2 3 2, 2 1 1 2

Mehr

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2017/2018 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 2 b) 2 1 oder 19 9 9 ) c) 50 P2. a) 15 % b) 48 Lehrkräfte) 4 der Lehrkräfte waren gesund. 5 alternativ:

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Grundwissen Mathematik - 7. Jahrgangsstufe

Grundwissen Mathematik - 7. Jahrgangsstufe Stichworte Termbegriff äquivalente Terme Rechenregeln Grundwissen Mathematik - 7. Jahrgangsstufe 1. Terme Terme sind Rechnungen, die Zahlen und Variable enthalten dürfen. Alle aus der 5. Klasse bekannten

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

4. In einem Parallelogramm ABCD sind die Seiten a = c = 6 und

4. In einem Parallelogramm ABCD sind die Seiten a = c = 6 und Sinus, Cosinus und Tangens 1. In einem gleichschenkligen Dreieck ABCsind die Seiten c = 4 und a = b = gegeben. Berechne die Winkel im Dreieck ABC und den Flächeninhalt des Dreiecks. In einem Parallelogramm

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an; G = Z. a) 5(2x 4) + 3x 16 = 5(8 5x) b) 8(x 6) 3(8 x) = 4(x + 3) c) 12(2x

Mehr

( ) ( ) 1 Zahlen und Funktionen ( ) ( ) ( a + b) ( c + d ) = ac + ad + bc + bd

( ) ( ) 1 Zahlen und Funktionen ( ) ( ) ( a + b) ( c + d ) = ac + ad + bc + bd 1 Zahlen und Funktionen 1.1 Terme und Variable Buchstaben, die als Platzhalter für eine Zahl stehen, heißen Variable. Terme sind Rechenausdrücke, die aus Zahlen, Variablen, Rechenzeichen und Klammen bestehen.

Mehr

Lösungshinweise und Notenschlüssel

Lösungshinweise und Notenschlüssel BMT0 07 Die Lösungshinweise enthalten keine vollständigen Lösungen der Aufgaben. Nicht genannte, aber gleichwertige Lösungswege sind entsprechend zu bewerten. a b Die Gleichungen in der zweiten Spalte

Mehr

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN Hinweis: Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden diejenigen mit der besten

Mehr

Qualiaufgaben Konstruktionen

Qualiaufgaben Konstruktionen Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der

Mehr

Kongruenz, Vierecke und Prismen

Kongruenz, Vierecke und Prismen Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 2. RUNDE LÖSUNGEN AUFGABENGRUPPE A 1. a) (1) L = { 8; 6; 8}, denn (x + 6) 2 = 0 oder x 2 64 = 0 x + 6 = 0 oder x 2 = 64 x = 6 oder x = 8 oder x = 8 (2)

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2007

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2007 Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen Runde 007 Aufgabe Günter bastelt Würfel Jede Seitenfläche färbt er entweder grün oder rot Wie viele Würfel, die sich allein durch ihre Färbung

Mehr

Aufgabe E 1 (8 Punkte)

Aufgabe E 1 (8 Punkte) Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)

Mehr

Jgst. 11/I 2.Klausur

Jgst. 11/I 2.Klausur Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl sfg

M 5.1. Natürliche Zahlen und Zahlenstrahl sfg M 5.1. Natürliche Zahlen und Zahlenstrahl sfg Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Mathematik Aufnahmeprüfung 2014 Profile m,n,s

Mathematik Aufnahmeprüfung 2014 Profile m,n,s Mathematik Aufnahmeprüfung 2014 Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Mathematik Aufnahmeprüfung 2017

Mathematik Aufnahmeprüfung 2017 Mathematik Aufnahmeprüfung 2017 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Download Jens Conrad, Hardy Seifert

Download Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Dieser Download

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Wiederholungsaufgaben Klasse 7 Blatt 1

Wiederholungsaufgaben Klasse 7 Blatt 1 Wiederholungsaufgaben Klasse 7 Blatt 1 Aufgabe 1 Berechne ohne Taschenrechner. a) (0,7 + 0,85) : 0,016 b) (65,2 25) 0,5 Aufgabe 2 Was ist eine Primzahl? Nenne mindestens 10 Primzahlen. Aufgabe 3 Wie nennt

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3

Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 Serie W1 Klasse 8 RS 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 3 c = 4 2a - b; a + b; b : c 4. 36:0,4 = 5. Vergleiche. 30+2 10+5 30+2 (10+5) 6. Kürze 12 44 7. Berechne a 8a - 28

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Ortslinien und Konstruktionen

Ortslinien und Konstruktionen Ortslinien und Konstruktionen Dr. Elke Warmuth Sommersemester 2018 1 / 17 Ortslinien Konstruktionen Dreieckskonstruktionen 2 / 17 Wo liegen alle Punkte P, die von einem Punkt M den gleichen Abstand r haben?

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

1 Zahlen und Funktionen

1 Zahlen und Funktionen 1 Zahlen und Funktionen 1.1 Variablen Variablen sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge. Bsp.: a IN, b Z oder x QI Betrag einer Variablen a falls a 0 a = Bsp.: 7 = 7; -5 = -(-5) =

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

Kopfübungen zur regelmäßigen Wiederholung der Basiskompetenzen Die Teilaufgaben beziehen sich auf den angegebenen Kompetenzbereich.

Kopfübungen zur regelmäßigen Wiederholung der Basiskompetenzen Die Teilaufgaben beziehen sich auf den angegebenen Kompetenzbereich. zur regelmäßigen Wiederholung der Basiskompetenzen Die Teilaufgaben beziehen sich auf den angegebenen Kompetenzbereich. Einsetzbar ab Klasse 8 Möglichkeiten des Unterrichtseinsatzes: Zu Stundenbeginn,

Mehr

18. Landeswettbewerb Mathematik Bayern

18. Landeswettbewerb Mathematik Bayern 18. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 1. Runde 015/016 Aufgabe 1 Paul will sich eine zehnstellige Geheimzahl für sein Handy ausdenken. Als erste Ziffer von links

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2018/2019

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2018/2019 Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2018/2019 Aufgabe 1 Alina, Bilge und Celia sitzen an einem Tisch, auf dem ein gewöhnlicher Spielwürfel liegt. Jede kann drei Würfelflächen

Mehr

Mathematik Aufnahmeprüfung Klasse 1. Teil Ausbildungsprofile M, N, S. Kürzen mit 3

Mathematik Aufnahmeprüfung Klasse 1. Teil Ausbildungsprofile M, N, S. Kürzen mit 3 Mathematik ufnahmeprüfung 007 1. Klasse 1. Teil usbildungsprofile M, N, S Lösungen 1. Wir lösen die Gleichung Schritt für Schritt: 1 5 + 4 15 =! 3 "!kgv der Nenner, d.h. "15 3 + 4 = 10! 15!10!3 =!15 :(!15)

Mehr