Zusatzkapitel zur Vorlesung Mathematische Modellierung WS 2011/12

Größe: px
Ab Seite anzeigen:

Download "Zusatzkapitel zur Vorlesung Mathematische Modellierung WS 2011/12"

Transkript

1 Zusatzkapitel zur Vorlesung Mathematishe Modellierung WS 20/2 Vorlesung vom A A. Das Hindernisproblem Motivation und Modellierung Anwendungsbeispiel: Filtration Ein Gemish, das getrennt werden soll, läuft durh eine durhlässige Membran, den Filter (i.a. aus Papier oder Textilgewebe). Durh dessen Porgengröße, werden bestimmte Partikel durhgelassen, andere niht. Die Membran hat bestimmte Elastizitätseigenshaften, die sih aber mit der Zeit ändern können, weil sih zum Beispiel die Poren mit Partikeln zusetzen oder weil die Mebran nah häufiger Nutzung an Elastizität verliert. Dabei ist die Membran in vielen Fällen über ein Teller-förmiges Hindernis gespannt. Um zu verhindern, dass der Filter reißt oder überdehnt wird, ist es wihtig die Deformation der Membran bestimmen zu können. Dieses Problem soll nun mathematish modelliert werden. Die allgemeine Fragestellung lautet also wie folgt: eine aus untershiedlihen Materialien bestehende elastishe Membran wird über ein Hindernis gespannt. Wie ist die Position der Membran ohne Wirkung äußerer Kräfte und wie verändert sie sih bei Krafteinwirkung? Wir betrahten zur Vereinfahung den d-fall (z.b. eine über einen Steg gespannte Gitarrensaite). Sei dazu u : [a, b] R die gesuhte Verformung (um welhe Distanz wird der Punkt x aus der Ruhelage in y-rihtung abgelenkt). Zunähst shauen wir uns Gleihungen ohne Hindernis an: Wir definieren die Dehnung ε als Ableitung der Verformung, das heißt ε(x) = x u(x). Nah dem Hookeshen Gesetz ist die Spannung σ (die Kraft pro Flähe) proportional zur Dehnung ε, insbesondere gilt σ(x) = Eε(x), wobei E eine materialabhängige Elastizitätskonstante (das Elastizitätsmodul) bezeihnet. Nah dem Satz von Cauhy über die Existenz des Spannungstensor gilt nun (für den d-fall): b(x) = σ(x),

2 wobei b die Kraftdihte im Material beshreibt. Sei nun [, d] [a, b] ein beliebiges Teilintervall. Dann gilt mit dem Satz von Gauss: b = σ = σ. Hierbei beshreibt b die Oberflähenkraft. Diese Kraft entspriht nah dem 3. Newtonshen Gesetz einer wirkenden Gegenkraft(dihte) f, die beispielsweise durh den Partikelstrom oder auh durh die eigene Masse der Membran erzeugt wird (also das was die Deformation verursaht). Also insgesamt: f = b = σ = (Eε) = (Eu ). Da das Intervall [, d] beliebig war und da die Membran an den Enden fest eingespannt ist, erhalten wir somit: (Eu ) = f in [a, b], u(a) = u(b) = 0. Wenn nun noh ein Hindernis dazu kommt, durh das nun eine weitere zusätzlihe Kraft auf die Membran wirkt, so erhalten wir als letzte Bediningung: u(x) g(x) für x [a, b], wobei g 0 die Position des Hindernisses beshreibt. A.2 Das Hindernisproblem in d Wir betrahten zunähst eine mathematishe Beshreibung des Problems in einer Raumdimension. Die formale Formulierung lautet dabei wie folgt: Problem A.. Sei eine Hindernisfunktion g C 0 [a, b], g 0 gegeben. Finde u C 2 [a, b] mit (Eu ) = f in [a, b], u(a) = u(b) = 0 und u(x) g(x) für x [a, b]. 2

3 Um möglihst allgemein Existenz und Eindeutigkeit einer Lösung des Hindernisproblems zeigen und betrahten zu können, definieren wir zunähst eine geeignete zugehörige Shwahe Lösung: Definition A.2 (Shwahe Lösung des Hindernisproblems in d). Sei M g := {v H,2 (a, b) v g H (a, b), v(x) g(x) für alle x [a, b]} und J : H,2 (a, b) R gegeben durh J(v) := ( 2 E u 2 fu). Dann heißt u M g Shwahe Lösung, wenn gilt: J(u) = min J(v). Proposition A.3. Sei u shwahe Lösung des Hindernisproblems in d und sei E differenzierbar, dann gilt im klassishen Sinne (Eu ) = f auf jedem offenen Teilintervall (, d) [a, b] auf dem u > g ist, also auf dem u niht das Hindernis g berührt. Beweis. Sei u eine Lösung und es gelte auf (, d): u > g. Dann existiert für jedes φ C0 (, d) ein ɛ 0, so dass für alle ɛ (0, ɛ 0 ), u + ɛφ M g gilt. Wir setzen nun ( ) F (ɛ) := 2 E (u + ɛφ ) 2 (u + ɛφ) f. Da F (0) = J(u) und J(u) = min J(v) hat F in ɛ = 0 ein Minimum und damit F (0) = 0. Also, da F (ɛ) = (Eu + ɛeφ ) φ fφ erhalten wir: 0 = Eu φ fφ = also mit dem Hauptsatz der Variationsrehnung: (Eu ) φ fφ (Eu ) = f auf (, d). φ C 0 (, d), Beahte den Spezialfall f = 0 und E =onst. Dann gilt (u ) = 0 auf (, d), also ist u auf den Bereihen linear, auf denen u niht am Hindernis anliegt. 3

4 A.3 Das allgemeine elliptishe Hindernisproblem Der folgende Satz garantiert die Existenz und Eindeutigkeit einer shwahen Lösung des Hindernisproblems im R n. Eine Shwahe Lösung definieren wir dabei analog zum d-fall über die Minimierung eines Funktionals J. Satz A.4. Sei R n offen, beshränkt und zusammenhängend mit Lipshitz-Rand. Weiter sei das lineare Funktional J gegeben durh: J(v) := 2 A(x) v(x) v(x) + f(x)v(x) dx für v H,2 (), wobei f L 2 () und A (L ()) n n mit A(x)ξ ξ α ξ 2 für alle x und ξ R n, wobei α > 0 eine Konstante ist. Dann existiert für jedes g H,2 () mit g 0 f.ü. und für jede zugehörige Menge M g mit genau eine Lösung u M g mit M g := {v H,2 () v g H (), v g f.ü. in } J(u) = inf J(v). Bemerkung: Wir definieren H () := C 0 () H (). Bemerkung A.5. Ist u klassishe Lösung, d.h. ist u C 0 () C 2 (), dann löst u auh das folgende klassishe Problem: A.4 (A u) = f in, u = 0 auf, u(x) g(x) für alle x. Beweis von Eindeutigkeit und Existenz einer Lösung Bevor wir uns dem eigentlihen Beweis von Satz A.4 zuwenden können, benötigen wir noh ein paar Definitionen und Sätze aus der Funktionalanalysis. Zunähst der Trennungssatz: 4

5 Satz A.6 (Trennungsatz). Sei X ein normierter Raum über R, M X sei abgeshlossen und konvex und x 0 X\M. Dann gibt es ein x X und ein α R mit x (x) α x M und x (x 0 ) > α. Definition der Shwahen Konvergenz: Definition A.7 (Shwahe Konvergenz). Sei X vollständiger Vektorraum und X der zugehörige Dualraum. Eine Folge (x k ) k N in X heißt shwah konvergent gegen x X für k (wir shreiben x k x) wenn gilt x (x k ) x (x) für alle x X. Beshränkte Folgen in Hilberträumen besitzen shwah-konvergente Teilfolgen: Satz A.8. In jedem Hilbertraum X ist die abgeshlossene Einheitskugel B (0) X folgenkompakt. X shwah Wir beginnen nun den Beweis von Satz A.4 mit dem folgenden Lemma: Lemma A.9. Seien die Voraussetzungen von Satz A.4 erfüllt, dann existiert eine Konstante C > 0 so dass für alle v M g gilt: Beweis. Sei v M g beliebig. Zunähst gilt: Also J(v) C v 2 L 2 () C. v L2 () = v g + g L2 () v g L 2 () + g L 2 () P oinaré Ungl. C p v g L2 () + g L2 () C p v + C p g L2 () + g L2 (). v L 2 () C p v + C p g L 2 () + g L 2 (). () Damit gilt J(v) = A v v + fv 2 2 α v 2 f v Cauhy Shwarz 2 α v 2 f L 2 () v L 2 () = 2 α v 2 L 2 () f L 2 () v L2 () () 2 α v 2 L 2 () f L 2 ()(C p v + C p g L2 () + g L2 ()) Y oung Ungleihung 2 α v 2 L 2 () C p 2ɛ f 2 L 2 () ɛc p 2 v 2 L 2 () f L 2 ()(C p g L2 () + g L2 ()) C v 2 L 2 () C 2, 5

6 wobei C = α ɛcp 2 und C 2 = Cp 2ɛ f 2 L 2 () + f L 2 ()(C p g L 2 () + g L 2 ()). Wir können jetzt mit dem Hauptbeweis beginnen: Hauptbeweis. Nah Lemma A.9 gilt: J(v) C v 2 L 2 () C C. Also ist J nah unten beshränkt auf M g und es gilt: d := inf J(v) R. Wir können also eine Minimalfolge in (u k ) k N in M g wählen, mit J(u k ) k d = inf J(v). Damit ist J(u k ) beshränkt und damit auh u k L2 (), denn nah nah Lemma A.9 gilt Mit () ist damit auh u k L 2 () beshränkt: u k L2 () C + C 2 J(u k ) C. u k L2 () C p u k L2 () + C p g L2 () + g L2 () C. Also ist (u k ) k N eine beshränkte Folge in H,2 (). Wir können demnah Theorem A.8 anwenden. u H,2 () eine Teilfolge (u kl ) l N von (u k ) k N mit Es bleiben zwei Dinge zu zeigen:. u M g 2. J(u) = inf J(v). u kl u in H,2 (). Wir zeigen zunähst u M g. M g ist offensihtlih konvex und auh abgeshlossen, denn sei v k eine Folge in M g, die stark in H,2 () gegen ein v konvergiert, dann gilt: v k g v g H (), denn der H () ist per Definition abgeshlossen. v g fast überall in, denn aus v k v in L 2 () folgt, dass eine Teilfolge von v k existiert, die punktweise fast überall gegen v konvergiert. Also v(x) = lim l v kl (x) g(x) f.ü. Da M g also konvex und abgeshlossen, folgt mit dem Trennungssatz (bzw. einer Folgerung daraus, siehe Übungsaufgabe 2 auf Blatt 06), dass M g shwah abgeshlossen ist. Also ist der Shwahe Grenzwert jeder Folge in M g wieder in M g. Also u M g. Als nähstes zeigen wir J(u) = inf J(v). Dazu überzeugen wir uns als erstes davon, dass die folgenden beiden Eigenshaften gelten: u kl f uf und A u kl u A u u. (2) 6

7 Exemplarish zeigen wir nur die 2. Eigenshaft. Dazu definieren wir: L(v) := A v u für v H,2 (). L ist ein stetiges, lineares Funktional, denn L(v) = A v u A L v L 2 () u L 2 () C(A, u) v H,2 (). Also L (H,2 ()). Nah Definition von shwaher Konvergenz folgt damit: A u kl u = L(u kl ) L(u) = A u u. Damit können wir jetzt endlih J(u) = inf J(v) zeigen: J(u kl ) = 2 A u k l u kl + fu kl = 2 A (u + u k l u) (u + u kl u) + fu kl = A u u + A (u kl u) (u kl u) + A u (u kl u) + A (u kl u) u + 2 A u u + A u (u kl u) + A (u kl u) u + fu kl 2 (2) A u u + fu = J(u). 2 Also Also: was die Existenz einer Lösung beweist. inf J(v) = d = lim J(u kl ) J(u) u Mg inf J(v). l J(u) = inf J(v), Für die Eindeutigkeit der Lösung, siehe Übungsaufgabe 3 auf Blatt 06. fu kl 7

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. Lösung - Serie 14

D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. Lösung - Serie 14 D-MAVT/D-MATL Analsis II FS 2018 Dr. Andreas Steiger Lösung - Serie 14 1. Für welhe der folgenden Funktionen f ist f x (x, = e 4x 2x 2, f (x, = os 2x 2? (a (x, 1 4 e4x x 2 2 sin π. (b (x, 1 4 e4x x 2 2

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden Kapitel 4 Das Dirichlet Prinzip Bevor wir uns der Lösung von Randwertproblemen mithilfe der eben entwickelten Techniken zuwenden, wollen wir uns einer Idee zur Lösung widmen, die einige Elemente dieser

Mehr

Windungszahl. Windungszahl II. Bemerkung. Beispiel

Windungszahl. Windungszahl II. Bemerkung. Beispiel Windungszahl Bemerkung. Für einen beliebigen z 0 homotopen Weg in G \ {z 0 }, der den Punkt z 0 niht notwendigerweise genau einmal durhläuft, gilt 2πi Uml (, z 0 ) f (z 0 ) 2. Nützlih ist folgende heuristishe

Mehr

Der Riemannsche Umordnungssatz für bedingt konvergente Reihen

Der Riemannsche Umordnungssatz für bedingt konvergente Reihen Der Riemannshe Umordnungssatz für bedingt konvergente Reihen Franka Shorten Definitionen Konvergenz a k heisst konvergent, wenn die Folge der Partialsummen s n := a 0 + a + a + + a n konvergiert Divergenz

Mehr

Riesz scher Darstellungssatz und Duale Räume

Riesz scher Darstellungssatz und Duale Räume Riesz scher Darstellungssatz und Duale Räume LV Numerik Partieller Differentialgleichungen Bärwolff SS 2010 14.06.2010 Julia Buwaya In der Vorlesung wurde der Riesz sche Dartsellungssatz als wichtiges

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0,

Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0, Übungen ur Ingenieur-Mathematik III WS 5/6 Blatt..6 Aufgabe 4: Betrahten Sie die Gleihungen: Lösung: h(,, := ( + + 4 =, g(,, := =, ( h(,, f(,, := = g(,, (. a Geben Sie eine geometrishe Interpretation der

Mehr

Finite Elemente I 2. 1 Variationstheorie

Finite Elemente I 2. 1 Variationstheorie Finite Elemente I 2 1 Variationstheorie 1 Variationstheorie TU Bergakademie Freiberg, SoS 2007 Finite Elemente I 3 1.1 Bilinearformen Definition 1.1 Sei V ein reeller normierter Vektorraum. Eine Bilinearform

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

85 Die allgemeine Cauchysche Integralformel und holomorphe Stammfunktionen

85 Die allgemeine Cauchysche Integralformel und holomorphe Stammfunktionen 85 Die allgemeine Cauhyshe Integralformel und holomorphe Stammfunktionen 85. Holomorphe Stammfunktionen 85.2 Äquivalenzen zur Gültigkeit des Cauhyshen Integralsatzes für eine feste Funktion 85.(Ho) Homotopie

Mehr

Höhere Funktionalanalysis WS2016/17 Übungsblatt

Höhere Funktionalanalysis WS2016/17 Übungsblatt Höhere Funktionalanalysis WS2016/17 Übungsblatt 1 11.10.2016 Aufgabe 1. Berechne die Normen der Operatoren (a) f L [0, 1], M f : L 2 [0, 1] L 2 [0, 1], (M f g)(x) = f(x)g(x). (b) g C[0, 1], T g : C[0,

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Bezeichnungen und Hilfsmittel aus der Analysis

Bezeichnungen und Hilfsmittel aus der Analysis Finite Elemente I 169 A Bezeichnungen und Hilfsmittel aus der Analysis A Bezeichnungen und Hilfsmittel aus der Analysis TU Bergakademie Freiberg, WS 2010/111 Finite Elemente I 170 A.1 Normierte Vektorräume

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

Ein Blick über den Tellerrand... mit FreeFem++

Ein Blick über den Tellerrand... mit FreeFem++ Ein Blick über den Tellerrand... mit FreeFem++ Eine Einführung und etwas Theorie Steffen Weißer Universität des Saarlandes 30. Oktober 2015 Gliederung 1 Zum Seminar 2 Was ist eine PDE? 3 Etwas Funktionalanalysis

Mehr

8.2. KURVEN IM RAUM 37

8.2. KURVEN IM RAUM 37 8.2. KURVEN IM RAUM 37 Lemma 8.2.3.10 (Differenzierbarkeit der Wegelängenfunktion für glatte Kurven) Ist γ C 1 (I; V ), so ist die Abbildung t L t (γ) differenzierbar, die Ableitung an der Stelle t ergibt

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt Kapitel 19: Integralrehnung mehrerer Variabler 19.2 Kurvenintegrale Für eine stükweise C 1 -Kurve : [a, b] D, D R n, und eine stetige skalare Funktion f : D R hatten wir das Kurvenintegral 1. Art definiert

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Aufgabe 5. Beweisen Sie: Ein kompakter Hausdorffraum, welcher dem ersten Abzählbarkeitsaxiom genügt, ist folgenkompakt. Lösung. Es sei X ein kompakter

Mehr

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht ANALYSIS I FÜR TPH WS 207/8 2. Übung Übersiht Aufgaben zu Kapitel und 2 Aufgabe : Nummerierungsfunktionen Aufgabe 2: Gibt s das? Aufgabe 3: ( ) Selbstbezüglih definierte Funktionen Aufgabe 4: ( ) Eine

Mehr

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume Inhaltsverzeichnis 6 Topologische Grundlagen 1 6.1 Normierte Räume................................ 1 6.2 Skalarprodukte................................. 2 6.3 Metrische Räume................................

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

III. Prinzipien der Funktionalanalysis

III. Prinzipien der Funktionalanalysis III. Prinzipien der Funktionalanalysis 9 Der Satz von Hahn-Banach 9.1 Momentenproblem. a) Es seien X ein normierter Raum, (x n ) n=0 eine Folge in X und (α n ) n=0 eine Folge in K. Gibt es eine stetige

Mehr

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014 Aufgabensammlung Höhere Mathematik für Physiker III Wintersemester 2014 1 Verbandstheorie 1. Aufgabe: (a) Sei f C(R) eine stetige Funktion. Wenn Rf(x)φ(x)dx = 0 für alle Testfunktionen φ Cc (R) gilt, dann

Mehr

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2 D-MATH Funktionalanalysis FS 214 Prof. M. Struwe Lösung 2 1. a) Wir unterscheiden zwei Fälle. Fall 1: 1 < p < : Seien u L p () und (u k ) W 1,p () eine beschränkte Folge, so dass u k u in L p () für k.

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 31.1.2017 Definition 2.2 (uneigentliches Riemann-Integral) Sei I = [a, b) mit a < b. Die Funktion f : I R sei Riemann-integrierbar auf [a, b ] für alle b < b. Falls x lim x b a f(ξ)

Mehr

i=1 i=1,...,n x K f(x).

i=1 i=1,...,n x K f(x). 2. Normierte Räume und Banachräume Ein normierter Raum ist ein Vektorraum, auf dem wir Längen messen können. Genauer definieren wir: Definition 2.1. Sei X ein Vektorraum über C. Eine Abbildung : X [0,

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

µ( k= U j,k \K j,k ) µ(u j,k \K j,k ) < 2 j ε. µ(u\k j ) < ε.

µ( k= U j,k \K j,k ) µ(u j,k \K j,k ) < 2 j ε. µ(u\k j ) < ε. 3.5. LUSIN, TITZE-URYSOHN UND RIESZ 7 3.5. Lusin, Titze-Urysohn und Riesz. Theorem 3.5. (Lusin). Sei f : X R messbar. Zu U X offen mit µ(u) < und ε > 0 gibt es ein kompaktes K U, so dass gilt: () f K stetig,

Mehr

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume Extremalpunkte und der Satz von Krein-Milman Seminar zu ausgewählten Kapiteln der Banachraumtheorie Vortrag von Michael Hoffmann 1 Lokalkonvexe topologische Vektorräume Im folgenden betrachten wir stets

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Liste wichtiger Stammfunktionen

Liste wichtiger Stammfunktionen Liste wichtiger Stammfunktionen Funktion Stammfunktion x n, x ln(x) n R \ { } n + xn+ ln( x ) x ln(x) x a x, a > sin(x) cos(x) sin 2 (x) cos 2 (x) x 2 x 2 a x ln(a) cos(x) sin(x) (x sin(x) cos(x)) 2 (x

Mehr

Klassische Theoretische Physik III WS 2014/ D Leiterschleifen: (15 Punkte)

Klassische Theoretische Physik III WS 2014/ D Leiterschleifen: (15 Punkte) Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Klassishe Theoretishe Physik III WS 2014/2015 Prof. Dr. A. Shnirman Blatt 7 Dr. B. Narozhny Lösungen 1. 2D Leitershleifen:

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Maximumprinzip und Minimumprinzip

Maximumprinzip und Minimumprinzip Maximumprinzip und Minimumprinzip Daniela Rottenkolber LMU München Zillertal / 13.12.2012 16.12.2012 Daniela Rottenkolber Maximumprinzip und Minimumprinzip 1/14 Übersicht Motivation mit Beispielen Schwaches

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte

3. Übungsblatt - Lösungsskizzen. so, dass f tatsächlich eine Wahrscheinlichkeitsdichte Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. Jan Johannes Sandra Schluttenhofer Wintersemester 208/9 3. Übungsblatt - Lösungsskizzen Aufgabe 9 Stetige Verteilungen, 4 =.5 +.5 +

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

4 Die Prinzipien der Funktionalanalysis

4 Die Prinzipien der Funktionalanalysis 4 Die Prinzipien der Funktionalanalysis 4.1 Der Satz von Baire und das Prinzip der gleichmäßigen Beschränktheit Sei X ein topologischer Raum und A X. A heißt nirgends dicht, wenn A keine inneren Punkte

Mehr

Piezoelektrische Effekte

Piezoelektrische Effekte Piezoelektrishe Effekte 1. Begriffe 2. Theoretishe Grundlagen 3. Anwendungen 4. Quellen Verfasser: Claudius Knaak, 24 Internet: http://www.knaak.bplaed.de/index.html - 2-1. Begriffe 1.1 Piezoelektrisher

Mehr

Existenz höherer Ableitungen

Existenz höherer Ableitungen Existenz höherer Ableitungen Bernhard Pfirsch LMU München Zillertal am 15.12.2012 Bernhard Pfirsch Existenz höherer Ableitungen 1/16 Definitionen: Sei der Operator L von der Form Lu = (A u), A : R n n,

Mehr

4. Folgen. Folge in R 2 mit Grenzwert (1, 1 2 ).

4. Folgen. Folge in R 2 mit Grenzwert (1, 1 2 ). 8 4. Folgen Im Folgenden sei X = K n (oder ein K-Vektorraum) mit der Norm.(Eslangtvöllig,sichden Fall X = R 2 vorzustellen.) Auf R bzw. C verwenden wir als Norm stets den Betrag. 4.. Definition. Eine Folge

Mehr

Prof. Dr. Stefan Luckhaus WS 2013/14. Übungsserie 1. Mathematik für Wirtschaftswissenschaftler

Prof. Dr. Stefan Luckhaus WS 2013/14. Übungsserie 1. Mathematik für Wirtschaftswissenschaftler Prof. Dr. Stefan Luckhaus WS 203/4 Übungsserie Aufgabe. Seien f : R R, g : R R Funktionen, die wie folgt definiert sind: fx) =, gx) = x +. + x2 Stellen Sie die Funktionen als Quotienten von Polynomen dar.

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Kleinster Umschließender Kreis

Kleinster Umschließender Kreis Proseminar Theoretishe Informatik 11.07.2017 Janis Meyer Kleinster Umshließender Kreis Prof. Wolfgang Mulzer 1 Einführung Das Problem wurde zum ersten Mal vom britishen Mathematiker James Joseph Sylvester

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS y. Mit A ist der Flächeninhalt des von

Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS y. Mit A ist der Flächeninhalt des von Blatt Nr. Markus Nöth Lösung zum Tutorium für Topologie und Differentialrechnung mehrerer Variablen SS 1 Aufgabe 1 1 8 6 X w - 6 8 Abbildung 1: Cauchy-Schwarz-Ungl. A In der nebenstehenden Graphik sind

Mehr

Modulprüfung HM III (kyb, mech, phys)

Modulprüfung HM III (kyb, mech, phys) Seite von 5 Modulprüfung HM III (kyb, mech, phys) Hinweise: Lösen Sie bitte jede Aufgabe auf einem separaten Blatt. Alle nicht in der Vorlesung behandelten Sachverhalte sind zu beweisen, Lösungsschritte

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom Prof. Dr. Moritz Kaßmann Fakultät für Mathematik Wintersemester 04/05 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt VI vom 0..4 Aufgabe VI. (6 Punkte) Gegeben sind die Folgen (a n)

Mehr

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7 1. Eine Teilmenge K eines topologischen Raumes heißt folgenkompakt, wenn jede Folge in K eine Teilfolge enthält, die in K konvergiert. Die Menge K heißt abzählbar kompakt, wenn jede unendliche Teilmenge

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

Theoretische Physik III (Elektrodynamik)

Theoretische Physik III (Elektrodynamik) Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. Feldmann 8. Juni 03 Kurzzusammenfassung Vorlesung 6 vom.6.03 Impulserhaltung Analog zur Energieerhaltung leiten wir nun Kontinuitätsgleihung für Impulsdihte

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

Beispiele zur Konvergenzuntersuchung bei Reihen.

Beispiele zur Konvergenzuntersuchung bei Reihen. Beispiele zur Konvergenzuntersuchung bei Reihen Beispiel: Wir untersuchen die Konvergenz der Exponentialreihe z k k! für z C Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1! z k = z k+1 k! z k (k

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

3.2 Konvergenzkriterien für reelle Folgen

3.2 Konvergenzkriterien für reelle Folgen 3.2 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge a n ) n N heißt monoton wachsend : n < m : a n a m streng monoton wachsend : n < m : a n < a m nach oben beschränkt : C R : n : a

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Nichtlineare Funktionalanalysis. Eine Einführung

Nichtlineare Funktionalanalysis. Eine Einführung Michael Růžička Nichtlineare Funktionalanalysis Eine Einführung Inhaltsverzeichnis Notation...................................................... IX 1 Fixpunktsätze............................................

Mehr