Boundary Element Method

Größe: px
Ab Seite anzeigen:

Download "Boundary Element Method"

Transkript

1 Boundary Element Method Fabio Kaiser 4. Oktober 2011 fabio () Boundary Element Method 4. Oktober / 31

2 Überblick 1 Einleitung 2 BEM - Part I - Helmholtz Integral Gleichung 3 BEM - Part II - Numerische Implementierung 4 Beispiele 5 Fazit fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

3 Einleitung Einleitung Wellengleichung 1 c 2 2 p t 2 2 p = 0 (1) Berechnung der Schallausbreitung Analytische Methoden zur Lösung verfügbar Numerische Methoden - Finite Elemente Methode (FEM) - Finite Differenzen Methode (FDM) - Randelementemethode (BEM) fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

4 Einleitung BEM Übersicht Abb.: Fünf Schritte zum Erfolg fabio () Boundary Element Method 4. Oktober / 31

5 Einleitung Anwendugen Abstrahl-, Streuungs-, Eigenwert Problem Abb.: Bilder aus (Liu, 2009) fabio () Boundary Element Method 4. Oktober / 31

6 Einleitung Anwendungen am Fachgebiet - Extraauraler Kopfhörers Simulation des Schalldruckverlaufs Berechnung der akustischen Impedanzbelastung aufs Ohr Free field equivalent coupling (FEC) Kriterium Abb.: BK109 Extraauraler Kopfhörer fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

7 BEM - Part I - Helmholtz Integral Gleichung Helmholtz Gleichung Homogen Green sche Funktion im Freifeld 2 p + k 2 p = 0 (2) G(r r ) = e ik r r 4π r r (3) ( 2 + k 2 )G(r r ) = δ(r r ) (4) fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

8 BEM - Part I - Helmholtz Integral Gleichung Green sche Identität Aus 2. Green scher Identität (φ 2 ψ ψ 2 φ) dv = Ω Skalare Funktionen φ und ψ erfüllen: S φ ψ n ψ φ ds (5) n 2 φ + k 2 φ = 0 2 ψ + k 2 ψ = δ(r r ) (6) fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

9 BEM - Part I - Helmholtz Integral Gleichung Helmholtz Integral Gleichung (HIE) C(r )φ(r ) = S ( G(r r ) φ(r) C(r ) = n ) φ(r) G(r r n ) ds (7) 0, r V e 1 2, r S 1, r V i (8) fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

10 BEM - Part I - Helmholtz Integral Gleichung Inneres und Äußeres Problem Mit φ = p und p(r) n = iρ0ckvn(r) (9) Inneres Problem ( S iρ o ckv n (r)g(r r ) p(r) G(r r ) n ) ds = C(r )p(r ) (10) Äußeres Problem ( p(r) G(r r ) ) iρ o ckv n (r)g(r r )) ds = C(r )p(r ) (11) n S fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

11 BEM - Part I - Helmholtz Integral Gleichung Eindeutigkeit der Lösung Lösung für äußeres Problem nicht eindeutig bei Resonanzfrequenzen des inneren Problems CHIEF Extra Gleichung mit Punkt im Inneren Überdeterminiertes System Burton-Miller Kombiniere HIE mit seiner Normalableitung CBIE + β HBIE = 0 (12) fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

12 BEM - Part II - Numerische Implementierung Diskretisierung... der Geometrie x = n x i N i (ξ 1, ξ 2 ) (13) i=1... der physikalischen Größen n p = p i N i (ξ 1, ξ 2 ), v n = N...Ansatz Funktionen i=1 n v ni N i (ξ 1, ξ 2 ) (14) i=1 Abb.: Reales und Mutter Element in globalen bzw. lokalen Koordinaten fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

13 BEM - Part II - Numerische Implementierung Kollokation Knoten-Kollokation und Interpolation Cp = mit den Integralkernen N j=1 S j p G n ds iρ 0ck j=1 i=1 N j=1 j=1 i=1 S j v n GdS (15) N n N n Cp = p ij d ij v n,ij m ij (16) G d ij = S j n N i ds (17) m ij = iρ 0 ck GN i ds (18) S j fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

14 BEM - Part II - Numerische Implementierung Matrix-Gleichung Dp = Mv n ( m ij m jn ) ( d ij c jj d jn M =....., D =..... m Ni m NN d Ni d NN c NN p = ( p 1. p N ), v n = ( v n1. v nn ) ) Zur Lösung sind N Randbedingungen notwendig fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

15 BEM - Part II - Numerische Implementierung Problem System-Matrizen - vollbesetzt - unsymmetrisch - komplex Standard Lösungs Methoden aufwendig iterative Methoden fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

16 BEM - Part II - Numerische Implementierung Speicheraufwand B = 16M 2 bytes 6 Knoten pro Wellenlänge x 104 N max,12gb sphere, r=0.07m sphere, r=1m Number of elements, N 2 N 1.5 max,4gb N 1 max,2gb Frequency, Hz x 10 4 Abb.: Anzahl der Elemente vs. Frequenz Limit fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

17 BEM - Part II - Numerische Implementierung Rechenaufwand Berechnung der Systemmatrizen Lösung des Gleichungssystems Gauss Eliminierung O(N 3 ) fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

18 BEM - Part II - Numerische Implementierung Zusammenfassung Vorteil Reduktion der Dimension Berechnung ins Unendliche Nachteil Keine eindeutige Lösung für äußeres Problem Vollbesetzte, komplexe, unsymmetrische Matrizen fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

19 Beispiele Implementierung OpenBEM ( von Patrick Juhl und Vicente Cutanda Henriquez Matlab Toolbox Ablauf einer Simulation Mesh Generierung Importieren und Überprüfen Oberflächenintegrale lösen Randbedingungen vorgeben Feldpunkte berechen Post-processing fabio () Boundary Element Method 4. Oktober / 31

20 Beispiele Pulsierende Kugel Kugel pulsiert mit Schnelle v 0 Abb.: In dreieckige Elemente diskretisierte Kugel mit N = 160 Elementen. Achsen in Meter. fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

21 Beispiele analytical BEM CHIEF SPL (db) f max = frequency (Hz) Abb.: BEM Simulation: Pulsierende Kugel mit v 0 = 1 m s über Frequenz. Der Feldpunkt liegt in 1m Entfernung. und N=1280. Resultiereder SPL fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

22 Beispiele analytical N=160 N=640 N=1280 SPL (db) frequency (Hz) Abb.: BEM Simulation (CHIEF): Pulsierende Kugel mit v 0 = 1 m. Resultieredes SPL s über Frequenz. Vegleich verschiedener Mesh Größen. fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

23 Beispiele Aufwand N time/s memory/mb f max /Hz Tabelle: Anzahl der Elemente N vs. Rechenzeit, Speicheraufwand (für eine Frequenz) und Frequenz Limit. fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

24 z Beispiele Membran auf Kugel mit Scheibe davor Kugel und Scheibe v n = 0, Membran v n = v 0 Akustische Reziprozität y 0.05 x Abb.: Mesh-Modell mit N=1280 (Kugel) und N=540 (Scheibe). Achsen in Meter. fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

25 Beispiele y [m] SPL x [m] y [m] SPL x [m] fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

26 Beispiele y [m] SPL x [m] y [m] SPL x [m] fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

27 Beispiele y [m] SPL x [m] y [m] SPL x [m] fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

28 Beispiele Membran auf Kugel mit Scheibe davor Kugel v n = 0, Membran v n = v 0 Impedanz Randbedingungen für Scheibe v n = α β p + γ β (19) Mit γ β = Y und α β = v s Beispiel Z = Z 0 = ρ 0 c (D + MY )p = Mv s (20) fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

29 Beispiele y [m] SPL x [m] 135 y [m] SPL x [m] fabio kaiser@gmx.at () Boundary Element Method 4. Oktober / 31

30 Fazit Fazit Bericht Literatur-Datenbank Matlab Skripte und Funktionen TO DO Geeignete Umgebung zur Mesh-Generierung und Bearbeitung finden FEC Kriterium BK211 vs. BK109 (DAGA 12) fabio () Boundary Element Method 4. Oktober / 31

31 Fazit Referenzen Ciskowski R.D. Boundary element methods in acoustics Computational Mechanics Publications Wu, T.W. Boundary element acoustics: Fundamentals and computer codes WIT Beer, G. and Watson, J. O. Introduction to finite and boundary element methods for engineers Wiley Liu, Y. Fast multipole boundary element method: Theory and applications in engineering Cambridge University Press fabio () Boundary Element Method 4. Oktober / 31

Entwicklung einer hp-fast-multipole-

Entwicklung einer hp-fast-multipole- Entwicklung einer hp-fast-multipole- Boundary-Elemente-Methode Übersicht: 1. Motivation 2. Theoretische Grundlagen a) Boundary-Elemente-Methode b) Fast-Multipole-Methode 3. Erweiterungen a) Elementordnung

Mehr

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh Numerische Akustik Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh 1 Einleitung Akustischen Messungen und Berechnungen sind mittlerweile in vielen Fällen nicht ohne Einsatz eines Computers

Mehr

Berechnungen in der Akustik - Möglichkeiten und Grenzen

Berechnungen in der Akustik - Möglichkeiten und Grenzen Otto von Estorff Berechnungen in der Akustik - Möglichkeiten und Grenzen Inhalt: Einleitung Finite-Elemente-Methode Boundary-Elemente-Methode Vergleiche Messung/Rechnung Entwicklungsbedarf Zusammenfassung

Mehr

2. Methode der Randelemente

2. Methode der Randelemente 2. Methode der Randelemente Bei allgemeinen Schall abstrahlenden Flächen lässt sich der Schalldruck an einem beliebigen Punkt im Raum aus einem Integral über auf der Fläche definierte Funktionen berechnen.

Mehr

Verwendung der BEM-basierten Fast Multipol Methode für Innenraumprobleme

Verwendung der BEM-basierten Fast Multipol Methode für Innenraumprobleme Verwend der BEM-basierten Fast Multipol Methode für Innenraumprobleme Beuth Hochschule für Technik Berlin, Fachbereich II, Projektgruppe Computational Acoustics BEUTH HOCHSCHULE FÜR TECHNIK BERLIN University

Mehr

Ausgewählte Aspekte der numerischen Akustik

Ausgewählte Aspekte der numerischen Akustik Ausgewählte Aspekte der numerischen Akustik Martin Ochmann, Rafael Piscoa Beuth Hochschule für Technik Berlin Universit of Applied Sciences Research Group Computational Acoustics ochmann@beuth-hochschule.de

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

Numerische Methoden in der Akustik

Numerische Methoden in der Akustik Numerische Methoden in der Akustik Prof.Dr.-Ing. Matthias Blau Institut für Hörtechnik und Audiologie FH Oldenburg/Ostfriesland/Wilhelmshaven XXI. Winterschule der Deutschen Gesellschaft für Medizinische

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

II. Elliptische Probleme

II. Elliptische Probleme II. Elliptische Probleme II.1 Finite Differenzen: Grundidee II.2 Konvergenzaussagen II.3 Allgemeine Randbedingungen II.4 Gekrümmte Ränder Kapitel II (0) 1 Dirichlet Randwerte mit finiten Differenzen Einfachster

Mehr

Elastizität und Bruchmechanik J-Integral auf ein dreidimensionales Kontinuum

Elastizität und Bruchmechanik J-Integral auf ein dreidimensionales Kontinuum Elastizität und Bruchmechanik 008 - J-Integral auf ein dreidimensionales Kontinuum Gruppe C Christian Schmiedel (30009) Markus Vöse (301004) Piotr Zakaszewski (30104) Jens Wintering (305609) 18. Juli 008

Mehr

Numerik gewöhnlicher Differentialgleichungen

Numerik gewöhnlicher Differentialgleichungen Numerik gewöhnlicher Differentialgleichungen 4.4 Anfangsrandwertprobleme Die Diskretisierung von zeitabhängigen partiellen Differentialgleichungen mit der Linienmethode führt auf Systeme gewöhnlicher Dgl

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

Neutron-Proton Streuung im GRAZ II Potential

Neutron-Proton Streuung im GRAZ II Potential 3. Februar 2010 Überblick 1 2 3 4 Einleitung Streuexperimente wichtig zur Untersuchung der Matrie auf atomarer und subatomarer Ebene. Physikalische Beschreibung durch Wechselwirkungspotential V. Potentiale

Mehr

Kapitel 5 Randelementmethode

Kapitel 5 Randelementmethode Kapitel 5 Randelementmethode. Einleitung Bei der Randintegralmethode wird eine partielle Differentialgleichung in 3D in eine Randintegralgleichung (2D Problem) übergeführt. Diese Randintegralgleichung

Mehr

Kapitel 3. Diskretisierungsverfahren. 3.1 Elliptische Differentialgleichung

Kapitel 3. Diskretisierungsverfahren. 3.1 Elliptische Differentialgleichung Kapitel 3 Diskretisierungsverfahren 3.1 Elliptische Differentialgleichung Wir beschränken uns auf elliptische Randwertaufgaben. Gesucht ist eine Funktion u (x, y) in R 2, welche die allgemeine partielle

Mehr

Transformation auf Hessenbergform und Tridiagonalform

Transformation auf Hessenbergform und Tridiagonalform Transformation auf Hessenbergform und Tridiagonalform Proseminar - Numerische Mathematik Sommersemerster 200 - Universität Hamburg Fachbereich Mathematik geleitet von Prof. Wolf Hofmann von Patrick Schuch

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE 4.2 FINITE-ELEMENTE-DISKRETISIERUNG Elementierung und Diskretisierung Im Gegensatz zum räumlichen Fachwerk, bei dem bereits vor der mathematischen Diskretisierung ein konstruktiv diskretes Tragwerk vorlag,

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln?

Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Dipl.-Ing. Christoph Erath 10. November 2007 FVM-BEM Kopplung Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Seite 2 FVM-BEM Kopplung 10. November 2007 Dipl.-Ing. Christoph Erath

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen

Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen Seminar über Darstellungstheorie endlicher Gruppen: Lemma von Schur, Darstellungen abelscher Gruppen, Räume von Darstellungshomomorphismen Aline Kaszuba, Lukas Böke 15. März 2016 Die folgende Diskussion

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 27.0.206 Klausur Datum: 2.3.206 Numerische Methoden RES, SM, MT (DPO 203),

Mehr

Bildsegmentierung mit Snakes und aktiven Konturen

Bildsegmentierung mit Snakes und aktiven Konturen Bildsegmentierung mit Snakes und aktiven Konturen 5. Dezember 2005 Vortrag zum Seminar Bildsegmentierung und Computer Vision Übersicht 1 2 Definition der Snake Innere Energie S(c) 3 Statisches Optimierungsproblem

Mehr

Performance-Optimierung und Grenzen eines Multi-Level Fast Multipole Algorithmus für akustische Berechnungen

Performance-Optimierung und Grenzen eines Multi-Level Fast Multipole Algorithmus für akustische Berechnungen Beuth Berlin in Kooperation mit dem Wasserschall und Geophysik) Performance-Optimierung und Grenzen eines Multi-Level Fast Multipole Algorithmus für akustische Berechnungen Ralf Burgschweiger, Martin Ochmann,

Mehr

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit -

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Dies Mathematicus 211 25. November 211 Gliederung 1 Motivation: Mischvorgänge in einem Rührer 2 Mathematische Modellierung

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013 Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche

Mehr

Numerik partieller Differentialgleichungen für Ingenieure

Numerik partieller Differentialgleichungen für Ingenieure Numerik partieller Differentialgleichungen für Ingenieure Von ir. J. J.I.M. van Kan und ir. A. Segal Technische Universität Delft Aus dem Niederländischen übersetzt von Burkhard Lau, Technische Universität

Mehr

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 implizite Finite-Differenzen-Methode Selke-Modell

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 implizite Finite-Differenzen-Methode Selke-Modell Modellierung von Hydrosystemen Numerische und daten-basierte Methoden BHYWI-22-15 @ 2018 implizite Finite-Differenzen-Methode Selke-Modell Olaf Kolditz *Helmholtz Centre for Environmental Research UFZ

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation ngewandte Strömungssimulation 8. Vorlesung Stefan Hickel Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung uswertung Parameter und Kennzahlen

Mehr

Numerische Simulation mit finiten Elementen. O. Rheinbach

Numerische Simulation mit finiten Elementen. O. Rheinbach Numerische Simulation mit finiten Elementen O. Rheinbach Numerische Simulation mit finiten Elementen INHALT 0.1 Finite Differenzen in 2D 1. Einleitung 1.1 Vorbemerkungen 1.2 Rand- und Anfangswertaufgaben

Mehr

Infotag: Akustik und NVH-Analyse mit FEM und BEM Basic Relations in Computational Acoustics

Infotag: Akustik und NVH-Analyse mit FEM und BEM Basic Relations in Computational Acoustics Infotag: Akustik und NVH-Analyse mit FEM und BEM Basic Relations in Computational Acoustics Prof. Dr.-Ing. Marcus Wagner Fakultät Maschinenbau Ostbayerische Technische Hochschule Regensburg Prof. Dr. Marcus

Mehr

Iterative Verfahren für lineare Gleichungssysteme

Iterative Verfahren für lineare Gleichungssysteme Iterative Verfahren für lineare Gleichungssysteme Vorlesung Sommersemester 013 Humboldt-Universität zu Berlin Zeiten können noch nach Wunsch vereinbart werden! Kontakt: Dr. Rüdiger Müller Weierstraß-Institut

Mehr

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0 Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 8 Partielle

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

LABORÜBUNG MATLAB/OCTAVE

LABORÜBUNG MATLAB/OCTAVE LABORÜBUNG MATLAB/OCTAVE 1. Riemannsche Summen mit MATLAB/Octave Riemannsche Summen lassen sich sehr einfach mit MATLAB/Octave berechnen. Das Vorgehen ist das folgende: (i) die Breite x der Teilintervallen

Mehr

Die schwingende Membran

Die schwingende Membran Die schwingende Membran Michael Beer 1. Februar 2001 Inhaltsverzeichnis 1 Die Differentialgleichung der homogenen schwingenden Membran 1 2 Die allgemeine Lösung 2 3 Spezialfälle 4 3.1 Die rechteckige Membran.............................

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem

Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem Mathematisches Proseminar - Rotationssymmetrisches Wirbelstromproblem Daniel Leumann 9. Oktober 3 Inhaltsverzeichnis Zusammenfassung 3 Methoden 4. Schwache Lösung... 4. DasGalerkin-Verfahren... 4.3 FiniteElementeMethode...

Mehr

1 KT I SCF UE03 Aufgabe

1 KT I SCF UE03 Aufgabe 1 KT I SCF UE03 Aufgabe 1 KT I SCF UE03 Aufgabe 1. Leiten Sie ausgehend vom Kugelwellenansatz für den Schalldruck p(r, t) = A r e j k r e +j ω t (1) mit dem linearisierten akustischen Trägheitsgesetz einen

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben Aufgabe 74. Untersuchen Sie die folgenden Abbildungen auf Linearität. 1. f : R 2 R 2 mit (x, y) f(x, y) := (3x + 2y, x) 2. f : R R mit x f(x) := ϑx + ζ für feste ϑ, ζ R 3. f : Q 2 R mit (x, y) f(x, y)

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

Glättung durch iterative Verfahren

Glättung durch iterative Verfahren Numerische Methoden in der Finanzmathematik II Sommersemester 211 Glättung durch iterative Verfahren Vorlesung Numerische Methoden in der Finanzmathematik II Sommersemester 211 Numerische Methoden in der

Mehr

Anwendung von Lattice-Boltzmann Methoden in der Strömungsakustik. Andreas Wilde

Anwendung von Lattice-Boltzmann Methoden in der Strömungsakustik. Andreas Wilde Anwendung von Lattice-Boltzmann Methoden in der Strömungsakustik Andreas Wilde Einführung/Überblick Frage: Kann man mit Lattice-Boltzmann Strömungsakustik machen? 2 Einführung/Überblick Frage: Kann man

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr

Felder und Wellen Übung 11 WS 2018/2019

Felder und Wellen Übung 11 WS 2018/2019 Christoph Füllner Felder und Wellen Übung 11 WS 2018/2019 Institute of Photonics and Quantum Electronics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University

Mehr

Adaptivität II - Theorie

Adaptivität II - Theorie Adaptivität II - Theorie Hubertus Bromberger, Manuel Nesensohn, Johannes Reinhardt, Johannes Schnur 8. November 2007 Fazit des ersten Vortrages Ein geeignet verfeinertes Gitter ermöglicht massive Einsparung

Mehr

Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0

Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0 Übungsblatt 1 Aufgabe 1: Pauli-Matrizen Die folgenden Matrizen sind die Pauli-Matrizen, gegeben in der Basis 0, 1. [ [ [ 0 1 0 i 1 0 σ 1 = σ 1 0 = σ i 0 3 = 0 1 1. Zeigen Sie, dass die Pauli-Matrizen hermitesch

Mehr

Th. Risse, HSB: MAI WS05 1

Th. Risse, HSB: MAI WS05 1 Th. Risse, HSB: MAI WS05 1 Einige Übungsaufgaben zur analytischen Geometrie & linearen Algebra viele weitere Übungsaufgaben mit Lösungen z.b. in Brauch/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski

Mehr

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1 Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Lineare Abbildungen, Eigenwerte Lösungen Lösungshinweise: a nicht linear, denn zb fα α, αy +, α + αz T α, αy +, α + z

Mehr

6 Polynominterpolation

6 Polynominterpolation Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}

Mehr

Innovative numerische Methoden zur Simulation geführter Ultraschallwellen

Innovative numerische Methoden zur Simulation geführter Ultraschallwellen DGZfP-Jahrestagung 2014 Poster 66 More Info at Open Access Database www.ndt.net/?id=17470 Innovative numerische Methoden zur Simulation geführter Ultraschallwellen Hauke GRAVENKAMP *, Chongmin SONG **

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Maike Tormählen Übung 1, 11.4.213 Lösungen zu Übungsblatt 1 Aufgabe 1: Large Extra Dimensions & lanck-länge Die Newtonsche Gravitation ist hinreichend, um fundamentale Größen wie die lanck- Länge in diversen

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Entwurf elektrischer Maschinen mit numerischer Feldberechnung

Entwurf elektrischer Maschinen mit numerischer Feldberechnung Entwurf elektrischer Maschinen mit numerischer Feldberechnung Erich Schmidt Institut für Elektrische Antriebe und Maschinen Technische Universität Wien Wien, Österreich Inhalt Einleitung Finite Elemente

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x), UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

7. Übung zur Numerik partieller Differentialgleichungen I

7. Übung zur Numerik partieller Differentialgleichungen I MATHEMATISCHES INSTITUT Sommersemester 2018 DER UNIVERSITÄT ZU KÖLN Prof. Dr. A. Klawonn J. Knepper, M. Sc. M. Kühn, M. Sc. 29. Mai 2018 7. Übung zur Numerik partieller Differentialgleichungen I Hinweis:

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve.

(a) Lösen Sie die Differentialgleichung unter Verwendung der Mathematica-Funktion DSolve. Institut für Physikalische Chemie Methodenkurs Anwendungen von Mathematica und Matlab in der Physikalischen Chemie im WS 205/206 Prof Dr Stefan Weber, Dr Till Biskup Aufgabenblatt zum Teil (Mathematica)

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Stationäre Newtonsche Strömung

Stationäre Newtonsche Strömung Stationäre Newtonsche Strömung Bettina Suhr Inhaltsverzeichnis 1 Einleitung 2 2 Die Navier-Stokes-Gleichungen 2 3 Die schwache Formulierung 2 4 Die Ortsdiskretisierung 5 4.1 Taylor-Hood Elemente........................

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

Optimierung der Geometrie eines Kühlkörpers

Optimierung der Geometrie eines Kühlkörpers Johann Jakob Preuß Jan Michael Schulte Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms-Universität Münster Abschlusspräsentation, 2. Februar 2009 Inhaltsverzeichnis 1 Modellierung

Mehr

Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen

Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen CAE Herbsttagung 2013 Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen Prof. Dr.-Ing. Alexander Steinmann Dr. Binde Ingenieure Design

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

Thermische und schalltechnische Analysen von Klimazentralgeräten

Thermische und schalltechnische Analysen von Klimazentralgeräten Thermische und schalltechnische Analysen von Klimazentralgeräten von Dipl. Wirt.-Ing. Marco Fischbach Gliederung Einleitung Normative Anforderungen an Klimazentralgeräte Aufgabenstellung Thermische Analysen

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose Seminar stochastische Geometrie 25. Januar 2010 Contents 1 2 3 4 5 Definitionen Faser: glatte Kurve endlicher Länge in der Ebene Faser γ ist das Bild der Kurve γ(t) = (γ 1 (t), γ 2 (t)) mit (i) γ : [0,

Mehr

High Performance Computing Blatt 8

High Performance Computing Blatt 8 Dr. Andreas Borchert Institut für Numerische Mathematik Prof. Dr. Stefan Funken Universität Ulm Prof. Dr. Karsten Urban Sommersemester 0 Markus Bantle, Kristina Steih High Performance Computing Blatt (Präsenzübung.

Mehr

Lösen von nichtlinearen Gleichungssystemen durch Kurvenfortsetzung

Lösen von nichtlinearen Gleichungssystemen durch Kurvenfortsetzung Lösen von nichtlinearen Gleichungssystemen durch Kurvenfortsetzung 20. Februar 2003 Jan Sieber sieber@bris.ac.uk Department of Engineering Mathematics University of Bristol Übersicht Einleitung/Wiederholung

Mehr

Magnetohydrodynamik. Ivan Kostyuk Universität Heidelberg

Magnetohydrodynamik. Ivan Kostyuk Universität Heidelberg Magnetohydrodynamik Ivan Kostyuk Universität Heidelberg 22.05.2015 Inhalt 1. Ladungen in Elektromagnetischen Feldern 1.1 E B Drift 1.2 Ladungen in inhomogenen magnetischen Feldern 1.3 Magnetische Flasche

Mehr

NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure

NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure Eine computerorientierte Einführung Von Prof. Dr. sc. nat. HUBERT SCHWETLICK Prof. Dr. sc. nat. HORST KRETZSCHMAR Mit 74 Bildern und 34 Tabellen

Mehr

Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem

Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem Institute of Structural Engineering Page 1 Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem Institute of Structural Engineering Page 2 Lernziele: Sie können Stabilitätsprobleme

Mehr

Theoretische Physik: Elektrodynamik

Theoretische Physik: Elektrodynamik Ferienkurs Merlin Mitschek, Verena Walbrecht 6.3.25 Ferienkurs Theoretische Physik: Elektrodynamik Vorlesung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht

Mehr

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode Prof. Dr.-Ing. Christopher Bode Finite-Elemente-Methode Kapitel 1: Einleitung BEUTH Hochschule für Technik Berlin Prof. Dr.-Ing. C. Bode 2 Was ist FEM? Die FEM ist ein mathematisches Verfahren zur Lösung

Mehr

Dynamische Programmierung

Dynamische Programmierung Dynamische Programmierung Claudia Gerhold 9.5.6 Claudia Gerhold Dynamische Programmierung 9.5.6 / 4 Agenda Einführung Dynamische Programmierung Top-Down Ansatz mit Memoization Bottom-Up Ansatz 3 Anwendungsbeispiele

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SS17 Übungsblatt Musterlösung Lösung 5 (Transformation von Variablen) Zur Transformation gehen wir analog zur Vorlesung vor. Zunächst bestimmen wir die durch die PDGL definierte Matrix A und deren

Mehr

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin Unstetige Galerkin-Verfahren und die lineare Transportgleichung Tobias G. Pfeiffer Freie Universität Berlin Seminar DG-Verfahren, 26. Mai 2009 , Voraussetzungen & Ziele Voraussetzungen Kenntnisse in Numerik

Mehr

Elastizität und Bruchmechanik

Elastizität und Bruchmechanik Technische Universität Berlin 1 Institut für Mechanik 6. Juni 2008 Kräftegleichgewicht Spannungstensor Satz von Gauss Vertauschung Massenmittelpunktsbeschleunigung Zusammenfassung erstes Bewegungsgesetz

Mehr