Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations

Größe: px
Ab Seite anzeigen:

Download "Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations"

Transkript

1 Prof. Dr. H. J. Pesch Lehrstuhl für Ingenieurmathematik Universität Bayreuth Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations (Teil 1: SS 2006) 1. Übung Vorbemerkung: Wer selbstständig seine Kenntnisse auf dem Gebiet der Partiellen Differentialgleichungen über den in der Vorlesung behandelten Stoff erweitern möchte, dem seien die folgenden Bücher empfohlen. Die ersten drei Bücher sind elementar und sollten ab dem 5. Semester verstehbar sein. Das Buch von Wloka ist dagegen eher für Fortgeschrittenen oder als Begleitbuch zu einer Vorlesung über die Theorie partieller Differentialgleichungen geeignet. Partielle Differentialgleichungen sind ein schwieriges Gebiet. Verschiedene Klassen partieller Differentialgleichungen stellen nicht selten eigenständige Forschungsgebiete dar. Dennoch lassen sich neben den Grobeinteilungen wie linear, semilinear, quasilinear und nichtlinear sowie homogen und inhomogen und skalare Gleichungen und Systeme von Gleichungen gewisse elementare Typen näher klassifizieren. Im Vordergrund der Vorlesung stehen partielle Differentialgleichungen zweiter Ordnung mit zwei oder drei unabhängigen Variablen, von denen eine die Zeit darstellen kann. Die anderen Variablen sind dann Ortsvariable. Ordnung, d. i. die höchste vorkommende Ableitungsordnung, und Anzahl der unabhängigen Variablen sind also weitere Charakterisierungsmerkmale. Zur Einführung in die klassische Typeneinteilung, elliptisch, parabolisch und hyperbolisch, die entscheidenden Einfluss auf die Vorgabe sinnvoller, d. h. wohlgestellter Anfangs- und Randbedingungen hat, konzentrieren wir uns in diesem Übungsblatt ausschließlich auf lineare partielle Differentialgleichungen, meist sogar auf solche mit konstanten Koeffizienten. Literatur: 1. Chester, C. R.: Techniques in Partial Differential Equations, McGraw-Hill, New York, (Buch nicht mehr im Handel.) 2. Meister, E.: Partielle Differentialgleichungen Eine Einführung für Physiker und Ingenieure in die klassische Theorie, Berlin: Akademie-Verlag, Strauss, W. A.: Partielle Differentialgleichungen Eine Einführung, Braunschweig/Wiesbaden: Vieweg, 1995.

2 4. Wloka, J.: Partielle Differentialgleichungen, Leipzig: Teubner, Anleitung zu den nachfolgenden Aufgaben: Ein Steilkurs zur Klassifikation linearer partieller Differentialgleichungen und deren Normalformen: Jedem linearen Differentialoperator zweiter Ordnung L[u] := a(x, y) u xx + 2 b(x, y) u xy + c(x, y) u yy ( ) = a(x, y) Dx b(x, y) D x D y + c(x, y) Dy 2 [u] lassen sich quadratische Formen Q und q der Gestalt Q(ξ, η) := a(x, y) ξ b(x, y) ξ η + c(x, y) η 2 =: η 2 q(ζ) mit q(ζ) = a(x, y) ζ 2 2 b(x, y) ζ + c(x, y) und ζ := ξ η zuordnen. Der Differentialoperator L heisst dann in (x, y) elliptisch (parabolisch, hyperbolisch), wenn die Diskriminante < 0, D(x, y) := b(x, y) 2 a(x, y) c(x, y) = 0, > 0. Dem Differentialoperator L lassen sich ferner, abhängig vom Vorzeichen der Diskriminante, entweder zwei reelle oder eine reelle oder ein Paar konjugiert komplexe charakteristische Kurvenscharen zuordnen. Das sind die Lösungsscharen der gewöhnlichen Differentialgleichungen dy dx = ζ ±(x, y), wobei ζ ± (x, y) die beiden, nicht notwendig verschiedenen, reellen oder komplexen Wurzeln der quadratischen Gleichung q(ζ) = 0 sind. Nehmen wir zunächst ein Gebiet Ω IR 2 an, in dem die Diskriminante D stets positiv ist. Die Lösungsscharen der beiden in diesem Falle voneinander unabhängigen Differentialgleichungen sollen wie folgt bezeichnet werden (sogenannte α- bzw. β-charakteristiken; im hyperbolischen Fall sind α und β reell. Auch im elliptischen Fall sind diese reell, wenn man Real- und Imaginärteil der Wurzeln ζ ± (x, y) separat betrachtet. Im parabolischen Fall wählt man eine nicht mit der charakteristischen Kurvenschar zusammenfallende beliebige zweite Schar.): Φ(x, y) = α, Ψ(x, y) = β. 2

3 Führen wir α und β als neue unabhängige Variable ein, d. h. setzen wir u(x, y) = U(α, β) mit α = Φ(x, y) und β = Ψ(x, y), erhalten wir (nach längerer Rechnung) den neuen Differentialoperator: L = â(α, β) U αα + 2 ˆb(α, β) U αβ + ĉ(α, β) U ββ mit â = a Φ 2 x + 2 b Φ x Φ y + c Φ 2 y = Q(Φ x, Φ y ), ˆb = a Φx Φ y + b (Φ x Ψ y + Φ y Ψ x ) + c Φ y Ψ y, ĉ = a Ψ 2 x + 2 b Ψ x Ψ y + c Ψ 2 y = Q(Ψ x, Ψ y ). In den neuen Variablen (α, β) schreibt sich im hyperbolischen Fall L dann als L[U] = U αβ. Beispiel: Die inhomogene eindimensionale Wellengleichung u tt c 2 u xx = f(x, t), c IR \ {0}. Die Transformation α = Φ(x, t) := x c t und β = Ψ(x, t) := x + c t führt für U(α, β) := u(x, t) auf die Normalform U αβ = 1 ( α + β F (α, β) := f, α β ). 4c2 2 2c Für f 0 bzw. F 0 findet man durch zweimalige Integration die allgemeine Lösung der homogenen Wellengleichung: U h (α, β) = g(α) + h(β) bzw. u h (x, t) = g(x c t) + h(x + c t) mit beliebigen Funktionen g und h. Man beachte, dass bei Integration über β die Integrations konstante von α abhängen kann; analog bei der Integration über β. Die partikuläre Lösung berechnet man dann aus 1 U p (α, β) = F (α, β) dβ dα. 4c2 Rücksubstitution α = x c t und β = x+c t ergibt dann die allgemeine Lösung der inhomogenen Wellengleichung u(x, t) = U h (α, β) + U p (α, β) = g(x c t) + h(x + c t) + U p (x c t, x + c t). 3

4 1) Klassifikation und Normalformen von partiellen Differentialgleichungen zweiter Ordnung in zwei unabhängigen Variablen Betrachtet wird die lineare Gleichung zweiter Ordnung mit konstanten Koeffizienten u xx u xy 6 u yy + 3 u x + 3 u y 12 u = 0. a) Man bestimme den Typ der partiellen Gleichung. b) Man bestimme die Charakteristiken der partiellen Gleichung. c) Man bestimme die Normalform der partiellen Gleichung. 2) Die Tricomi-Differentialgleichung Man klassifiziere und bestimme alle Normalenformen der Gleichung von Tricomi (linear, von zweiter Ordnung, mit variablen Koeffizienten): y u xx + u yy = 0. Hinweis: Im Gebiet, in dem die Tricomi-Differentialgleichung elliptisch ist, erhält man als charakterische Kurvenschar in C dy dx = Φ(x, y) + i Ψ(x, y) = γ mit γ = α + i β, woraus sich durch Vergleich der Real- und Imaginärteile wiederum zwei reelle Kurvenscharen ergeben. 3) Klassifikation und Normalformen partieller Differentialgleichungen zweiter Ordnung in drei unabhängigen Variablen Man klassifiziere und bestimme die Normalenformen der folgenden Gleichungen (alle linear, von zweiter Ordnung, mit konstanten Koeffizienten): a) b) u xx + 2 u xy + u yy + u zz + u x + u y + u z = 0, 3 u xx + 10 u xy + 3 u yy + u t = 0. Hinweis: Man stelle die zugehörigen Quadriken auf und führe eine Hauptachsentransformation der Quadrikvariablen durch. Bei linearen partiellen Differentialgleichungen mit konstanten Koeffizienten entscheiden dann 4

5 die Eigenwerte der zugehörigen Quadrik über den Typ der Gleichung. Sind alle Eigenwerte positiv oder negativ, liegt eine elliptische Gleichung vor. Ist genau ein Eigenwert Null und haben alle anderen das gleiche Vorzeichen, liegt eine parabolische Gleichung vor. Ansonsten spricht man von hyperbolischen (alle bis auf einen Eigenwert haben das gleiche Vorzeichen, kein Eigenwert ist Null) oder ultrahyperbolischen Differentialgleichungen (sonstige Fälle). Der Weg über die Hauptachsentransformation stellt auch bei zwei unabhängigen Variablen einen alternativen Lösungsweg zur Anleitung dar. Aus der transformierten Quadrik erhält man dann eine Form der Differentialgleichung, aus der man nach Elimination der Terme erster Ordnung, wenn dies möglich ist, die zugehörige Normalform erhält. Auf die Elimination der Terme erster Ordnung wollen wir in diesem Zusammenhang nicht eingehen. 4) Systeme von partiellen Differentialgleichungen. Das Beispiel von Perron (1928) Auch bei Systemen von partiellen Differentialgleichungen ist eine Typeneinteilung notwendig. Das zeigt das Beispiel von Perron. Gegeben ist ein Anfangswertproblem auf Ω = IR 2 für zwei partielle Differentialgleichungen 1. Ordnung: mit v x v y w y = 0 v(0, y) = 0, w(0, y) = 0. + b v y w x + w y = f(x + y) Man untersuche in Abhängigkeit vom Vorzeichen des Parameters b IR, welche Anforderungen bzgl. Integrierbarkeit bzw. Differenzierbarkeit an die Inhomogenität f zu stellen sind. Dazu zeige man: a) Im Falle b > 0 ( hyperbolisch ) ist (im Folgenden sei a := b) v(x, y) = 1 x+y+ax x+y ax f(t) dt + f(t) dt 2b w(x, y) = 1 2a x+y x+y+ax x+y ax f(t) dt eine Lösung der Anfangswertaufgabe. x+y 5

6 b) Im Falle b = 0 ( parabolisch ) ist v(x, y) = 1 2 x2 f (x + y) w(x, y) = x f(x + y) eine Lösung der Anfangswertaufgabe. c) Im Falle b < 0 ( elliptisch ) transformiere man das System vermöge (im Folgenden sei a := b) ξ := a x, η := x + y, η v(ξ, η) := a v + 1 f(t) dt, η 0 = const, a η 0 w(ξ, η) := w. Was folgt daraus für die Funktion v(z) + i w(z) mit z = x + i y und damit für f? d) Man schreibe das System zweier Differentialgleichungen erster Ordnung um in eine Differentialgleichung zweiter Ordnung und bestimme den Typ. Hinweis: Jede partielle Differentialgleichung höherer Ordnung lässt sich relativ einfach in ein System partieller Differentialgleichungen erster Ordnung umformen, ähnlich wie bei gewöhnlichen Differentialgleichungen. Umgekehrt ist dies in vielen Fällen auch möglich, aber schwieriger. Kombiniere dazu die Gleichungen zu einer Gleichung der Art und setze v = L[w], L: linearer Differentialoperator, w := u L[w] = L[ u ] = Ersetze dann in allen Gleichungen v := L[u], w := u, v x j w x j durch durch L[u] v = L[u]. x j L[u], 2 u x j. 6

7 5) Nicht sachgemäß gestellte Aufgaben Erläuterung: Eine abstrakte Aufgabe der Form A(x) = y, x X, y Y, heißt sachgemäß gestellt, wenn sie für alle y Y eine eindeutige Lösung x X besitzt und diese stetig von y abhängt. Es ist wichtig, eine mathematische Fragestellung als sachgemäß gestellt zu erkennen, da andernfalls prinzipielle Schwierigkeiten bei der (numerischen) Lösung zu erwarten sind. a) Anfangswertprobleme bei elliptischen Gleichungen sind im Allg. nicht sachgemäß gestellt. Man betrachte dazu das folgende Anfangswertproblem für die Laplace-Gleichung mit einer Dirichletschen und einer Neumannschen Randbedingung: u = 0 auf Ω = [0, ) IR, u(0, y) = 0, { u 0 für n = 0, (0, y) = x sin(n y) für n 1. 1 n Hinweis: Nach dem Satz von Cauchy-Kowalewskaja ist die Lösung eindeutig: { 0 für n = 0, u n (x, y) = 1 sin(n y) sinh(n x) für n 1. n 2 Man untersuche die stetige Abhängigkeit der Lösung für n. b) Randwertprobleme bei hyperbolischen Gleichungen sind im Allg. nicht sachgemäß gestellt. Man betrachte dazu das folgende Randwertproblem für die Wellengleichung u xx u yy = 0 auf Ω = [0, 1] [0, 1 π ], u(x, 0) = u(0, y) = u(1, y) = 0, u(x, 1 ) = sin(n π x), n IN. π Hinweis: Man untersuche die Funktion u n (x, y) = sin(n π x) sin(n π y) sin n. Abgabe: Lösungsvorschläge zu den Aufgaben werden vorgerechnet oder ausgeteilt. Hausaufgaben können wegen Geldmangels leider nicht korrigiert werden. 7

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens

Partielle Differentialgleichungen. Hofer Joachim/Panis Clemens 9.11.2010 Contents 1 Allgemein 2 1.1 Definition................................................. 2 1.2 Klassifikation............................................... 2 1.3 Lösbarkeit.................................................

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

3. Normalform linearer PDG zweiter Ordnung

3. Normalform linearer PDG zweiter Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 3. Normalform linearer PDG zweiter Ordnung Wir beschreiben in diesem Abschnitt Verfahren zur Transformation linearer oder auch halblinearer PDG zweiter

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

11 Partielle Differentialgleichungen 2. Ordnung

11 Partielle Differentialgleichungen 2. Ordnung 11 Partielle Differentialgleichungen 2. Ordnung Wir betrachten eine quasilineare Differentialgleichung 2. Ordnung in einem Gebiet 71 (11.1) Lu := a ik u xi x k + b j u xj + c u = f, x B R n, u C 2 (B).

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Inhaltsverzeichnis. 2 Numerische Methoden Dirichlet Problem der Poisson Gleichung RAWP der Wärmeleitungsgleichung...

Inhaltsverzeichnis. 2 Numerische Methoden Dirichlet Problem der Poisson Gleichung RAWP der Wärmeleitungsgleichung... Inhaltsverzeichnis 1 Partielle Differentialgleichungen 1 1.1 Allgemeines und Klassifikation............................. 1 1.1.1 Grundbegriffe.................................. 1 1.1.2 Klassifikation der

Mehr

I. Einführung in die PDGL

I. Einführung in die PDGL I. Einführung in die PDGL I. Modellierungsbeispiele I.2 Wohlgestelltheit I.3 Klassifizierung I.4 Lösungskonzepte Kapitel I () Vorgehen bei der groben Einteilung von PDGL: ) System von PDGL (ja/nein) 2)

Mehr

Proseminar Partielle Differentialgleichungen 1

Proseminar Partielle Differentialgleichungen 1 Proseminar Partielle Differentialgleichungen 1 Gerald Teschl SS2012 Bemerkung: Die meisten Beispiel sind aus dem Buch von L. C. Evans, Partial Differential Equations, Amer. Math. Soc., 1998 bzw. aus der

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

2. Quasilineare PDG erster Ordnung

2. Quasilineare PDG erster Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 2. Quasilineare PDG erster Ordnung Eine skalare PDG erster Ordnung hat die allgemeine Form F (x, u(x), u x (x)) = 0. (2.1) Dabei ist u : R n G R die gesuchte

Mehr

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 8.1 (Herbst 2002, Thema 1, Aufgabe 6) y = 3y +2x x 8.2 (Frühjahr 2005, Thema 1, Aufgabe 6) (x > 0) y(1)

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Differentialgleichungen II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 2006 Prof. Dr. R. Lauterbach Dr. K. Rothe Differentialgleichungen II für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 4 Aufgabe 13: Gegeben

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung Kapitel 7 Randwertprobleme Anwendungsbeispiel: Temperaturverteilung in einem dünnen Stab mit isolierter Oberfläche. u(x) : Temperatur im Stab an der Stelle x, x ; L. Im Gleichgewichtszustand genügt u der

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 2. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 2. Übung SS 18: Woche vom Übungsaufgaben 2. Übung SS 18: Woche vom 16.-20. 4. 2018 Partielle DGL III (PDGL 2. Ordnung) Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/... (SS18).html 1.)

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations Prof. Dr. H. J. Pesch Lehrstuhl für Ingenieurmathematik Universität Bayreuth Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations (Teil 1: SS 26) 4. Übung

Mehr

PRÜFUNG AUS MATHEMATIK 3

PRÜFUNG AUS MATHEMATIK 3 (8 P.) Berechnen Sie das Integral tan(ln x) dx. x (8 P.) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y 2y + 2y = x 2 + 5 cos x. (8 P.) Entwickeln Sie f(x) = sin(x) für x [ π/2, π/2] mit

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Frühjahr 2014 T R, M.S. 06.03.2014 Bachelor-Modulprüfung Aufgabe

Mehr

Lineare Differenzialgleichung und verwandte Fälle

Lineare Differenzialgleichung und verwandte Fälle Lineare Differenzialgleichung und verwandte Fälle 1. Die lineare Differenzialgleichung Eine lineare Differenzialgleichung 1. Ordnung besitzt die Form y + g(x)y = h(x), wobei g(x) und h(x) stetig sind.

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Ein Blick über den Tellerrand... mit FreeFem++

Ein Blick über den Tellerrand... mit FreeFem++ Ein Blick über den Tellerrand... mit FreeFem++ Eine Einführung und etwas Theorie Steffen Weißer Universität des Saarlandes 30. Oktober 2015 Gliederung 1 Zum Seminar 2 Was ist eine PDE? 3 Etwas Funktionalanalysis

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Eine gewöhnliche Differentialgleichung ist eine. Funktionsgleichung, Die allgemeine Differentialgleichung n-ter Ornung für eine Funktion y = y (x) :

Eine gewöhnliche Differentialgleichung ist eine. Funktionsgleichung, Die allgemeine Differentialgleichung n-ter Ornung für eine Funktion y = y (x) : Gewöhnliche Differentialgleichung. Einleitung und Grundbegriffe Def.: Eine gewöhnliche Differentialgleichung ist eine Funktionsgleichung, die eine unbekannte Funktion = () sowie deren Ableitungen nach

Mehr

Skalare Differenzialgleichungen

Skalare Differenzialgleichungen 3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Aufgaben GDGL SS 1998

Aufgaben GDGL SS 1998 Aufgaben GDGL SS 1998 Frank Wübbeling 17. September 1998 Aufgabe 1: (4 Punkte) Stellen Sie eine Differentialgleichung 1. Ordnung auf für die Schar der Parabeln mit der x-achse als Achse und dem Ursprung

Mehr

Ferienkurs Analysis 3 für Physiker. Partielle Differentialgleichungen

Ferienkurs Analysis 3 für Physiker. Partielle Differentialgleichungen Ferienkurs Analysis 3 für Physiker Partielle Differentialgleichungen Autor: Benjamin Rüth, Korbinian Singhammer Stand: 9. März 2015 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind partielle

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 8. April 2009 Beachtenswertes Die Veranstaltung

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 5/6 6..5 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Lehrgang der höheren Mathematik

Lehrgang der höheren Mathematik Lehrgang der höheren Mathematik Teil 1V/2 von W. I. Smirnow Mit 16 Abbildungen /-. \ D W VEB Deutscher Verlag der Wissenschaften Berlin 1989 Inhalt I. Allgemeine Theorie der partiellen Differentialgleichungen

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen

Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen Mathematik II Frühlingsemester 2015 Kapitel 11: Gewöhnliche Differentialgleichungen www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Einführung in partielle Differentialgleichungen

Einführung in partielle Differentialgleichungen vdf - Lehrbücher und Skripten Einführung in partielle Differentialgleichungen für Ingenieure, Chemiker und Naturwissenschaftler von Norbert Hungerbühler 2., durchgesehene Auflage 2 Einführung in partielle

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 Mathematik Online Kurs Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 http://www.mathematik-online.org/ 2 http://www.mathematik-online.org/ Mathematik Online Kurs Prüfungsvorbereitung HM 3 für

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 10: Gewöhnliche Differentialgleichungen Prof. Dr. Erich Walter Farkas Mathematik I+II, 10. Diff. Gl. 1 / 59 1 Differentialgleichungen

Mehr

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden, 16. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) Name: Matrikel-Nr.:

Mehr

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie)

Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Universität Kassel Fakutät 0/6 PD Dr. Sebastian Petersen 2.09.207 Klausur zur Vorlesung Mathematik III (Differentialgleichungen und Funktionentheorie) Version mit Lösungsskizzen Es können 30 Punkte erreicht

Mehr

1.5 Lineare Differentialgleichungen zweiter Ordnung

1.5 Lineare Differentialgleichungen zweiter Ordnung 16 Kapitel 1. Differentialgleichungen 1.5 Lineare Differentialgleichungen zweiter Ordnung Eine lineare Differentialgleichung zweiter Ordnung hat die Form y +a 1 (x)y +a 0 (x)y = b(x), wobei a 1,a 0,b:I

Mehr

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

Höhere Mathematik 4. Teil 2: Partielle Differentialgleichungen

Höhere Mathematik 4. Teil 2: Partielle Differentialgleichungen Höhere Mathematik 4 Teil 2: Partielle Differentialgleichungen Das Handout ist aus Teilen der Vortragsfolien zur Höheren Mathematik zusammengestellt; siehe die Hinweise auf der Internetseite www.imng.uni-stuttgart.de/lstnumgeomod/vhm/

Mehr

MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012

MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012 MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012 Dieser Kurs ist eine Einführung von linearen partiellen Differentialgleichungen. Das Hauptziel ist

Mehr

Hardy- Ungleichung EINLADUNG IN DIE MATHEMATIK 1

Hardy- Ungleichung EINLADUNG IN DIE MATHEMATIK 1 Hardy- Ungleichung TRISTAN CASPARI 2.12.213 SEMINAR. EINLADUNG IN DIE MATHEMATIK 6.12.213 EINLADUNG IN DIE MATHEMATIK 1 Agenda 1 2 3 4 5 Ungleichungen Historische Entwicklung Beweis Varianten Anwendungen

Mehr

Vorlesungen über Partielle und Pfaffsche Differentialgleichungen

Vorlesungen über Partielle und Pfaffsche Differentialgleichungen Vorlesungen über Partielle und Pfaffsche Differentialgleichungen von WOLFGANG HAACK em. o. Professor an der Technischen Universität Berlin WOLFGANG WENDLAND Priv.-Doz. an der Technischen Universität Berlin

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Partielle Differentialgleichungen Prüfung am

Partielle Differentialgleichungen Prüfung am Partielle Differentialgleichungen Prüfung am 27.04.2017 Name, Vorname Matrikelnummer Unterschrift Dauer: 60 Minuten. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gruppenarbeit. Bitte schreiben

Mehr

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations Prof. Dr. H. J. Pesch Lehrstuhl für Ingenieurmathematik Universität Bayreuth Optimale teuerung partieller Differentialgleichungen Optimal Control of Partial Differential quations (Teil 1: W 2011/12) 13.

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Musterlösung Serie 2

Musterlösung Serie 2 D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 18: Woche vom Übungsaufgaben 3. Übung SS 18: Woche vom 23.-27. 4. 2018 Partielle DGL IV (PDGL 2. O.: Normalform, Separ.-ans.) Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren

Wärmeleitungsgleichung mit anderen Randbedingungen (nicht Dirichlet), symmetrische Differentialoperatoren Fachbereich Mathematik der Universität Hamburg SoSe 2 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung mit anderen Randbedingungen nicht Dirichlet, symmetrische Differentialoperatoren 8.7.2 Die ins Netz

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Einige grundlegende partielle Differentialgleichungen

Einige grundlegende partielle Differentialgleichungen Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober 2010 1 / 14 Transportgleichung Eine der einfachsten Differentialgleichungen

Mehr

2. Elementare Lösungsmethoden

2. Elementare Lösungsmethoden H.J. Oberle Differentialgleichungen I WiSe 2012/13 2. Elementare Lösungsmethoden A. Separierbare Differentialgleichungen. Eine DGL der Form y (t) = f(t) g(y(t)) (2.1) mit stetigen Funktionen f : R D f

Mehr

Vorlesungsskript Partielle Differentialgleichungen

Vorlesungsskript Partielle Differentialgleichungen Vorlesungsskript Partielle Differentialgleichungen F. Natterer Institut für Numerische und instrumentelle Mathematik Stand: Wintersemester 2000/01 Inhaltsverzeichnis 1 Einleitung 4 2 Partielle Differentialgleichungen

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Prüfungklausur (B) zum Modul Höhere Mathematik für Ingenieure 2 25. Juli 29, 3. - 7. Uhr (2.Termin) Aufgabe : - Lösungen zum Theorieteil - Geben Sie eine Funktion f : R 2 R an, für die die Niveaumenge

Mehr

11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge

11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge Numerik II 162 11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge Inhalt 11.1 Gleichungen der Mathematischen Physik 11.2 Anfangs- und Randwerte 11.3 Klassifikation

Mehr

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt Kurze Zusammenfassung der Vorlesung 6 Am Anfang werden wir einbisschen mehr den Potenzreihenansatz besprechen. Abgewandelter Potenzreihenansatz In Verallgemeinerung der Eulerschen Differentialgleichung

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

7. Die eindimensionale Wärmeleitungsgleichung

7. Die eindimensionale Wärmeleitungsgleichung H.J. Oberle Differentialgleichungen II SoSe 2013 7. Die eindimensionale Wärmeleitungsgleichung Als Beispiel für eine parabolische PDG betrachten wir die eindimensionale Wärmeleitungsgleichung u t (x, t)

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr