Einige grundlegende partielle Differentialgleichungen

Größe: px
Ab Seite anzeigen:

Download "Einige grundlegende partielle Differentialgleichungen"

Transkript

1 Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

2 Transportgleichung Eine der einfachsten Differentialgleichungen ist: Die Lösung ist t u(t, x) a x u(t, x) = 0 u(t, x) = u 0 (x at) x, t R u(0, x) = u 0 (x) x R n. für t, x R Auch für nicht differenzierbare/unstetige Anfangswerte u 0 : R R macht die Lösung u Sinn, z.b. u 0 (x) = χ [ 0.5,0.5] (x): H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

3 Parabolische Gleichungen/Wärmeleitungsgleichung Der Prototyp der parabolischen Gleichungen ist die Wärmeleitungsgleichung t u(t, x) u(t, x) = 0 (x, t) R n (0, ) u(0, x) = u 0 (x) x R n. Die eindeutige Lösung für Anfangswert u 0 ist: u(t, x) = g t u 0 (x) = (4πt) n 2 R n 1 e x y 2 4t } {{ } =g t(x y) u 0 (y) dy Wärmeleitungskern g t für t = 0.25, 0.5, 1, 2 und n = 1 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

4 Beispiele für Lösungen (I) Für u 0 (x) = 2 1+x 2, n = 1: H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

5 Beispiele für Lösungen (II) Für u 0 (x) = χ [ 0.5,0.5], n = 1: Im Gegensatz zur Transportgleichung ist auch für diesen unstetigen Anfangswert u(t, x) glatt in t > 0 und x R n! H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

6 Hyperbolische Gleichungen/Wellengleichung Neben der Transportgleichung ist die folgende Wellengleichung der Prototyp einer hyperbolischen partiellen Differentialgleichung: 2 t u(t, x) u(t, x) = 0 (x, t) R n (0, ) u(0, x) = f (x) x R n, t u(0, x) = g(x) x R n. Für n = 1 ist die Lösung nach D Alembert: u(x, t) = f (x t) + f (x + t) x+t x t g(y) dy H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

7 Beispiele für Lösungen (I) Für f (x) = 2 1+x 2, g(x) = 0, n = 1: H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

8 Beispiele für Lösungen (II) Für f (x) = min(0, 1 x ), f (x) = 0, n = 1: Wie bei der Transportgleichung und im Gegensatz zur Wärmeleitungsgleichung ist die Lösung u(t, x) für t > 0 genauso glatt in x wie für t = 0! H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

9 Elliptische Gleichungen/Laplace-Gleichung Der Prototyp einer elliptischen partiellen Differentialgleichung ist die Laplace-Gleichung: u(x) = 0, für alle x Ω R n. (1) Um eine eindeutige Lösung zu erhalten, muss man passende Randbedingungen wie z.b. eine Dirichlet-Randbedingung oder Neumann-Randbedingung u(x) = a(x) für alle x Ω (2) ν u(x) = a(x) für alle x Ω stellen, wobei a: Ω R eine passende Funktion ist. Die Lösungen von (1) haben ähnliche Eigenschaften wie die der Wärmeleitungsgleichungen. Insbesondere ist u C (Ω) unabhängig von der Glattheit von a! (Wird im Laufe der Vorlesung exakt bewiesen.) H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

10 Beispiele für Lösungen (I) Wählt man Ω = (0, 1) 2, n = 2, und in (2) a(x 1, x 2 ) = { χ[ 1 3, 2 3 ](x 1) falls x 2 = 1 0 sonst H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

11 Beispiele für Lösungen (II) Wählt man Ω = (0, 1) 2, n = 2, und in (2) a(x 1, x 2 ) = { χ[ 1 3, 2 3 ](x 1) falls x 2 {0, 1} 0 sonst H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

12 Erhaltungsgleichungen (I) Viele partielle Differentialgleichungen werden als Erhaltungsgleichungen hergeleitet: d v(x, t) dx = ν F (x, t) dx dt V V = div F (x, t) dx V für einen Fluss F der Größe v, wobei V Ω eine beliebige offene Menge mit V C 1 ist. Hierbei ändert sich V v(x, t) dx in der Zeit nur dadurch, dass v gemäß F durch den Rand Ω rein- bzw. rausfließt. Da V Ω beliebig ist, folgt die Erhaltungsgleichung: t v(x, t) = div F (x, t) H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

13 Erhaltungsgleichungen (II) Beschreibt nun z.b. v = u die Wärme in einem Körper Ω oder die Konzentration einer Substanz und wählt man F (x, t) = m u(x, t), m > 0, (3) so erhält man die Wärmeleitungsgleichung: t u(x, t) m u(x, t) = 0 für alle t > 0, x Ω. Die Annahme (3) entspricht z.b. dem Fourierschen Gesetz der Wärmeleitung bzw. dem Fickschen Diffusionsgesetz. Ist u(t, x) unabhängig von t (Gleichgewichtszustand), so erhält man die Laplace-Gleichung: m u(x) = 0 für alle x Ω. H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

14 Erhaltungsgleichungen (III) Beschreibt u(x, t) die Höhe einer schwingende Saite (n = 1) oder Membran (n = 2) und wählt man v(x, t) = ρ t u(x, t) und wählt man F (x, t) = u(x, t), so erhält man die Wellengleichung ρ 2 t u(x, t) u(x, t) = 0 für alle t > 0, x Ω. Die Erhaltungsgleichung beschreibt die Erhaltung vom Impuls ρ t u(t, x), wobei ρ > 0 die Massendichte der Saite bzw. Membran ist. H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober / 14

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Numerik partieller Differentialgleichungen I

Numerik partieller Differentialgleichungen I Numerik partieller Differentialgleichungen I Bernd Simeon Skriptum zur Vorlesung im Sommersemester 2015 TU Kaiserslautern, Fachbereich Mathematik 1. Beispiele und Typeinteilung 2. Finite Differenzen für

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge

11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge Numerik II 162 11 Partielle Differentialgleichungen: Beispiele, theoretischer Hintergrund und Werkzeuge Inhalt 11.1 Gleichungen der Mathematischen Physik 11.2 Anfangs- und Randwerte 11.3 Klassifikation

Mehr

Differentialgleichungen für Ingenieure WS 05/06

Differentialgleichungen für Ingenieure WS 05/06 Differentialgleichungen für Ingenieure WS 05/06 11. Vorlesung Michael Karow Thema heute: Wellengleichung, Wármeleitungsgleichung Separationsansatz d Alembert-Lösung der 1-dimensionalen Wellengleichung

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms T( x, y, z, τ ) dv = dx dy dz Q z + dz Q y + dy Q * qdv x Q x + dx Q x+ dx Q x( x + dx, y, z, τ ) Q Q ( x, y + dy, z, τ ) y+ dy y Q Q ( x, y, z + dz, τ ) z+ dz z Q Q y Q z Bilanzgleichung des Wärmestroms

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle ifferentialgleichungen Wolfgang Reichel Übersee-Vorlesung aus Oaxaca, Mexiko, 19. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National

Mehr

Akustik und Elektromagnetik

Akustik und Elektromagnetik Kapitel 5 Akustik und Elektromagnetik In diesem Kapitel werden wir uns mit ellenphänomenen beschäftigen, wie sie bei akustischen und elektromagnetischen Problemen auftreten. ir beginnen mit akustischen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Mathematik IV für Elektrotechniker SS 05 Prof. Dr. Sasvári, TU Dresden Mitschrift. Fabian Kurz

Mathematik IV für Elektrotechniker SS 05 Prof. Dr. Sasvári, TU Dresden Mitschrift. Fabian Kurz Mathematik IV für Elektrotechniker SS 05 Prof. Dr. Sasvári, TU Dresden Mitschrift Fabian Kurz http://fkurz.net/ Zuletzt aktualisiert: 12. Juli 2005 Inhaltsverzeichnis 16 Wahrscheinlichkeitstheorie 1 16.1

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Allgemeine Bemerkungen Autor: Harald Höller letzte Änderung: 04.11.09 izenz: Creative Commons izenz by-nc-sa 3.0 at Definition einer PDE Eine Partielle Differentialgleichung

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Discontinuous-Galerkin-Verfahren

Discontinuous-Galerkin-Verfahren Discontinuous-Galerkin-Verfahren Dr. Gregor Gassner Institut für Aerodynamik und Gasdynamik der Universität Stuttgart. Stuttgart, 2013 Variationsformulierung 1 Ziel dieser Vorlesung ist es, das DG Verfahren

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

15. Vorlesung Sommersemester

15. Vorlesung Sommersemester 15. Vorlesung Soerseester 1 Kontinuusgrenzfall der Bewegungsgleichungen Was wird aus den Bewegungsgleichungen i Kontinuusgrenzwert? I diskreten Fall sind diese η j = kη j+1 η j + η j 1 1 und an führt wieder

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

5 Freie Randwertprobleme Das Einphasen-Stefan-Problem Eindeutigkeit der Lösung Existenz einer Lösung...

5 Freie Randwertprobleme Das Einphasen-Stefan-Problem Eindeutigkeit der Lösung Existenz einer Lösung... Inhaltsverzeichnis Grundlagen 3. Grundlegende Definitionen und Beispiele................... 3.. Lineare Partielle Differentialgleichungen............... 3..2 Mathematische Modellierung physikalischer Prozesse........

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Beispiele linearer Randwertprobleme

Beispiele linearer Randwertprobleme Kapitel 1 Beispiele linearer Randwertprobleme Die Problemstellung wird zuerst an einigen Beispielen aus der Physik erläutert. Die Methode der Greenschen Funktion verwendet eine Superposition von partikulären

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Notizen zur Vorlesung Partielle Differentialgleichungen G. Sweers Sommersemester 0 ii Inhaltsverzeichnis Einführung. Differentialgleichungen und klassische Lösungen................ Räume stetiger und differenzierbarer

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

1 Funktionen. 1.1 Definitionen und Bezeichnungen

1 Funktionen. 1.1 Definitionen und Bezeichnungen 1 1 Funktionen 1.1 Definitionen und Bezeichnungen Eine Funktion f ist eine eindeutige Abbildung einer Menge X in eine andere Y. Ist x X, dann ist f(x) y Y das Bild des Elementes x. x heißt das Urbild des

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Analysis II (FS 2015): Vektorfelder und Flüsse

Analysis II (FS 2015): Vektorfelder und Flüsse Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.

Mehr

Die schöne Welt der linearen Gleichungen

Die schöne Welt der linearen Gleichungen KAPITEL 2 Die schöne Welt der linearen Gleichungen In diesem Kapitel beschäftigen wir uns mit den klassischen linearen PDGL s u t + b u 0 Δu 0 u t Δu u tt Δu Transportgleichung) Laplacegleichung) Wärmeleitungsgleichung)

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

12. Differentialgleichungen (kurz)

12. Differentialgleichungen (kurz) 12. Differentialgleichungen (kurz) [Literatur: Teschl05, Bd. 2, S. 171-197] 12.1. Wozu braucht man Differentialgleichungen? Am 28. Juli 2006 stürzte in Köln ein Kran samt Lastwagen um. Was war passiert?

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Universität Stuttgart

Universität Stuttgart Universität Stuttgart Partielle Differentialgleichungen Vorlesung im Wintersemester 25/26 Prof. Dr. Anna-Margarete Sändig Berichte aus dem Institut für Angewandte Analysis und Numerische Simulation Vorlesungsskript

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Die Navier-Stokes Gleichung

Die Navier-Stokes Gleichung Die Navier-Stokes Gleichung Mathematisches Institut der Universität Basel 11. November 2009 Fluidstatik Fluiddynamik Die Strömungslehre befasst sich mit dem physikalischen Verhalten von Fluiden. Fluide

Mehr

17 Die Fourier-Transformation

17 Die Fourier-Transformation 7 Die Fourier-Transformation 7. Motivation. Für eine l -periodische Funktion f L loc (R) ist die Funktion y f(ly) -periodisch und hat eine Fourier-Entwicklung f(ly) c k e iky. Mit x = ly ergibt sich daraus

Mehr

6.3 Exakte Differentialgleichungen

6.3 Exakte Differentialgleichungen 6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Thema 4: Die schwingende Saite - Wellenfunktion und deren Herleitung

Thema 4: Die schwingende Saite - Wellenfunktion und deren Herleitung Seminar Analysis für Lehramt Gymnasium Thema 4: Die schwingende Saite - Wellenfunktion und deren Herleitung Nora Held Vortrag am 16.April 2013 nora.held@tu-dortmund.de Inhaltsverzeichnis Zusammenfassung

Mehr

Projekt Partielle Differentialgleichungen. Die Laplace - und Poissongleichung. Auer David Decker Elisabeth Mayer Andrea (Rottensteiner Martin)

Projekt Partielle Differentialgleichungen. Die Laplace - und Poissongleichung. Auer David Decker Elisabeth Mayer Andrea (Rottensteiner Martin) Projekt Partielle Differentialgleichungen Die Laplace - und Poissongleichung Auer David Decker Elisabeth Mayer Andrea (Rottensteiner Martin) 22. März 2004 Inhaltsverzeichnis Einleitung 3 2 Physikalische

Mehr

Theorie und Numerik Partieller Differentialgleichungen

Theorie und Numerik Partieller Differentialgleichungen Theorie und Numerik Partieller Differentialgleichungen Volker John Wintersemester 2006/07 Inhaltsverzeichnis 1 Modellierung mit partiellen Differentialgleichungen 4 1.1 Literatur..................................

Mehr

=!'04 #>4 )-:!- / )) $!# & $ % # %)6 ) + # 6 0 %% )90 % 1% $ 9116 69)" %" :"6. 1-0 &6 -% ' 0' )%1 0(,"'% #6 0 )90 1-11 ) 9 #,0. 1 #% 0 9 & %) ) '' #' ) 0 # %6 ;+'' 0 6%((&0 6?9 ;+'' 0 9)&6? #' 1 0 +& $

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

Universität Leipzig. Fakultät für Mathematik und Informatik. Mathematisches Institut

Universität Leipzig. Fakultät für Mathematik und Informatik. Mathematisches Institut Universität Leipzig Fakultät für Mathematik und Informatik Mathematisches Institut Verallgemeinerte Charakteristiken am Beispiel hyperbolischer Erhaltungsgleichungen Diplomarbeit Zur Erlangung des Diplomgrades

Mehr

Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden

Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden Christian Meyer basierend auf der Vorlesung Theorie partieller Differentialgleichungen von Prof. F. Tröltzsch, TU Berlin Material

Mehr

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x), UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Zusammenfassung der Vorlesung ITET, Herbstsemester 2014 Diese Version umfasst alle 12 Vorlesungen. Der Autor übernimmt keine Haftung für allfällige Fehler und Ungereimtheiten.

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

Faltung und Approximation von Funktionen

Faltung und Approximation von Funktionen Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin

Mehr

Lineare Gleichungsen + Lineare Funktionen

Lineare Gleichungsen + Lineare Funktionen 29. Mai 2006 Gliederung 1 2 Anmerkungen Bitte nummeriert die Zeilen! Bitte benutzt eine Büroklammer! Bitte nicht abschreiben! Anmerkungen Bitte nummeriert die Zeilen! Bitte benutzt eine Büroklammer! Bitte

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Handy, Börse und Kristalle

Handy, Börse und Kristalle Handy, Börse und Kristalle Neues aus der Welt der Analysis Seite 1 Handy, Börse und Kristalle Neues aus der Welt der Analysis Was empfängt ein Handy? Eine mathematische Lupe Ein Blick in die Börse... und

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

5 Kontinuierliche Schwingungssysteme

5 Kontinuierliche Schwingungssysteme 31 Die bisher betrachteten diskreten Schwingungssysteme bestehen aus konentrierten massebehafteten Körpern, die an diskreten Stellen über Bindungen gekoppelt sind und damit über eine endliche Zahl f von

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter 25.06.2008 Inhaltsangabe Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma Die p-form Sei P ein Punkt in E n. Der n-dimensionale lineare Raum L = L p wird dann gebildet von n a i

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Carsten Timm Sommersemester 23 Version vom 4. Juli 23 Dieses Skript wurde für eine zweistündige Vorlesung über partielle Differentialgleichungen für Studierende der Physik

Mehr

Wellengleichungen. div D = div B = 0. beschrieben. Dabei bezeichnen mit (t, x) [0, ) R 3 den Verschiebungsstrom, die magnetische Induktion,

Wellengleichungen. div D = div B = 0. beschrieben. Dabei bezeichnen mit (t, x) [0, ) R 3 den Verschiebungsstrom, die magnetische Induktion, Wellengleichungen Vorlesung gehalten durchgängig ab Wintersemester 6-7 von Prof. M. Reissig Einführung Wir wollen uns in dieser Vorlesung mit der Theorie von Wellengleichungen u tt c u =, c ist eine positive

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

PARTIELLE DIFFERENTIALGLEICHUNGEN I

PARTIELLE DIFFERENTIALGLEICHUNGEN I PARTIELLE DIFFERENTIALGLEICHUNGEN I OLIVER C. SCHNÜRER Zusammenfassung. Bei diesem Manuskript handelt es sich um Notizen zu Partielle Differentialgleichungen I. Benützt an der Freien Universität Berlin

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Die Burgers Gleichung

Die Burgers Gleichung Die Burgers Gleichung Vortrag im Rahmen der Vorlesung Spektralmethoden Elena Frenkel Samuel Voit Balthasar Meyer 29. Mai 2008 1 Einfürung Ein kurzer Überblick Physikalische Motivation 2 Cole-Hopf Transformation

Mehr

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen Wellen Crashkurs PDG anhand von Beispielen Eine Welle ist ein erkennbares Signal, welches innerhalb eines Mediums von einer Seite zur anderen übertragen wird, mit einer erkennbaren Ausbreitungsgeschwindigkeit.

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.

Mehr

Testvorbereitung: Integrierender Faktor

Testvorbereitung: Integrierender Faktor Testvorbereitung: Integrierender Faktor Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien,.02.2007 Voraussetzung: Kenntnis der exakten Differentialgleichungen! Theoretische Grundlagen Eine nicht exakte

Mehr

Randwertbedingungen und Ghost Cells

Randwertbedingungen und Ghost Cells Randwertbedingungen und Ghost Cells Olaf Kern Universität Trier 16.Dezember 2010 Olaf Kern (Universität Trier) Seminar Numerik 1/23 16.Dezember 2010 1 / 23 Inhaltsverzeichnis 1 Einführung 2 Periodische

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr