1 Gewöhnliche Differentialgleichungen

Größe: px
Ab Seite anzeigen:

Download "1 Gewöhnliche Differentialgleichungen"

Transkript

1 $Id: ode.tex,v /04/24 18:33:45 hk Exp hk $ 1 Geöhnliche Differentialgleichungen 1.3 Die charakteristische Funktion In der letzten Sitzung hatten ir mit der Behandlung der verschiedenen Abhängigkeitssätze begonnen, dies sind Sätze die das Verhalten der charakteristischen Funktion einer geöhnlichen Differentialgleichung bezüglich Stetigkeit und Differenzierbarkeit beschreiben. Die von uns behandelten Abhängigkeitssätze bauen aufeinander auf, ir beginnen mit der Stetigkeit der charakteristischen Funktion, verenden diese zum Beeis der Differenzierbarkeit nach Parametern und verenden diese Differenzierbarkeitsaussage iederum zum Beeis der Differenzierbarkeit nach Startzeitpunkt und Anfangserten. Wir beginnen mit einer lokalen Version, bei der der Zeitparameter t nicht allzu eit eg vom Startzeitpunkt sein darf, und dies ird in einem zeiten Schritt zum Beeis der globalen Version verendet, bei der auf diese Einschränkung verzichtet ird. All unsere Überlegungen laufen auf einen Hauptsatz über die charakteristische Funktion hin, der Rest dieses Abschnitts ist im esentlichen der Beeis dieses Hauptsatzes. Dieser Beeis besteht aus einer ganzen Kette untereinander zusammenhängender, größtenteils recht technischer Lemmata, deren methodischer Kern die schon beim Beeis des Satzes von Picard-Lindelöf verendete Picard-Iteration ist, die ir jeeils ein klein enig modifizieren um die verschiedenen Abhängigkeitsaussagen zu erhalten. Die Version der Picard-Iteration die ir zum Beeis des Satzes von Picard-Lindelöf verendet hatten, ar dabei in unseren üblichen Bezeichnungen gegeben durch T y(t) = b + a f(s, y(s)) ds. Unser erstes Zischenziel ist der Nacheis der lokalen Stetigkeit der charakteristischen Funktion, und hierzu müssen ir noch einige kleine Hilfsmittel bereitstellen. Das erste dieser Hilfsmittel ist dabei die in Aufgabe (2) formulierte parametrisierte Form des Banachschen Fixpunktsatzes, in dieser hatten ir einen vollständigen metrischen Raum M, auf elchem die Fixpunktiteration abläuft, und einen eiteren metrischen Raum N als Parameterraum. Weiter ist eine stetige Abbildung T : M N M; (x, λ) T λ x gegeben, und ir haben eine Konstante 0 q < 1 für die die Kontraktionsbedingung d(t λ x, T λ y) q d(x, y) 5-1

2 für alle x, y M, λ N erfüllt ist. In der genannten Aufgabe (2) ar sogar erlaubt das q stetig von λ abhängt, aber diese Allgemeinheit brauchen ir hier nicht. Für jeden Wert des Parameters λ N haben ir einen eindeutigen Fixpunkt u(λ) M von T λ und die Aufgabe besagte das dieser stetig vom Parameter λ abhängt, d.h. u : N M ist stetig. Für unsere Abschätzungen erden ir ein eiteres Hilfsmittel benötigen, eine kleine allgemeine Tatsache über stetige Funktionen, die ir jetzt erst einmal explizit formulieren ollen. Angenommen ir haben einen kompakten metrischen Raum X und zei eitere metrische Räume M, N. Weiter sei f : X M N eine stetige Funktion. Dann gibt es für jedes ɛ > 0 und alle p M stets ein δ > 0 so, dass für alle q M mit d(p, q) < δ und alle x X stets d(f(x, p), f(x, q)) < ɛ gilt. Dies ist ein typisches Kompaktheitsargument. Wir betrachten zunächst ein einzelnes x X. Da die Funktion f in (x, p) stetig ist, gibt es dann eine offene Umgebung U x von x in X und ein δ x > 0 so, dass für alle y U x und alle q M mit d(p, q) < δ x stets d(f(x, p), f(y, q)) < ɛ/2 ist. Dann bildet (U x ) x X eine offene Überdeckung von X, und da X kompakt ist gibt es endlich viele x 1,..., x n X mit X = n k=1 U x k. Setze dann δ := min{δ xk 1 k n} > 0, obei ir stillscheigend n 1 annehmen da der Fall X = trivial ist. Nun schauen ir das es mit diesem δ klappt, seien also x X und q M mit d(p, q) < δ gegeben. Dann existiert ein 1 k n mit x U xk, und egen d(p, q) < δ δ xk erhalten ir d(f(x, p), f(x, q)) d(f(x, p), f(x k, p)) + d(f(x k, p), f(x, q)) < ɛ 2 + ɛ 2 = ɛ. Damit ist diese Hilfsbehauptung beiesen. Man kann diese jetzt auch noch etas schöner formulieren, verenden ir unsere im letzten Abschnitt eingeführte Metrik d auf C(X, N), so können ir die Bedingung d(f(x, p), f(x, q)) < ɛ für alle x X gleichertig als d(f p, f q ) < ɛ schreiben, obei für jedes q M die Funktion f q : X N durch f q (x) = f(x, q) für alle x X definiert ist. In anderen Worten haben ir also gerade gezeigt das die Funktion f : M C(X, N); q f q stetig ist. Wir erden im Beeis des folgenden Lemmas auch noch eine geisse Umkehrung dieser Tatsache verenden, enn f stetig ist, so ist umgekehrt auch f stetig. Um dies einzusehen verendet man die sogenannte Ausertungsabbildung ev : X C(X, N) N; (x, f) f(x), denn mit dieser ird f = ev (id X f). Es reicht also sich die Stetigkeit der Ausertungsabbildung zu überlegen. Tatsächlich erden ir die Stetigkeit der Ausertungsabbildung auch in dem kommenden Beeisen einige Male benötigen, also formulieren ir diese als ein allgemeines Lemma. Lemma 1.12 (Stetigkeit der Ausertungsabbildung) Seien M ein metrischer Raum und E ein normierter Raum. Dann ist die Ausertungsabbildung ev : CB(M, E) M E; (f, x) f(x) 5-2

3 stetig. Beeis: Seien f : M E eine beschränkte stetige Funktion und x M. Wir ollen zeigen das ev in (f, x) stetig ist. Sei also ɛ > 0 gegeben. Da die Funktion f stetig ist, gibt es dann ein δ > 0 mit f(x) f(y) < ɛ/2 für alle y M mit d(x, y) < δ. Damit ist B ɛ/2 (f) B δ (x) eine offene Umgebung von (f, x) in CB(M, E) M und für alle g CB(M, E), y M mit g f < ɛ/2 und d(x, y) < δ gilt ev(f, x) ev(g, y) = f(x) g(y) f(x) f(y) + f(y) g(y) Dies beeist die Stetigkeit der Ausertungsabbildung in (f, x). f(x) f(y) + f g < ɛ. Statt eines normierten Raums könnte man hier auch einen allgemeinen metrischen Raum verenden, nur müssten ir dazu zunächst den Raum CB(M, N) auch für allgemeine metrische Räume N definieren, bisher haben ir dies nur für normierte Räume getan. Da ir für diese Räume allerdings keine Verendung haben, ollen ir auf diese Verallgemeinerung hier verzichten. Wir haben jetzt alle Hilfsmittel vorbereitet um die Stetigkeit der charakteristischen Funktion in der lokalen Situation zu behandeln. Aufgrund der recht vielen auftretenden Funktionsargumente, erläutern ir erst einmal die verendete Notation. Wir haben ein System aus n geöhnlichen Differentialgleichungen mit Parametern aus einem metrischen Raum M. Dieses ist gegeben durch eine auf einer offenen Teilmenge U R n+1 M definierten Funktion. Die Punkte von R n+1 M schreiben ir als (t, y, p) mit t R, y R n, p M. Lemma 1.13 (Lokale Stetigkeit der charakteristischen Funktion) Seien n N mit n 1, M ein metrischer Raum, U R n+1 M offen und f : U R n sei stetig und erfülle die lokale Lipschitz-Bedingung. Dann ist die charakteristische Funktion χ f : D(f) R n von f definiert. Weiter sei (a, b, p) U. Dann existieren ein offenes Intervall I R mit a I, eine Konstante λ > 0 und eine offene Umgebung P von p in M mit I I B λ (b) P D(f) so, dass die Funktion Y : I B λ (b) P CB(I, R n ); (u, v, q) y u,v,q I, die jedes (u, v, q) I B λ (b) P auf die Lösung des Anfangsertproblems y = f(t, y, q), y(u) = v in I abbildet, stetig ist. Weiter ist die charakteristische Funktion χ f auf I I B λ (b) P stetig. Beeis: Für jedes q P erfüllt f q : U q R n die lokale Lipschitz-Bedingung, ist also nach Lemma 1.(c) lokal eindeutig lösbar, und damit existiert die charakteristische Funktion χ f. Nach Lemma 11.(b) existieren Konstanten u, v, C, L, λ R mit u < a < v, C, L 0, λ > 0, 2C(v u) λ, L(v u) < 1 und eine offene Umgebung P von p in M mit [u, v] B λ (b) P U so, dass f(t, y, q) C und f(t, x, q) f(t, y, q) L x y für alle t [u, v], x, y B λ (b), q P ist. Wir betrachten den vollständigen 5-3

4 metrischen Raum N := C([u, v], B λ (b)). Seien (u, v), r B λ/2 (b) und q P. Weiter sei y N. Für jedes s [u, v] ist dann (s, y(s), q) [u, v] B λ (b) P U, also erhalten ir die ohldefinierte stetige Funktion T,r,q y : (u, v) R n ; t r + Für jedes t [u, v] gilt dabei T,r,q y(t) b r b + d.h. es ist T,r,q y N. Damit haben ir eine Abbildung f(s, y(s), q) ds. f(s, y(s), q) ds λ + C t λ, 2 T : N (u, v) B λ/2 (b) P N; (y,, r, q) T,r,q y. Wir zeigen jetzt, dass die Funktion T stetig ist. Seien also (u, v), r B λ/2 (b), q P, y N und ɛ > 0 gegeben. Zunächst gibt es dann nach unserer obigen Vorbemerkung eine offene Umgebung V von q in M mit V P so, dass für alle s [u, v] und alle q V stets f(s, y(s), q) f(s, y(s), q ɛ ) < 4(v u) gilt. Weiter ählen ir ein δ > 0 mit Cδ < ɛ/4. Seien jetzt (u, v), r B λ/2 (b), q V und x N mit < δ, r r < ɛ/4 und x y < ɛ/4 gegeben. Wir behaupten das dann T,r,q x T,r,qy < ɛ ist. Sei also t [u, v] gegeben. Dann ist T,r,q x(t) T t,r,qy(t) = r + f(s, x(s), q ) ds r f(s, y(s), q) ds r r + (f(s, x(s), q ) f(s, y(s), q )) ds + f(s, y(s), q ) ds + (f(s, y(s), q ) f(s, y(s), q)) ds r r + L x y t + C + und dies zeigt T,r,q x T,r,qy r r ɛ < ɛ. ɛ t 4(v u) r r ɛ, Damit ist die Stetigkeit von T beiesen. Außerdem haben ir für alle (u, v), r B λ/2 (b), q P, x, y N und alle t [u, v] die Ungleichung T,r,q x(t) T,r,q y(t) = (f(s, x(s), q) f(s, y(s), q)) ds L t x y L(v u) x y, 5-4

5 d.h. ir haben die Kontraktionsbedingung Nach Aufgabe (2) ist die Funktion T,r,q x T,r,q y L(v u) x y. Y : (u, v) B λ/2 (b) P N CB((u, v), R n ), die jedes (, r, q) (u, v) B λ/2 (b) P auf den Fixpunkt von T,r,q abbildet, stetig. Ist (, r, q) (u, v) B λ/2 (b) P, so ergibt III. 9.Lemma 5 das Y (, r, q) : (u, v) R n eine Lösung des Anfangsertproblems y = f(t, y, q), y() = r ist, d.h. es gilt (u, v) I,r,q und Y (, r, q) = y,r,q I. Damit sind (u, v) (u, v) B λ/2 (b) P D(f) und die Aussage über Y eingesehen. Für jedes (t,, r, q) (u, v) (u, v) B λ/2 (b) P gilt χ f (t,, r, q) = y,r,q (t) = ev(y (, r, q), t), und damit ist χ f (u, v) (u, v) B λ/2 (b) P nach Lemma 12 als Hintereinanderausführung stetiger Funktionen selbst stetig. Damit ist der erste Schritt getan und die Stetigkeit der charakteristischen Funktion im lokalen Fall ist beiesen. Als zeiten und kompliziertesten Schritt ollen ir nun die partielle Differenzierbarkeit der charakteristischen Funktion nach einem reellen Parameter beeisen. Wie angekündigt orientieren ir uns eiter an der Picard-Iteration, allerdings tritt jetzt ein neues Problem auf. Aus Analysis II issen ir das sich die gleichmäßige Konvergenz von Funktionenfolgen nur bedingt mit der Differenzierbarkeit dieser Folgen verträgt. Konvergiert eine Folge (f n ) n N stetig differenzierbarer Funktionen auf einem Intervall gleichmäßig gegen eine Funktion f, so muss die Grenzfunktion f nicht mehr differenzierbar sein. Und selbst enn f zufällig differenzierbar ist, so müssen die Ableitungen f n nicht unbedingt gleichmäßig gegen f konvergieren. Ebenfalls aus Analysis II issen ir, dass es in dieser Situation zumindest einen guten Fall gibt, enn nämlich die Ableitungen (f n) n N gleichmäßig gegen eine stetige Funktion g konvergieren, so ist f differenzierbar mit f = g. Wollen ir dies auf die Picard-Iteration (y n ) n N anenden, so müssen ir irgendie die gleichmäßige Konvergenz der Ableitungen der y n nach unserem Parameter sicherstellen. Hierzu verenden ir eine gekoppelte Variante der Fixpunktiteration, bei der die Iteration zugleich auf die Ableitungen angeandt ird. Diese gekoppelte Iteration können ir in einer recht allgemeinen Situation behandeln. Lemma 1.14 (Gekoppelte Fixpunktiteration) Seien M, N zei vollständige metrische Räume, T : M M und S : M N N zei Abbildungen. Es gebe Konstanten q 1, q 2 [0, 1) mit d(t x, T y) q 1 d(x, y) für alle x, y M und d(s(x, u), S(x, v)) q 2 d(u, v) für alle x M, u, v N. Für jedes u N sei die Funktion S(, u) : M M stetig. Dann gibt es eindeutige z M und N mit T z = z und S(z, ) =. Sind x 0 M, u 0 N beliebig, und definieren ir die Folgen (x n ) n N in M und (u n ) n N in N rekursiv durch x n+1 := T x n und u n+1 := S(x n, u n ) 5-5

6 für alle n N, so gelten z = lim n x n in M und = lim n u n in N. Beeis: Nach dem Banachschen Fixpunktsatz III. 9.Satz 6 existiert genau ein z M mit T z = z und die Folge (x n ) n N konvergiert gegen z. Wenden ir den Banachschen Fixpunktsatz erneut auf S(z, ) : N N an, so folgt das es auch genau ein N mit S(z, ) = gibt. Es bleibt also nur noch (u n ) n N zu zeigen. Für jedes n N haben ir d(u n+1, ) = d(s(x n, u n ), S(z, )) d(s(x n, u n ), S(x n, )) + d(s(x n, ), S(z, )) Sei jetzt ɛ > 0 gegeben. Da S(, ) stetig ist, gilt ( ) S(z, ) = S lim x n, = lim S(x n, ), n n q 2 d(u n, ) + d(s(x n, ), S(z, )). also existiert ein n 0 N mit d(s(x n, ), S(z, )) ɛ(1 q 2 ) für alle n N mit n n 0. Wir behaupten, dass für jedes k N die Ungleichung d(u n0 +k, ) ɛ + q k 2(d(u n0, ) ɛ) gilt. Dies ist klar für k = 0, und ist die Ungleichung für ein k N erfüllt, so haben ir auch d(u n0 +k+1, ) q 2 d(u n0 +k, ) + d(s(x n0 +k, ), S(z, )) q 2 (ɛ + q k 2(d(u n0, ) ɛ)) + ɛ(1 q 2 ) = ɛ + q k+1 2 (d(u n0, ) ɛ), und per Induktion ist diese Behauptung beiesen. Wegen 0 q 2 < 1 ist somit auch lim sup d(u n, ) lim(ɛ + q k n k 0 2(d(u n0, ) ɛ)) = ɛ. Dies zeigt lim sup n d(u n, ) = 0, also auch (u n ) n N. In unserer geplanten Anendung dieses Lemmas ist T im esentlichen die uns schon vertraute Picard-Iteration. Bezeichnet ζ den Parameter nach dem ir ableiten ollen, so ollen ir die Abbildung S so einrichten das (T y) = S ζ ( y, y ζ gilt, d.h. S soll so etas ie die Ableitung nach ζ sein. Um zu sehen, ie ir S konkret definieren müssen, brauchen ir also erst einmal eine Formel für die Ableitung nach dem Parameter. Eine solche Formel können ir uns tatsächlich überlegen, auch ohne vorher die Differenzierbarkeit zu beeisen, und dies ird unser nächstes Lemma sein. 5-6 )

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5

Höhere Mathematik III für die Fachrichtung Physik Wintersemester 2016/17. Lösungsvorschlag zu Übungsblatt 5 Institut für Analysis Dr. Christoph Schmoeger M.Sc. Jonathan Wunderlich Höhere Mathematik III für die Fachrichtung Physik Wintersemester 6/7..7 Lösungsvorschlag zu Übungsblatt 5 Aufgabe 6: Zeigen Sie mit

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Skript zur Vorlesung Analysis 3

Skript zur Vorlesung Analysis 3 Skript zur Vorlesung Analysis 3 Herbstsemester 204 Prof. Benjamin Schlein Inhaltsverzeichnis Gewöhnliche Differentialgleichungen 2. Differentialgleichungen erster Ordnung, elementare Lösungsmethoden..

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges 11. Kompakte Operatoren Seien X, Y Banachräume, und sei T : X Y ein linearer Operator. Definition 11.1. T heißt kompakt, enn T (B) eine kompakte Teilmenge von Y ist für alle beschränkten Mengen B X. Wir

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Analysis II (FS 2015): Vektorfelder und Flüsse

Analysis II (FS 2015): Vektorfelder und Flüsse Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Lösungen zur Analysis-Prüfung Sommer 2017

Lösungen zur Analysis-Prüfung Sommer 2017 Lösungen zur Analysis-Prüfung Sommer 27. Teil: Rechnungen. a) [ Punkt] Berechnen Sie das Integral x dx. x 2 + Es gilt x x 2 + dx = = 2 arsinh(). x 2 + dx = [arsinh(x)] b) [ Punkt] Berechnen Sie das Integral

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.5 2016/11/10 16:04:56 hk Exp $ 2 Riemannsche Flächen 2.1 Definition und erste Beispiele Riemannscher Flächen Am Ende der letzten Sitzung hatten wir schließlich den Begriff einer Riemannschen

Mehr

Kapitel 3: Differentiation

Kapitel 3: Differentiation 7 ABBILDUNGEN UND KOORDINATENFUNKTIONEN 35 Kapitel 3: Differentiation Wir beginnen mit einigen Vorbetrachtungen. In diesem Kapitel soll die Differentialrechnung für Funktionen von n reellen Veränderlichen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 89 Beweis. Der Beweis erfolgt durch vollständige Induktion. Angenommen wir hätten den Satz für k 1 gezeigt. Dann ist wegen auch Damit ist f(g(y), y) = 0 0 = D y

Mehr

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Ferienkurs Seite 1. Technische Universität München Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie Ferienkurs Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit, Konvergenz, Topologie Lösung 2.03.202. Gleichmäßige Konvergenz Entscheiden Sie, ob die folgenden auf (0,

Mehr

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung Gewöhnliche Differentialgleichungen Woche 7 Globale Existenz einer Lösung 7.1 Von lokal zu global Wir betrachten wiederum das Anfangswertproblem { y (x = f (x, y(x, y( = y 0. (7.1 Eine erste Erweiterung

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

Probeklausur zur Analysis II

Probeklausur zur Analysis II Probeklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 3. Februar 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Formelsammlung Analysis I & II

Formelsammlung Analysis I & II Formelsammlung Analysis I & II Wichtige eindimensionale Integrale: { x s dx = s+ xs+ + C falls s log x + C falls s = exp(x dx = exp(x + C cos(x dx = sin(x + C sin(x dx = cos(x + C sinh(x dx = cosh(x +

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $ $Id: hilbert.tex,v 1.5 2013/06/21 13:11:01 hk Exp hk $ 7 Hilberträume In der letzten Sitzung hatten wir die Theorie der Hilberträume begonnen, und sind gerade dabei einige vorbereitende elementare Grundtatsachen

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Mathematik für Anwender I. Klausur

Mathematik für Anwender I. Klausur Fachbereich Mathematik/Informatik 27. März 2012 Prof. Dr. H. Brenner Mathematik für Anwender I Klausur Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

Funktionalanalysis II. Sommersemester 2002

Funktionalanalysis II. Sommersemester 2002 Funktionalanalysis II Sommersemester 2002 Prof. Dr. Michael Růžička Inhaltsverzeichnis 1 Fixpunktsätze 1 1.1 Der Banachsche Fixpunktsatz....................... 2 Gewöhnliche Differentialgleichungen....................

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Wiederholungsklausur zur Analysis II

Wiederholungsklausur zur Analysis II Wiederholungsklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 11. April 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele Univ.-Prof. Dr. Radu Ioan Boţ, Axel Böhm Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele SS18 A1. Sei f : [, + ) R so, dass und dass ein M existiert mit Zeigen Sie, dass f(s +

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Lösungsskizzen zur Präsenzübung 04

Lösungsskizzen zur Präsenzübung 04 Lösungsskizzen zur Präsenzübung 04 Mirko Getzin Universität Bielefeld Fakultät für Mathematik 09. Mai 204 Keine Gewähr auf vollständige Richtigkeit und Präzision aller (mathematischen) Aussagen. Das Dokument

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.2 2010/05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.2 203//29 2:06:38 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Folgenkonvergenz und die Grenzwerte von Folgen eingeführt.

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Klausur zur Analysis II

Klausur zur Analysis II Klausur zur Analysis II Prof. Dr. C. Löh/M. Blank 13. Februar 01 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten haben.

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

6 Räume integrierbarer Funktionen

6 Räume integrierbarer Funktionen $Id: L.tex,v 1.5 2012/01/19 15:07:43 hk Ex $ $Id: green.tex,v 1.3 2012/01/19 15:18:26 hk Ex hk $ 6 Räume integrierbarer Funktionen In der letzten Sitzung hatten wir die sogenannte L -Norm ( 1/ f := f(x)

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.5 2014/04/28 14:01:50 hk Exp $ $Id: diff.tex,v 1.2 2014/04/28 14:24:56 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir die Tangentialvektoren

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.6 2016/11/16 12:37:19 hk Exp $ 2 Riemannsche Flächen 2.2 Karten und holomorphe Funktionen auf Flächen Am Ende der letzten Sitzung hatten wir einige der Grundeigenschaften holomorpher

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v 1.23 2013/12/02 12:07:25 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4.1 Folgenkonvergenz In der letzten Sitzung haben wir die Rechenregeln für Folgengrenzwerte hergeleitet. Dies sind

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen

Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen Kapitel XII Implizite Funktionen, der Umkehrsatz und Extrema unter Nebenbedingungen 53 Implizite Funktionen und allgemeine partielle Differenzierbarkeit 54 Der Umkehrsatz 55 Lokale Extrema unter Nebenbedingungen,

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

Mathematik I. Vorlesung 22. Der Satz von Bolzano-Weierstraß. Karl Weierstraß ( )

Mathematik I. Vorlesung 22. Der Satz von Bolzano-Weierstraß. Karl Weierstraß ( ) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 22 Der Satz von Bolzano-Weierstraß Karl Weierstraß (1815-1897) Satz 22.1. (Bolzano-Weierstraß) Es sei (x n ) n N eine beschränkte Folge

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Wiederholungsklausur zur Analysis I

Wiederholungsklausur zur Analysis I Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0.

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. 6.4 Fixpunkt-Iteration Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. Möglichkeiten: Bisektionsverfahren (Intervallhalbierung) Newton-Verfahren, x k+1 = x k f(x k) f (x k ) für k = 0, 1,

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

2 Der Weierstraßsche Produktsatz

2 Der Weierstraßsche Produktsatz 4 Kapitel Meromorphe Funktionen Der Weierstraßsche Produktsatz Unser nächstes Problem soll sein, zu einer vorgegebenen Menge von Punkten eine holomorphe Funktion zu suchen, die genau in den Punkten Nullstellen

Mehr

10 Der Integralsatz von Gauß

10 Der Integralsatz von Gauß 10 Der Integralsatz von Gauß In diesem Abschnitt beweisen wir den Integralsatz von Gauß, die mehrdimensionale Verallgemeinerung des Hauptsatzes der Differential- und Integralrechnung. Aussage des Satzes

Mehr

Analysis 2. Contents. Torsten Wedhorn. June 12, Notation. Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen

Analysis 2. Contents. Torsten Wedhorn. June 12, Notation. Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen Analysis 2 Torsten Wedhorn June 12, 2012 Notation Es bezeichne K immer den Körper R der reellen Zahlen oder den Körper C der komplexen Zahlen. Contents 12 Metrische Räume 2 (A) Definition metrischer Räume........................

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/ Mittwoch 8. $Id: transform.tex,v.8 //4 :9: hk Exp $ Koordinatentransformationen. Lineare Koordinatentransformationen Wir überlegen uns dies zunächst im Spezialfall

Mehr

Analysis I. 7. Beispielklausur mit Lösungen

Analysis I. 7. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 7. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine surjektive Abbildung f: L M. () Ein archimedisch

Mehr