2 Koordinatentransformationen

Größe: px
Ab Seite anzeigen:

Download "2 Koordinatentransformationen"

Transkript

1 Mathematik für Ingenieure III, WS 9/ Mittwoch 8. $Id: transform.tex,v.8 //4 :9: hk Exp $ Koordinatentransformationen. Lineare Koordinatentransformationen Wir überlegen uns dies zunächst im Spezialfall das = [, ] n der n-dimensionale Standardwürfel ist. Wir denken uns T als eine n n Matrix, deren Spalten wir mit v,..., v n bezeichnen. as ild des Würfels unter T ist dann T ( = {T (x x } = {x v + + x n v n x,..., x n } das sogenannte von den Vektoren v,..., v n aufgespannte Parallelepiped. v w u v Parallelepiped von u, v (Parallelogram u Parallelepiped von u, v, w (Spat Wie wir schon in 8. im ersten Semester bei der Einführung der eterminante festgehalten haben, ist das Volumen dieses Parallelepipeds genau der etrag der eterminante von T. Im allgemeinen Fall haben wir dies nur gesagt, aber für die beiden kleinen imensionen hatten wir diese Tatsache auch begründet (für n = in. und für n = in.. Für den Einheitswürfel ist damit vol(t ( = det T = det T vol( da vol( = ist. amit haben wir unsere Volumenformel für den Einheitswürfel eingesehen. Hieraus folgt die Formel dann auch für beliebige achsenparallele Würfel. Ist nämlich ein solcher Würfel mit Kantenlänge c > und linker unterer Ecke in u R n und bezeichnet W = [, ] n den Einheitswürfel, so haben wir = u + c W und es folgt vol(t ( = vol(t (u + c T (W = c n vol(t (W = c n det T = det T vol( da vol( = c n ist. urch die übliche Approximationsüberlegung ergibt sich die Volumenformel dann auch für beliebige beschränkte, Jordan-meßbare Mengen. Haben 7-

2 Mathematik für Ingenieure III, WS 9/ Mittwoch 8. wir eine solche Menge gegeben, so nähern wir sie durch eine aus achsenparallelen Würfeln zusammengesetzte Menge an, und haben dann auch eine Näherung vol( vol(. a aus achsenparallelen Würfeln zusammengesetzt ist und sich das Volumen jedes dieser Würfel bei Anwendung von T mit det T multipliziert, ist auch insgesamt vol(t ( = det T vol(. Andererseits ist T ( auch eine Näherung für T (, und somit vol(t ( vol(t ( = det T vol(. Führen wir jetzt den Grenzübergang durch, nehmen also immer mehr, immer kleinere Würfel, so konvergieren vol( gegen vol( und vol(t ( gegen vol(t (, und wir erhalten die gewünschte Gleichung vol(t ( = det T vol(. ies war zwar kein exakter eweis, die Überlegung kann aber zu einem solchen ausgebaut werden. Nun ist es leicht das Verhalten des Rieman-Integrals unter linearen Koodinatentransformationen zu ermitteln. Angenommen es sind eine beschränkte und Jordanmeßbare Menge R n und eine lineare Abbildung T : R n R n gegeben. ann ist auch T ( R n beschränkt und Jordan-meßbar. Weiter sei eine Rieman-Integrierbare Funktion f : T ( R gegeben. Eine Rieman-Summe für das Integral f(x dx T ( hat die Form S = f(y i vol(e i wobei T ( in Teile E, E,... zerlegt ist und y i E i sind. Wird die Zerlegung in die E, E,... immer feiner, so konvergieren diese Rieman-Summen gegen das Integral T ( f(x dx. Schreiben wir dann E i = T ( i und y i = T (x i mit x i i, so wird in die Teile,,... zerlegt und wir haben S = f(t (x i vol(t ( i = f(t (x i det T vol( i Nun ist S := f(t (x i vol( i = det T f(t (x i vol( i. eine Rieman-Summe der Hintereinanderausführung f T und unsere obige Formel liest sich als S = det T S. Konvergiert die Zerlegung E, E,... gegen T (, so konvergiert,,... gegen, also lim S = f(t (x dx. amit folgt f(x dx = lim S = lim det T S = det T lim S = det T T ( 7- f(t (x dx.

3 Mathematik für Ingenieure III, WS 9/ Mittwoch 8. Auch dies ist natürlich kein exakter eweis dieser Formel, aber er kann durch etwas gründlichere uchhaltung zu einem exakten eweis ausgebaut werden. ies wollen wir hier aber nicht durchführen. Man kann das Argument auch noch etwas ausbauen, um zusätzlich einen Translationsanteil zu berücksichtigen. amit erhält man den folgenden Satz Satz. (Lineare Transformationsformel Seien T : R n R n eine lineare Abbildung, u R n und betrachte die affine Abbildung ϕ : R n R n ; x T (x + u. Sei R n beschränkt und Jordan-meßbar. ann ist auch ϕ( R n beschränkt und Jordan-meßbar mit vol(ϕ( = det T vol(. Ist f : ϕ( R Rieman-integrierbar, so ist auch f ϕ Rieman-integrierbar und es gilt f(x dx = det T f(ϕ(x dx. ϕ( urch komponentenweise etrachtung kann man diese Aussage natürlich auch auf Integrale vektorwertiger Funktionen f : ϕ( R m ausdehnen. Wir wollen diesen Satz einmal dazu benutzen um auch das Verhalten des Schwerpunkts unter linearen Transformationen zu untersuchen. azu benötigen wir allerdings einen kleinen weiteren Satz, der das Verhalten des Rieman-Integrals unter linearen Abbildungen beschreibt: Satz. (Linearität des Rieman-Integrals Sei R n beschränkt und Jordan-meßbar und sei f : R p eine Riemanintegrierbare Funktion. Ist dann T : R p R q eine lineare Abbildung, so ist auch T f wieder Rieman-integrierbar und es gilt ( T (f(x dx = T f(x dx. ies ist klar nach.satz 5.(b,c da eine lineare Abbildung R p R q in jeder Komponente eine Summe von Vielfachen der Argumente x i ist. Satz. (Verhalten von Schwerpunkten unter linearen Abbildungen Sei R n beschränkt und Jordan-meßbar mit Schwerpunkt S. Weiter seien u R n und T : R n R n linear. ann ist T (S + u der Schwerpunkt von T ( + u. 7-

4 Mathematik für Ingenieure III, WS 9/ Mittwoch 8. eweis: Mit Satz und Satz ergibt sich S T (+u = p dp = vol(t ( + u T (+u vol( ( = T (p dp + = T vol( ( vol( p dp (T (p + u dp u dp + vol( ( dp u = T (S + u. Nehmen wir als ein eispiel einmal die Ellipse } E := {(x, y R x a + y b mit a, b >. etrachten wir die lineare Abbildung ( a T :=, b b y a x so ist E = T ( das ild des Einheitskreises, und somit ergibt sich für die Fläche der Ellipse die Gleichung vol(e = det(t vol( = πab. er Schwerpunkt des Einheitskreises ist in Null, und damit ist auch der Schwerpunkt von E im Nullpunkt. Wir wollen dieses eispiel noch auf eine andere Ellipse ausdehnen. Wir betrachten die Menge E := {(x, y R x + y xy + x y a} R mit einer Konstanten a >. Ist dies eine Ellipse und was sind in diesem Fall ihr Schwerpunkt und ihre Fläche? Zu diesem Zweck betrachten wir die quadratische Funktion f(x, y = x + y xy + x y und wenden auf diese die Hauptachsentransformation an (siehe 6. aus dem letzten Semester. In Matrixform ist f(x = (Ax x + b x mit ( ( A = und b =. as charakteristische Polynom von A ist χ A (x = x x

5 Mathematik für Ingenieure III, WS 9/ Mittwoch 8. also sind die Eigenwerte von A gegeben durch ± 4 = ± sind also λ = und µ =. a beide Eigenwerte positiv sind, ist E tatsächlich eine Ellipse. ie erechnung der Eigenvektoren liefert für λ = = x = y und für µ = = x = y also normiert u = (, v = (. Als Koordinatenursprung müssen wir jetzt den Punkt z := ( b u λ u + b v µ v = µ v = ( v = verwenden. Ist also so ist f ( S :=, ( ( x S y für alle x, y R. etrachten wir also die Menge { := (x, y R x + } y a = so ist + z = x + y { (x, y R a x + a y S (E z{x R Sx + z E} = = E = S( + z. Wie wir bereits gesehen haben, hat den Schwerpunkt Null und die Fläche vol( = π a a = πa. Folglich hat E den Schwerpunkt z und die Fläche vol(e = det S vol( = vol( = πa. }, 7-5

6 Mathematik für Ingenieure III, WS 9/ Mittwoch 8..4 ie Transformationsformel Wir wollen jetzt die lineare Transformationsformel des Satz auf allgemeine Koordinatentransformationen ausdehnen. er exakte eweis ist technisch etwas aufwendig, auf der heuristischen Ebene ist er aber nur eine kleine Erweiterung unserer Argumentation im letzten Abschnitt. Gegeben sei eine Koordinatentransformation ϕ : U V zwischen offenen Mengen U, V R n. Weiter sei U eine beschränkte, abgeschlossene und Jordan-meßbare Menge. ann ist auch das ild ϕ( V beschränkt und Jordan-meßbar. Schließlich sei f : ϕ( R eine Rieman-integrierbare Funktion. Wie beim linearen Transformationssatz betrachten wir eine Riemansumme S = f(y i vol(e i zu ϕ( f(x dx, wobei ϕ( in Teile E, E,... zerlegt ist und y i E i sind. Weiter schreiben wir dann E i = ϕ( i und y i = ϕ(x i. Jetzt müssen wir uns an die edeutung der totalen Ableitung erinnern. Wir hatten im letzten Semester unter anderen den Approximationsstandpunkt erwähnt, dieser besagt das für x nahe bei x i eine Gleichung ϕ(x = ϕ(x i + ϕ (x i (x x i + τ(x x i besteht, wobei der Approximationsfehler τ(x x i proportional zu x x i klein wird, und wir für x ausreichend nahe bei x i auch die Proportionalitätskonstante beliebig klein machen können. amit ist auch das ild E i = ϕ( i näherungsweise gleich ϕ(x i + ϕ (x i ( i, und auch für das Volumen erhalten wir mit Satz die Näherung vol(e i = vol(ϕ( i vol(ϕ(x i + ϕ (x i ( = det ϕ (x i vol( i. Folglich ist S näherungsweise gleich S = f(y i vol(e i f(ϕ(x i det ϕ (x i vol( i =: S, und S ist eine Riemansumme der Funktion (f ϕ ϕ (x. eim Grenzübergang wird damit f(x dx = lim S = lim S = f(ϕ(x det ϕ (x dx. ϕ( amit haben wir die allgemeine Transformationsformel zwar nicht bewiesen aber zumindest heuristisch begründet. Satz.4 (Transformationsformel für Integrale Seien U, V R n offen und ϕ : U V eine Koordinatentransformation. Weiter sei U eine kompakte, Jordan-meßbare Menge und f : ϕ( R eine Riemanintegrierbare Funktion. ann ist auch (f ϕ det ϕ eine Rieman-integrierbare Funktion und es gilt f(x dx = f(ϕ(x det ϕ (x dx. ϕ( 7-6

7 Mathematik für Ingenieure III, WS 9/ Mittwoch 8. In diesem Zusammenhang nennt man die eterminante det ϕ (x oft auch die Funktionaldeterminante von ϕ. Als ein erstes eispiel bezeichne ϕ die Polarkoordinaten ϕ(r, φ = (r cos φ, r sin φ. Streng genommen müssen wir ϕ für r > und φ < π betrachten, da aber nur Nullmengen hinzukommen schadet es nichts auch r = oder φ = π zuzulassen. Wir haben ( cos φ r sin φ ϕ (r, φ = = det ϕ (r, φ = r cos φ + r sin φ = r, sin φ r cos φ und damit wird die Transformationsformel für Polarkoordinaten zu f(x, y d(x, y = rf(r cos φ, r sin φ d(r, φ. ϕ( Rechnen wir als ein eispiel einmal das Integral x d(x, y, := {(x, y R x + y R }. ann ist = ϕ([, R] [ π, π], also x d(x, y = [,R] [ π,π] ( R r cos φ d(r, φ = = ( 4 r4 R ( π r dr cos φ dφ π ( φ + sin φ cos φ π π = 4 πr4, wobei wir das unbestimmte Integral cos x dx in. im letzten Semester berechnet haben. Als ein zweites eispiel rechnen wir x ln( + x + y d(x, y über := {(x, y R x + y R, x }. ie Menge ist die rechte Hälfte des Kreises mit Radius R > und Mittelpunkt in, und für die Polarkoordinaten schreibt sich diese Menge als r R und x = r cos φ, also φ π/. Mit := [, R] [ π/, π/] ist somit ϕ( =, also x ln( + x + y d(x, y = r cos φ ln( + r d(r, φ ( R ( π/ = r ln( + r dr cos φ dφ π/ R = r ln( + r dr. 7-7

8 Mathematik für Ingenieure III, WS 9/ Mittwoch 8. Nun ist und wir haben d dr r ln( + r = r ln( + r + r4 + r r 4 + r = r4 r r = r + + r = d dr ( r r + arctan r, also insgesamt r ln( + r dr = ( r r + r ln( + r arctan r, und somit ist R x ln( + x + y d(x, y = r ln( + r dr ( = r r + r ln( + r arctan r = 4 R 4 9 R + R ln( + R 4 arctan R. R 7-8

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/1 Montag 3.11 $Id: transform.tex,v 1.5 9/11/3 16:9: hk Exp $ Koordinatentransformationen. ie Transformationsformel In der letzten Sitzung hatten wir die Transformationsformel

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen $Id: integral.tex,v.0 009//0 :4:35 hk Exp $ Integrale von Funktionen in mehreren Variablen.3 Integration über Jordan-meßbare Mengen Als ein zweites Beispiel der Integration über Jordan-meßbare Mengen wollen

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 11. Juli 2016 Ableitungen im Höherdimensionalen Im Eindimensionalen war die Ableitung f (x 0 ) einer Funktion f : R R die

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen $Id: transform.tex,v.7 29//25 2::59 hk Exp $ $Id: kurven.tex,v.2 29//26 3:3:25 hk Exp hk $ 2 Koordinatentransformationen 2.5 Uneigentliche Rieman-Integrale Bisher haben wir das Rieman-Integral nur für

Mehr

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/ Dr. P. Furlan Dr. J. Horst Fakultät Mathematik Technische Universität Dortmund Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 06/7 6.0.07 Es sind insgesamt 50 Punkte erreichbar. Bei mindestens

Mehr

4 Das Riemann-Integral im R n

4 Das Riemann-Integral im R n $Id: nintegral.tex,v.5 202/2/04 6:0:04 hk Exp $ 4 Das Riemann-Integral im R n 4.4 Schwerpunkte In der letzten Sitzung hatten wir den Schwerpunkt sm einer Jordan-meßbaren Menge M R n von positiven Volumen

Mehr

Integration (handgestrickt)

Integration (handgestrickt) Integration (handgestrickt) C c (R n ) :={f : R n R; f stetig, Träger(f) beschränkt}. B + b (Rn ) := { f : R n R; abei bedeutet f m konvergiert. J (R n ) := {f; a) f beschränkt, b) Träger(f) beschränkt,

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u -MAVT/-MATL FS 28 r. Andreas Steiger Analysis IILösung - Serie6. ie Koordinatentransformation xu, v = 2v, yu, v = 2u bildet Kreise auf Kreise ab. a Wahr. b Falsch. ie Transformation entspricht einer Stauchung

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Dienstag $Id: jordantex,v 8 9// 4:48:9 hk Exp $ $Id: quadrattex,v 9// 4:49: hk Exp $ Eigenwerte und die Jordansche Normalform Matrixgleichungen und Matrixfunktionen Eine

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Klausur zu Maß- und Integrationstheorie

Klausur zu Maß- und Integrationstheorie Mathematisches Institut Universität Leipzig Prof. Dr. Bernd Kirchheim WS 2017/18 6.Februar 2018 Klausur zu Maß- und Integrationstheorie Erlaubte Hilfsmittel: Schreibmaterialien (ohne Kommunikations- oder

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben 9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen $Id: integral.tex,v 1.2 2009/10/28 20:24:48 hk Exp hk $ 1 Integrale von Funktionen in mehreren Variablen 1.1 Das Rieman Integral im R n Im letzten Semester hatten wir die Differentialrechnung auf Funktionen

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen Mathematik für Ingenieure III, WS 9/ Montag 9. $Id: integral.te,v.6 9//9 4:7:55 hk Ep $ Integrale von Funktionen in mehreren Variablen.4 Flächen und Volumina Angenommen wir haben einen örper R 3 gegeben.

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

2.6 Der Satz von Fubini

2.6 Der Satz von Fubini 1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 28 Dienstag 29.5 $Id: vektor.tex,v.46 28/5/29 6:4: hk Exp $ Analytische Geometrie und Grundlagen.6 Bewegungen und Kongruenzbegriffe Am Ende der letzten Sitzung hatten wir bereits

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $ $Id: anageo.tex,v 1.3 9/1/18 1:4:38 hk Exp hk $ II. Lineare Algebra 1 Analytische Geometrie 1.1 Das Skalarprodukt v w u p Wir wollen noch eine weiteres Ergebnis der eben durchgeführten Überlegung festhalten.

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

KLAUSUR. Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) (W.Strampp) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.

KLAUSUR. Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) (W.Strampp) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr. KLAUSUR Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) 39 (WStrampp) Name: Vorname: Matr Nr/Studiengang: Versuch Nr: Für jede Aufgabe gibt es Punkte Zum Bestehen der Klausur sollten 7 Punkte erreicht

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale Das mehrdimensionale Riemann-Integral. Volumenintegrale Es sei ein uader im R n gegeben durch := [a, b ] [a 2, b 2 ] [a n, b n ] = {(x,... x n ) a j x j b j } mit rellen Zahlen a j, b j, j =,... n. Offenbar

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

10 Ableitungen höherer Ordnung

10 Ableitungen höherer Ordnung Mathematik für Ingenieure II, SS 9 Freitag 47 $Id: ntaylortex,v 3 9/7/4 8:6:56 hk Exp $ Ableitungen höherer Ordnung Partielle Ableitungen beliebiger Ordnung Nachdem wir das letzte Mal einige Beispiele

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I.

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Kapitel 4 Mehrfachintegrale 4.1 Erinnerung an Integrationsrechnung 4.1.1 estimmtes Integral als Fläche Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Ges.: Fläche F zwischen dem Graphen

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

3 Das n-dimensionale Integral

3 Das n-dimensionale Integral 3 Das n-dimensionale Integral Ziel: Wir wollen die Integrationstheorie für f : D R n R entwickeln. Wir wollen den Inhalt (beziehungsweise das Maß ) M einer Punktmenge des R n definieren für eine möglichst

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 203 Institut für Analysis 504203 Prof Dr Tobias Lamm Dr Patrick Breuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Bestimmen Sie die

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.9 2011/06/01 15:13:45 hk Exp $ $Id: jordan.tex,v 1.3 2011/06/01 15:30:12 hk Exp hk $ 4 Funktionenfolgen und normierte Räume 4.5 Normierte Räume In der letzten Sitzung hatten wir den Begriff

Mehr

Grundlagen der Mathematik 2 Nachklausur

Grundlagen der Mathematik 2 Nachklausur Andreas Gathmann und Yue Ren Sommersemester 6 Grundlagen der Mathematik Nachklausur Bearbeitungszeit: 8 Minuten Aufgabe (6 Punkte): Es sei f : R R, (x,y) xye (x+y). (a) Bestimme alle lokalen Maxima und

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck rança Stefan Huber Zentralübung TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA924 Z3.. Polardarstellung quadratischer Matrizen

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

$Id: integral.tex,v /05/12 16:36:04 hk Exp $ arctan x + + 4n n 2 2x + a. x 2 + ax + b Φ n 1. A n 1, Φ n (x) = xn 1 2n

$Id: integral.tex,v /05/12 16:36:04 hk Exp $ arctan x + + 4n n 2 2x + a. x 2 + ax + b Φ n 1. A n 1, Φ n (x) = xn 1 2n $Id: integral.te,v 1.9 9/5/1 16:36:4 hk Ep $ Integralrechnung.4 Integration rationaler Funktionen Am Ende der letzten Vorlesung hatten wir die Formel + a + b = 4n A n 1 n n arctan + + 4n 1 n 1 a + a +

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss

Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss Analysis -BAUG r. Cornelia Busch F 6 erie. Überprüfen ie die Gültigkeit des atzes von Gauss F d div F dv, () anhand des Beispiels F(x, y, z) (3x, xy, xz), [, ] [, ] [, ] (Einheitswürfel im R 3 ). Wir berechnen

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

8 Beispiele von Koordinatentransformationen

8 Beispiele von Koordinatentransformationen 8 Beispiele von Koordinatentransformationen Wir diskutieren nun diejenigen Koordinatentransformationen, die in der Praxis wirklich gebraucht werden (ebene und räumliche Polarkoordinaten sowie Zylinderkoordinaten).

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Aufgaben. f : R 2 R, f(x, y) := y.

Aufgaben. f : R 2 R, f(x, y) := y. 11. Übung zur Maß- und Integrationstheorie, Lösungsskizze A 63 Untermannigfaltigkeiten von R 2 ). Aufgaben Skizzieren Sie grob die folgenden Mengen und begründen Sie, welche davon 1-dimensionale Untermannigfaltigkeiten

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Thema: Herleitung der Transformationsformel für Gebietsintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Thema: Herleitung der Transformationsformel für Gebietsintegrale Vorlesung: Analysis II für Ingenieure Wintersemester 9/ Michael Karow Thema: Herleitung der Transformationsformel für Gebietsintegrale Auf den folgenden Seiten wird die Transformationsformel für Gebietsintegrale

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

5 Die Transformationsformel

5 Die Transformationsformel $Id: transform.tex,v 1.6 1/1/11 15:47:59 hk Exp hk $ 5 Die Transformationsformel In der letzten Sitzung haben wir die Transformationsformel als n-dimensionale Erweiterung der bekannten Substitutionsregel

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2017/18. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2017/18. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2017/18 1. Integration von Funktionen in zwei Variablen 1.1. Integral auf Rechtecken Wir betrachten ein beschränktes Rechteck

Mehr

Selbsteinschätzungstest

Selbsteinschätzungstest D-MATH ETHZ-Semesterbeginn HS 0 Selbsteinschätzungstest Dieser Test bietet Ihnen die Möglichkeit, Ihre mathematischen Schulkenntnisse abzurufen und zu überprüfen. Die Teilnahme ist freiwillig. Bei jeder

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 8. Übungsblatt Institut für Analsis SS7 P r. Peer Christian Kunstmann 6.6.7 ipl.-math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung Phsik

Mehr

Musterlösung Serie 12

Musterlösung Serie 12 Prof. D. Salamon Analysis II MATH, PHYS, CHAB FS 05 Musterlösung Serie. Es sei wie in der Aufgabenstellung M R n eine C -Untermannigfaltigkeit und B M eine kompakte Teilmenge. Des weiteren nehmen wir an,

Mehr