TECHNISCHE UNIVERSITÄT MÜNCHEN

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN"

Transkript

1 Prof. Dr. Michael Wolf Daniel Stilck rança Stefan Huber Zentralübung TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA924 Z3.. Polardarstellung quadratischer Matrizen Wintersemester 26/7 Lösungsblatt 3 (28..26) Zu jeder Matrix M n n gibt es O, S n n mit O orthogonal und S symmetrisch, so dass M OS. Sei M n n. Dann ist M T M symmetrisch und positiv semidefinit, denn (M T M) T M T (M T ) T M T M und x, M T Mx Mx, Mx Mx 2 f.a. x n. Es gibt also eine ONB (b k ) aus Eigenvektoren jeweils zu den Eigenwerten λ k, so dass M T M n λ k b k b T k. k Setze S : n M T M λk b k b T k. k S ist symmetrisch, positiv semidefinit und S 2 n n n n λk λl b k b T k b n lb T l λk λl δ kl b k b T l λ k b k b T k M T M. k l k l k Ist nun S sogar invertierbar (d.h. M hat vollen ang), dann gilt für O : MS, dass O orthogonal ist, O T O (MS ) T MS S M T MS S S 2 S l, und M OS. Ist S nicht invertierbar, setzt man S : n λk b k b T k mit λ k k { falls λ k, λ k sonst. Dieses S ist per Konstruktion invertierbar und Õ : M S ist eine partielle Isometrie (ÕÕT Õ Õ), die elementar zu einer orthogonalen Matrix O erweitert werden kann, für die M OS gilt. Z3.2. Transformationssatz für Polarkoordinaten Gegeben ist die Koordinatentransformation Φ(r, φ) (r cos φ, r sin φ). Sei f : 2 stetig. Man zeige: Ist f absolut integrierbar, so gilt: 2 f(x)dx falls die iterierten Integrale existieren. 2π f(r cos φ, r sin φ)r dφ dr,

2 Die Koordinatentransformation Φ ist auf der offenen Menge 2 stetig differenzierbar. Zunächst betrachten wir die kompakte J-messbare Menge B () und suchen ein A 2, so dass B () Φ(A). Z.B. A [, ] [, 2π] erfüllt dies und ist zugleich kompakt und J-messbar. Außerdem ist N : A eine J-Nullmenge und wegen det J Φ (r, φ) r für r > ist Φ A regulär. Die Injektivität ist klar, da für (r, φ) A, sowohl r > als auch φ (, 2π) ist. Somit sind die Voraussetzungen des Transformationssatzes erfüllt, es gilt B ()Φ(A) f(x)d 2 x Transf. [,] [,2π] f(φ(r, φ)) det J Φ (r, φ) d(r, φ) ubini 2π f(r cos φ, r sin φ)rdφdr. Da f absolut integrierbar ist, gilt für jede ausschöpfende olge (A k ) des 2, dass f(x)d 2 x f(x)d 2 x 2 A k Insbesondere erhalten wir für A k B k (), dass 2 f(x)d 2 x 2π B k () k f(x)d 2 x f(r cos φ, r sin φ)rdφdr. 2π f(r cos φ, r sin φ)rdφdr Z3.3. Uneigentliche Integrale (a) Berechnen Sie das Integral von f(x, y) e y2 über A {(x, y) 2 x y}. (b) ür welche Werte von α > existiert für f : d \ {}, f(x) x, das Integral α über die Einheitskugel, f(x)d d x, d, 2, 3? x (a) A k : { x y k}, k N, ist eine für f geeignete ausschöpfende olge von A, f ist stetig und positiv, also gilt A f(x, y)d(x, y) def A k k y e y2 d(x, y) ubini dy dx e y2 k y k dy e y2 dx dy ye y2 [ 2 e y2] k 2. (b) d : ür nichtnegative unktionen auf ist absolut iemann-integrierbar dasselbe wie uneigentlich iemann-integrierbar (Analysis ). Somit ist x α dx { 2 α < für α <, für α.

3 d 2: x x α d2 x auschöpf. ubini k x k x α d2 x Transf. 2π dr rα [ k,] [,2π] { 2π 2 α für α < 2, für α 2. rd(r, φ) rα d 3: x α d3 x x auschöpf. ubini k x k r x α d3 x Transf. π dr α 2 sin θ dθ 2π [ k,] [,π] [,2π] dφ r α r2 sin θd(r, θ, φ) { 4π 3 α für α < 3, für α 3. Tutoraufgaben T3.. Gegenbeispiel zu ubini für < y < x, x 2 Sei f : [, ] 2, f(x, y) für < x < y, y 2 für x y, xy. (a) Berechnen Sie das Doppelintegral von f auf [, ] 2 für beide Integrationsreihenfolgen. (b) Was bedeutet dies für die Integrierbarkeit von f auf [, ] 2? ür welche ausschöpfende olge ergibt sich im Limes? (c) Veranschaulichen Sie das Ergebnis, in dem Sie das Integral von f ± auf [, ] 2 berechnen. (a) Man erhält dx dy f(x, y) dx x dy x 2 x dy y 2 ( x + [ y ] x ) dx und dy dx f(x, y) dy y dx( ) + y 2 y dx x 2 ( x [ y ] x ) dx. (b) Die beiden Ergebnisse sind nicht gleich. f kann also nicht (absolut) integrierbar sein auf [, ] 2. Da f unbeschränkt ist, braucht man ausschöpfende olgen. Das erste Doppelintegral ist der Grenzwert der Integrale auf der ausschöpfenden olge [ k, ] [, ], dass zweite Integral ergibt sich als Limes der Integrale auf der ausschöpfenden olge [, ] [ k, ]. Auf jeder dieser Mengen ist f eigentlich iemann-integrierbar. Es kann nur daran liegen, dass f nicht positiv ist. (c) dx dy f + (x, y) dx x dy x 2 xdx.

4 Das gleiche Ergebnis erhält man für f. Das Volumen unter dem positiven Teil von f ist also unendlich groß, genau wie das Volumen über dem negativen Teil. Beim Versuch zu berechnen hängt das Ergebnis davon ab in welcher eihenfolge man aufsummiert. Aus Symmetriegründen (f ist antisymmetrisch bezüglich der Diagonalen, f(x, y) f(y, x)) würde man erwarten, dass das Integral Null ergeben sollte, aber das ist ungefähr so gut begründet wie die Behauptung das der Grenzwert der olge ( ) k aus Symmetriegründen Null ist. T3.2. Trägheitsmoment der Kugel Man berechne das Trägheitsmoment einer Kugel mit adius bezüglich der z-achse, I zz (x 2 + y 2 )d(x, y, z). B () r sin θ cos φ Parametrisierung durch Kugelkoordinaten: Φ(r, θ, φ) r sin θ sin φ wobei, wie bekannt, det DΦ(r, θ, φ) r 2 sin θ. r cos θ Integrationsbereich: B () Φ([, ] [, π] [, 2π] ) N : A ist J-Nullmenge und Φ }{{} ist auf A A \ A injektiv und regulär. Integrand: f Φ(r, θ, φ) (r sin θ cos φ) 2 + (r sin θ sin φ) 2 r 2 sin 2 θ. Somit ist I zz ubini T3.3. Transformationssatz B () 2π dφ :A f(x, y, z)dxdydz Transf.f. π sin 3 θdθ A r 2 sin 2 θ r 2 sin θ dφdθdr r 4 dr 2π π5. Wenden Sie jeweils den Transformationssatz aus der Vorlesung an, um die folgenden Integrale zu berechnen. Man wähle geeignete ausschöpfende olgen. (a) x 2 dx, Transformation g : ( π 2, π 2 ) (, ), g(u) sin u. (b) [,] (+x 2 ) 2 dx, Transformation g(t) tan t.

5 (c) vol(b) mit B {(x, y) 2 x y2 4 } direkt und mit der Transformation g : + 2, g(u, v) (u 2 v 2, 2uv). (a) g ist Diffeomorphismus, det J g (u) g (u) cos u für u ( π 2, π 2 ). A k [ π 2 + k, π 2 k ] ist ausschöpfende olge von [ π 2, π 2 ] und g(a n) ist ausschöpfende olge von [, ]. Somit gilt x 2 dx x 2 dx Transf. g(u) 2 det J g (u) du [,] g(a k ) π 2 k π 2 + k A k sin 2 u cos u du π 2 π 2 cos 2 u du π 2. (b) g eingeschränkt auf ( π 2, π 2 ) ist Diffeomorphismus, det J g(u) g (u) cos 2 u. A k [ π 2 + k, π 2 k ] ist ausschöpfende olge von [ π 2, π 2 ] und g(a n) ist ausschöpfende olge von. Somit gilt (c) direkt: ( + x 2 dx ) 2 vol(b) B g(a k ) π 2 k π 2 + k d 2 x 2 2 dy Transf. ( + x 2 dx ) 2 A k du cos 2 u( + sin2 u cos 2 )2 u y2 4 + y2 4 dx 2 2 π 2 π 2 ( + g(u) 2 ) 2 det J g(u) du cos 2 u du π 2. (2 y )dy Die angegebenen Transformation ist ein Diffeomorphismus. Anschaulich ist das klar, da die Quadratfunktion die komplexe Halbebene mit e(z) > bijektiv auf die geschlitzte komplexe Ebene C\ abbildet. Beweis durch Angabe der Umkehrfunktion: x x g (x, y) (e( x + iy), Im( x + iy) 2 + y 2 + x, sgn(y) 2 + y 2 x. 2 2 Die Jacobi-Determinante ist ( det J g (u, v) 2u det 2v ) 2v 4(u 2 + v 2 ). 2u Außerdem ist, siehe Zeichnung, B g(a) mit A (, ] [, ]. Da der and von A und g(a) jeweils eine Nullmenge ist, gilt B d 2 x g(a) d 2 x ( ) A det J g (u, v) dudv 4 du dv(u 2 + v 2 ) 4( ) 6 3. Der Zwischenschritt über die ausschöpfende olge A k [ k, ] [, ], für die auch g(a k ) eine ausschöpfende olge von B ist, wurde bei ( ) weggelassen.

6 Hausaufgaben H3.. Trägheitsmoment eines hyperbolischen Achtecks Das Trägheitsmoment einer läche 2 bezüglich otation um den Ursprung ist (x 2 + y 2 )dxdy Sei nun : {(x, y) 2 : x 2 y 2, 2xy }. (a) Skizzieren Sie die Menge. (b) Berechnen Sie den Schwerpunkt von. Hinweis: Symmetrie. (c) Berechnen Sie das Trägheitsmoment von bezüglich des Ursprungs. Hinweis: Koordinatentransformation u x 2 y 2, v 2xy für ein geeignetes Teilstück von. (a) wird durch 8 Hyperbeläste begrenzt..5 y x.5..5 (b) ist kompakt und Jordan-messbar. Die Integrale xdxdy und ydxdy existieren also. Wir wenden die Transformationsformel auf die Abbildung Ψ(x, y) ( x, y) an. Dann ist Ψ( ) und damit x dx dy xdxdy Ψ (x, y) det DΨ(x, y) dxdy Ψ( ) ( x)dxdy xdxdy und damit xdxdy. Analog erhält man y dx dy. Der Schwerpunkt liegt also wegen den Spiegelsymmetrien im Ursprung. (c) ür das Trägheitsmoment von wählen wir die Koordinatentransformation Φ(x, y) (x 2 y 2, 2xy). Wir berechnen nun das Trägheitsmoment von + : ( + ) 2 mit Hilfe der Transformationsformel für Φ, wobei Φ( + ) (, ) [, ], und ( ) 2x 2y det DΦ(x, y) det 4(x 2 + y 2 ). 2y 2x

7 (x 2 + y 2 ) dx dy + (x 2 + y 2 ) Φ (u,v) det DΦ (u, v) dudv Φ( + ) det DΦ(Φ (u, v)) det DΦ (u, v)dudv det D(Φ(Φ (u, v)))dudv 2 4. Somit ist (x2 + y 2 )dxdy H3.2. Newtonsches Theorem Ein Kugelsternhaufen habe die radialsymmetrische mittlere Massendichte m(x) ρ( x ), mit ρ : + + stetig, r3 ρ(r) für r. Das Gravitationspotential ist V (x) : 3 m(y) x y d3 y, x 3. Die Masse M() innerhalb der Kugel mit adius ist M() 4π ρ(r)r 2 dr <. Das Newtonsche Theorem besagt, dass die Gravitationskraft in einem Punkt mit Abstand vom Ursprung dieselbe ist, wie die durch eine im Ursprung vereinigte Masse M() verursachte Kraft, also für x grad V (x) M() 2 (a) Berechnen Sie v() : V (,, ) mit Hilfe von Kugelkoordinaten und der den 3 ausschöpfenden olge B k {y 3 y C k }, C k [, k ] [ + k, k]. (Ergebnis: v() M() 4π ρ(r)rdr.) x. Hinweis: Man benutze θ r r cos θ r sin θ r r cos θ. (b) Aus Symmetriegründen ist V (x) V (,, x ). Zeigen Sie, dass grad V (x) M( x ) x 3 x. r sin θ cos φ (a) In Kugelkoordinaten Φ(r, θ, φ) r sin θ sin φ ist det J Φ (r, θ, φ) r 2 sin θ. r cos θ Der Nenner des Integranden von V (,, ) lautet in Kugelkoordinaten für y 3 y r sin θ cos φ r sin θ cos φ r cos θ r 2 sin 2 θ + ( r cos θ) 2 r r cos θ. Auf der angegebenen ausschöpfenden olge B k ist der Integrand iemann-integrierbar.

8 Mit der Transformationsformel erhält man ρ() V (,, ) (,, ) y d3 y 3 C k 2π 2π 2π π dr C k dθ 2π ( r π ρ(r) C k C k B k ρ() (,, ) y d3 y ρ(r)r 2 sin θ dφ r r cos θ r sin θ r r cos θ dθ ) dr [ π ρ(r)r r r cos θ] dr ρ(r)r(r + r )dr 2π 4π k 2ρ(r)r 2 dr + 2π ρ(r)r 2 dr + 4π k + k ρ(r)r dr. 2ρ(r)r dr Das zweite Integral existiert, da rρ(r) o(r 2 ), also integrierbar auf +. Somit ist v() M() 4π ρ(r)rdr (b) Die Kettenregel ergibt Wegen M () 4πρ() 2 gilt grad V (x) grad v( x ) v ( x ) x x. v () M () + M() 2 + 4πρ() M() 2 und man erhält grad V (x) M( x ) x 3 x, was in der Tat der Gravitationskraft eines Massenpunktes im Ursprung mit Masse M( x ) entspricht.

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physiker (Analysis 3) MA94 Z4.. Parametrisierungsinvarianz des Oberflächenintegrals

Mehr

8 Beispiele von Koordinatentransformationen

8 Beispiele von Koordinatentransformationen 8 Beispiele von Koordinatentransformationen Wir diskutieren nun diejenigen Koordinatentransformationen, die in der Praxis wirklich gebraucht werden (ebene und räumliche Polarkoordinaten sowie Zylinderkoordinaten).

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 7. Das Gauss-Integral e x2 dx TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (nalysis 3 http://www.ma.tum.de/hm/m924 2W/

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 57 Die ransformationsformel für Integrale Wir kommen zur ransformationsformel für Integrale, wofür wir noch eine Bezeichnung

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale Vorlesung: Analysis II für Ingenieure Wintersemester 7/8 Michael Karow Thema: Transformationsformel für Gebietsintegrale Transformation von Gebietsintegralen im 2 (Satz 24 im Skript) Seien, 2 kompakte

Mehr

Musterlösung Serie 12

Musterlösung Serie 12 Prof. D. Salamon Analysis II MATH, PHYS, CHAB FS 05 Musterlösung Serie. Es sei wie in der Aufgabenstellung M R n eine C -Untermannigfaltigkeit und B M eine kompakte Teilmenge. Des weiteren nehmen wir an,

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Ferienkurs Analysis 3 für Physiker. Integration im R n

Ferienkurs Analysis 3 für Physiker. Integration im R n Ferienkurs Analysis 3 für Physiker Integration im R n Autor: Benjamin Rüth Stand: 16. ärz 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Definition des Riemann-Integrals über Quadern 3

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

5 Die Transformationsformel

5 Die Transformationsformel $Id: transform.tex,v 1.6 1/1/11 15:47:59 hk Exp hk $ 5 Die Transformationsformel In der letzten Sitzung haben wir die Transformationsformel als n-dimensionale Erweiterung der bekannten Substitutionsregel

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Phsiker Analsis ) MA9 http://www-m5.ma.tum.de/allgemeines/ma9 8S Sommersem. 8 Lösungsblatt 5 4.5.8) Zentralübung

Mehr

Lösungen zu Koordinatentrafo und Integration im R n

Lösungen zu Koordinatentrafo und Integration im R n Lösungen zu Koordinatentrafo und Integration im R n für Freitag, 8.9.9 von Carla Zensen Aufgabe : Verschiedene Parametrisierungen a) Zylinderkoordinaten ρ Ψ ϕ Ψ z Ψ cos ϕ ρ sin ϕ DΨρ, ϕ, z) = ρ Ψ ϕ Ψ z

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Liste wichtiger Stammfunktionen

Liste wichtiger Stammfunktionen Liste wichtiger Stammfunktionen Funktion Stammfunktion x n, x ln(x) n R \ { } n + xn+ ln( x ) x ln(x) x a x, a > sin(x) cos(x) sin 2 (x) cos 2 (x) x 2 x 2 a x ln(a) cos(x) sin(x) (x sin(x) cos(x)) 2 (x

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

3 Volumenintegrale und Transformationsformel

3 Volumenintegrale und Transformationsformel 3 Volumenintegrale und Transformationsformel Nachdem wir uns in den ersten beiden Kapiteln mit recht abstrakten Konstruktionen beschäftigt haben, wenden wir uns nun der Berechnung konkreter Lebesgue Integrale

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

1. Übungsblatt zur Analysis 3

1. Übungsblatt zur Analysis 3 Hannover, den 2. Oktober 23 Aufgabe. Übungsblatt zur Analysis 3 Abgabe am 27./28. Oktober 23 vor den Stundenübungen (je 5 Punkte) Man zeige: a) Die Funktion f : N N N, f(m, n) := 2 (m + n)(m + n + ) +

Mehr

Höhere Mathematik Vorlesung 4

Höhere Mathematik Vorlesung 4 Höhere Mathematik Vorlesung 4 März 217 ii In der Mathematik versteht man die inge nicht. Man gewöhnt sich nur an sie. John von Neumann 4 as oppelintegral Flächen, Volumen, Integrale Ob f für a x b definiert

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009)

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) 1 Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) Kapitel 10: Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 27. März 2009) Differenzialrechnung

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

ANALYSIS 3. Carsten Schütt WS 2008/9

ANALYSIS 3. Carsten Schütt WS 2008/9 1. Es sei f : R 3 R 3 durch f 1 (r, φ 1,φ 2 ) = r cos φ 1 f 2 (r, φ 1,φ 2 ) = r sin φ 1 cos φ 2 f 3 (r, φ 1,φ 2 ) = r sin φ 1 sin φ 2 gegeben. Für welche (r, φ 1,φ 2 ) ist f lokal invertierbar? Ist f global

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 Analysis MA93 http://www-m5.ma.tum.de/allgemeines/ma93 8S Sommersem. 8 Lösungsblatt 9.6.8 Zentralübung

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen. Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere

Mehr

Ferienkurs in Vektoranalysis

Ferienkurs in Vektoranalysis Zentrum athematik echnische Universität ünchen Dipl. ath. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Vektoranalysis Aufgabe. Sei U R n offen und f : U R m stetig differenzierbar. Zeige dass der Graph

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben

9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben 9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren

Mehr

Übungen zur Vorlesung Analysis III Wintersemester 2011/2012. Musterlösung zum Klausurvorbereitungsblatt

Übungen zur Vorlesung Analysis III Wintersemester 2011/2012. Musterlösung zum Klausurvorbereitungsblatt UNIVESITÄT DES SAALANDES FACHICHTUNG 6. MATHEMATIK Prof. Dr. oland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Analysis III Wintersemester 2/22 Musterlösung zum Klausurvorbereitungsblatt (3) Geben

Mehr

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale

Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale Das mehrdimensionale Riemann-Integral. Volumenintegrale Es sei ein uader im R n gegeben durch := [a, b ] [a 2, b 2 ] [a n, b n ] = {(x,... x n ) a j x j b j } mit rellen Zahlen a j, b j, j =,... n. Offenbar

Mehr

Analysis II. Vorlesung 52. Diffeomorphismen

Analysis II. Vorlesung 52. Diffeomorphismen Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 52 Diffeomorphismen Der Satz über die lokale Umkehrbarkeit gibt Anlass zu folgender Definition. Definition 52.1. EsseienV 1 undv 2 endlichdimensionalereellevektorräume

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 11. Juli 2016 Ableitungen im Höherdimensionalen Im Eindimensionalen war die Ableitung f (x 0 ) einer Funktion f : R R die

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n

Ferienkurs Analysis 3 für Physiker. Übung: Integration im R n Ferienkurs Analysis für Physiker Übung: Integration im R n Autor: Benjamin Rüth Stand: 6. Mär 4 Aufgabe (Zylinder) Gegeben sei der Zylinder Z der Höhe h > über dem in der x-y-ebene gelegenen reis mit Radius

Mehr

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund

Prof. Dr. L. Schwachhöfer Dr. J. Horst. Fakultät Mathematik TU Dortmund Prof. Dr. L. Schwachhöfer Dr. J. Horst akultät athematik TU Dortmund usterlösung zum 5. Übungsblatt zur Höheren athematik II P/ET/AI/IT/IKT/P) SS Aufgabe Die läche R 3 sei der Teils des Paraboloids z +y,

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/ Mittwoch 8. $Id: transform.tex,v.8 //4 :9: hk Exp $ Koordinatentransformationen. Lineare Koordinatentransformationen Wir überlegen uns dies zunächst im Spezialfall

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Integration (Fortsetzung) 2. Existenz von Integralen auf Quadern und allgemeineren Mengen 3. Satz von Fubini 4. Berechnung von Integralen 5. Volumina 6. Normalgebiete

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

11. Übungsblatt zur Mathematik II für MB

11. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 8.6.. Übungsblatt zur Mathematik für MB Aufgabe 5 ntervall im R egeben sei das ntervall { (x, y, z) R : π x π, y, z π}. Berechnen Sie x

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

Übungsaufgaben zur Vorlesung Analysis II. Blatt 1

Übungsaufgaben zur Vorlesung Analysis II. Blatt 1 Fakultät für Mathematik Ruhr-Universität Bochum SS 2003 24.4.2003 Blatt Aufgabe : (2+2+ Punkte) Gegeben sei die Funktion f : ]0; ] R mit f(x) = 2 xx. (a) Bestimmen Sie das Monotonie- und Krümmungsverhalten

Mehr

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014 Aufgabensammlung Höhere Mathematik für Physiker III Wintersemester 2014 1 Verbandstheorie 1. Aufgabe: (a) Sei f C(R) eine stetige Funktion. Wenn Rf(x)φ(x)dx = 0 für alle Testfunktionen φ Cc (R) gilt, dann

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / r. Hanna Peywand Kiani.. Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz, Potentiale

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I.

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Kapitel 4 Mehrfachintegrale 4.1 Erinnerung an Integrationsrechnung 4.1.1 estimmtes Integral als Fläche Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Ges.: Fläche F zwischen dem Graphen

Mehr

Analysis 3 - Klausur - Lösung

Analysis 3 - Klausur - Lösung Wintersemester 23/24, Universität Bonn Analysis 3 - Klausur - Lösung Aufgabe : Sigma-Algebren (4+6 Punkte) a) Sei X eine Menge. Sei F = {{} : X}. Bestimmen Sie σ(f). b) Sei X eine Menge, Sei S P(X). Zeigen

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.3 2014/04/17 18:51:19 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir begonnen eindimensionale Untermannigfaltigkeiten des R d zu untersuchen.

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 6. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum 6. Übungsblatt Aufgabe 2

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Analysis 2 - Übung 1

Analysis 2 - Übung 1 Analysis - Übung 1 Felix Knorr 8 März 014 4 Gegeben sei die Polynomfunktion f(x, y xy 10x Man bestimme die Gleichungen ihrer Schnittkurven mit den senkrechten Ebenen x x 0 bzw y y 0 sowie die Höhenlinien

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 009 Institut für Mathematik 060009 Prof Dr R Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil (a) Wie lauten die Voraussetzungen

Mehr

Serie 6: MC-Zwischentest - Kapitel I und II

Serie 6: MC-Zwischentest - Kapitel I und II D-ERDW, D-HEST, D-USYS Mathematik II FS 14 Dr. Ana Cannas Serie 6: MC-Zwischentest - Kapitel I und II Einsendeschluss: 11. April 14, 17 Uhr Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des

Mehr

Klausur Analysis II

Klausur Analysis II WS 28/9 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis II 6.2.28 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie16. y(u, v) = 2u -MAVT/-MATL FS 28 r. Andreas Steiger Analysis IILösung - Serie6. ie Koordinatentransformation xu, v = 2v, yu, v = 2u bildet Kreise auf Kreise ab. a Wahr. b Falsch. ie Transformation entspricht einer Stauchung

Mehr

MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 2017

MAE4 Mathematik: Analysis für Ingenieure 4 Frühlingssemester 2017 MAE4 Mathematik: Analysis fü Ingenieue 4 Fühlingssemeste 27 D. Chistoph Kisch ZHAW Wintethu Lösung 2 Aufgabe : Die Funktion ϕ ist offensichtlich stetig patiell diffeenzieba. Wi zeigen noch die Injektivität

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog

Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Im folgenden finden Sie eine Liste von typischen Prüfungsfragen für die Vorlesungsprüfung Differential- und Integralrechnung

Mehr

Teil IV : Integration über Untermannigfaltigkeiten. 9 Untermannigfaltigkeiten von R n

Teil IV : Integration über Untermannigfaltigkeiten. 9 Untermannigfaltigkeiten von R n Teil IV : Integration über Untermannigfaltigkeiten In der Analysis II haben wir bereits Kurven in R n eine Länge zugeordnet (also ein eindimensionales Volumen ) und Funktionen über Kurven integriert. In

Mehr

Musterlösungen Serie 3

Musterlösungen Serie 3 -MAVT -MATL Analysis II FS 1 Prof. r. P. Biran Musterlösungen Serie 1. Frage 1 Berechnen Sie wobei [, 1] [, 1]. xe x+y df, e 1 1 e + 1 xe x+y df Mit einer partiellen Integration erhalten wir xe x+y dydx

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Facbereic atematik Prof. Dr. R. Farwig C. omo J. Prasiswa R. Sculz SS 29 6.7.29 2. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Jordan-essbarkeit Die enge R n sei Jordan-messbar. Zeigen Sie, dass

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Klausur - Analysis II Lösungsskizzen

Klausur - Analysis II Lösungsskizzen Klausur - nalysis II Lösungsskizzen ufgabe 1.: 3 Punkte Entscheiden Sie, ob folgende ussagen wahr oder falsch sind. Kennzeichnen Sie wahre ussagen mit W und falsche ussagen mit. Es sind keine Begründungen

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr