Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale

Größe: px
Ab Seite anzeigen:

Download "Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Thema: Transformationsformel für Gebietsintegrale"

Transkript

1 Vorlesung: Analysis II für Ingenieure Wintersemester 7/8 Michael Karow Thema: Transformationsformel für Gebietsintegrale

2 Transformation von Gebietsintegralen im 2 (Satz 24 im Skript) Seien, 2 kompakte ereiche, und sei f : stetig. Sei x(u, v) x : 2, x(u, v) = y(u, v) eine stetig diff bare Abbildung, die umkehrbar auf abbildet (mit eventuellen Ausnahmen an den andpunkten von und ). Dann gilt f(x, y) dx dy = f(x(u, v), y(u, v)) (x, y) (u, v) du dv. Dabei ist (x, y) (u, v) = det( x (u, v)) = det x u y u x v y v die Funktionaldeterminante von x. emerkung: Man kann die Variablen u, v als neue Koordinaten für die Punkte in der Ebene 2 auffassen.

3 eispielaufgabe: Sei 2 der ereich, der von den Hyperbeln y = x, y = 4 x und den Geraden y = 4x, y = 9x begrenzt wird. erechne das Integral f(x, y) dx dy, wobei f(x, y) = x3 y. Lösung der Aufgabe durch Anwenden der Transformationsformel auf den nächsten Seiten.

4 Lösung der Aufgabe,. Schritt: Einführung angepasster Koordinaten u, v x(u, v) uv Definiere eine stetig diff bare Abbildung x(u, v) = =. y(u, v) v/u Diese Abbildung bildet den offenen positiven Quadranten + + umkehrbar auf sich selbst ab. Die Umkehrung ist u = x/y, v = xy. Eine Gerade mit v = const, u beliebig, wird dabei auf die Hyperbel y = v 2 /x abgebildet. Eine Gerade mit u = const, v beliebig, wird dabei auf die Gerade y = (/u 2 ) x abgebildet. Für den Integrationsbereich aus der Aufgabenstellung gilt: = x(), = {(u, v) 2 ; /3 u /2, v 2} Die Abbildung x bildet also umkehrbar auf ab. 2.2 uv Ebene 7 xy Ebene u=/3 v=2 v Achse.6.4 y Achse 4 3 u=/2.2 2 v= u Achse x Achse

5 2. Schritt: erechnung der Funktionaldeterminante x(u, v) uv Die Jacobi-Matrix der Abbildung x(u, v) = = y(u, v) v/u x (u, v) = [ x u y u Die Funktionaldeterminante ist daher: x v y v ] == [ v u v/u 2 /u (x, y) (u, v) = det( x (u, v)) = 2v/u 3. Schritt: Einsetzen in die Transformationsformel ist ]. x 3 y dx dy = = (uv) 3 (v/u)(2v/u) du dv = 2 /2 /3 /3 2 u v 5 du dv ( ) /2 ( 2 ) u v 5 du dv = 2 u du v 5 dv = 35/24.

6 Integration in Polarkoordinaten x(ρ, φ) ρ cos(φ) Die Jacobi-Matrix der Polarkoordinatenabbildung x(ρ, φ) = y(u, v) = ρ sin(φ) ist x (r, φ) = [ x ρ y ρ x φ y φ ] = cos(φ) ρ sin(φ). sin(φ) ρ cos(φ) Die Funktionaldeterminante ist daher: (x, y) (ρ, φ) = det( x (ρ, φ)) = ρ Sei = x(), und sei f eine in Polarkoordinaten angegebene Funktion. Dann ergibt die Transformationsformel: f(ρ, φ) dx dy = f(ρ, φ) ρ dρ dφ. eispiel: Sei = {(x, y) 2 ; x = ρ cos(φ), y = ρ sin(φ), ρ, φ π/2} der Viertelkreis vom adius. Sei f(ρ, φ) = ( ρ 2 )φ. Dann ( ρ 2 )φ dx dy = ρ 2 φ ρ dρ dφ = wobei = {(ρ, φ) 2 ; ρ, φ π/2}. π/2 ( ρ 2 )φ ρ dρ dφ,

7 2.2 uv Ebene 7 xy Ebene u=/3 v=2 v Achse.6.4 y Achse 4 3 u=/2.2 2 v= u Achse x Achse

8 eispiel: erechnung der Kardioidenfläche Wir berechnen den Flächeninhalt des ereichs K 2, der von der Kardioidenkurve c : [,2π] 2 cos(φ), c(φ) = ( + cos(φ)) sin(φ) begrenzt wird. Wir haben K = {( ρ cos(φ), ρ sin(φ) ) }{{}}{{} 2 ; φ [,2π], ρ + cos(φ) } = x(). x y Dabei ist x die Polarkoordinatenabbildung und = {(ρ, φ) 2 ; φ [,2π], ρ + cos(φ) } Somit ist der Flächeninhalt von K, vol 2 (K) = dx dy = K ρ dx dy = 2π +cos(φ) ρ dρ dφ = 3π 2. ρ,φ Ebene.5 x,y Ebene φ Achse 3 y Achse K ρ Achse x Achse

9 Der geometrische Schwerpunkt Der geometrische Schwerpunkt eines Gebiets 2 ist x S = Dabei ist xs y s = vol 2 () x dx dy = y vol 2 () [ x dx dy y dx dy ]. der Flächeninhalt von. vol 2 () = dx dy

10 eispiel: Geometrischer Schwerpunkt des Halbkreises Sei H = {( ρ cos(φ), ρ sin(φ) ) }{{}}{{} 2 ; φ [, π], ρ r } x y obere Halbkreis vom adius r. echnung in Polarkoordinaten ergibt für die y-koordinate des geometrischen Schwerpunkts von H: π r π r vol 2 (H) y }{{} s = y dx dy = y ρ dρ dφ = sin(φ) ρ 2 dρ dφ = 2 r 3 /3. H π r 2 /2 Also: y s = 4 r 3 π Analog folgt für die x-koordinate des Schwerpunkts: x s =. y Schwerpunkt x

11 Transformationsformel im Dreidimensionalen Die Transformationsformel gilt auch für 3-dimensionale ereiche. Die Funktionaldeterminanten sind für echnung in Zylinderkoordinaten: für echnung in Kugelkoordinaten: (x,y,z) (ρ,φ,z) = ρ, (x,y,z) (ρ,φ,θ) = ρ2 sin(θ), eispiel: erechnung des Volumens einer Kugel K vom adius r in Kugelkoordinaten: vol 3 (K) = K dx dy dz = 2π π r ρ2 sin(θ) dρ dθ dφ = [ρ 3 /3] r [ cos(θ)]π 2π = 4 3 π r3.

12 Noch einmal: das Volumen eines otationskörpers Sei ein kompakter ereich, der in der rechten Halbebene der (x, z)-ebene enthalten ist. Sei K, der Körper, der entsteht, wenn man um die z-achse rotiert. Dann ist K = {(ρ cos(φ), ρ sin(φ), z); (z, ρ), φ [,2p] } }{{} x }{{} y echnung in Zylinderkoordinaten ergibt: 2π vol 3 (K) = ρ dρ dz dφ = 2π Wenn ein Kreis ist, dann ist K ein Torus. z z Torus ρ dρ dz } {{} Schwerpunkt vol 2 () (Guldinscheegel) b x= ρ a Paul Guldin ( ) Die Guldinsche egel ergibt für den Torus: vol 3 (Torus) = 2 π 2 a b 2 (siehe VL und Skript)

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

12. Mehrfachintegrale

12. Mehrfachintegrale - 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 9: Mehrdimensionale Integrale Prof. Dr. Erich Walter Farkas Mathematik I+II, 9. Mehrdim. Int. 1 / 39 1 Doppelintegrale 2 Prof.

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

12 Flächen- und Volumenintegrale

12 Flächen- und Volumenintegrale 12.1 Integration über ebene Mengen 12.1.1 Erweiterung des Flächeninhaltsbegriffes In einigen Spezialfällen haben wir ebenen Mengen (d.h. Teilmengen von R 2 ) bereits einen Flächeninhalt zugeordnet (siehe

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Die nummerierten Felder bitte mithilfe der Videos ausfüllen:

Die nummerierten Felder bitte mithilfe der Videos ausfüllen: 5 Koordinatensysteme Zoltán Zomotor Versionsstand: 6. August 2015, 21:43 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is based on the works of Jörn Loviscach

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

9. Die Integralrechnung II

9. Die Integralrechnung II 9. Die Integralrechnung II 9.. Mehrdimensionale Bereichsintegrale Dimension n des Integrationsbereiches B Dimension des Definitionsbereiches D. (i) n = : Einfachintegrale (Int-B = Gerade ; db = d ) db.

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a),

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a), Kapitel Integralsätze.1 Einleitung und Übersicht Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung b a f (x) (b) (a), der es erlaubt,

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

2.6 Der komplexe Logarithmus und allgemeine Potenzen

2.6 Der komplexe Logarithmus und allgemeine Potenzen 2.6 Der komplexe Logarithmus und allgemeine Potenzen Ziel: Umkehrung der komplexen Exponentialfunktion fz) = expz). Beachte: Die Exponentialfunktion expz) ist für alle z C erklärt, und es gilt Dexp) =

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I: Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Lösung Semesterendprüfung (Nachprüfung)

Lösung Semesterendprüfung (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung (Nachprüfung Aufgabe : Aufgabe : a Gemäss Def. der Vorlesung müssen wir

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Die Dirac sche δ-funktion

Die Dirac sche δ-funktion Gero Hillebrandt, Matthias Köhler 20. Oktober 203 Inhaltsverzeichnis Definition und Eigenschaften der δ-funktion 2. Die Heaviside sche Einschaltfunktion................ 2.2 Eigenschaften der δ-funktion....................

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Was gibt es in Vorlesung 4 zu lernen?

Was gibt es in Vorlesung 4 zu lernen? Was gibt es in Vorlesung 4 zu lernen? inelastischer Stoß - keine Energieerhaltung (fast alle Energie kann in Wärme umgewandelt werden) - Geschwindigkeit Gewehrkugel - Rakete Rotationsbewegung - Umlaufgeschwindigkeit

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis Übungen zur T1: Theoretische Mechanik, SoSe213 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 8. Starre Körper Dr. James Gray James.Gray@physik.uni-muenchen.de Übung 8.1: Berechnung von Trägheitstensoren

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Der Punkt von Fermat 1

Der Punkt von Fermat 1 Der Punkt von Fermat 1 Geometrie Der Punkt von Fermat Autor: Peter Andree Inhaltsverzeichnis 9 Der Punkt von Fermat 1 9.1 Die Aufgabe von Fermat an Torricelli................... 1 9.2 Der klassische, analytische

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

V04A3: Version 1 vom Montag,

V04A3: Version 1 vom Montag, V04A3: Version 1 vom Montag, 28.10.02 40 Inhaltsverzeichnis 1.14 Volumina relativ zu C 1 Abbildungen..................... 41 1.14.1 Tangentialräume zu C 1 Abildungen.................. 41 1.14.2 Erste rundform

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Kapitel 3. Koordinatensysteme

Kapitel 3. Koordinatensysteme Kapitel 3 Koordinatensysteme Bisher haben wir uns bei der Beschreibung von Vektoren auf das kartesische Koordinatensystem konzentriert. Für viele physikalische Anwendungen sind aber kartesische Koordinaten

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ +

$Id: kurven.tex,v /12/07 16:43:16 hk Exp hk $ 3.4 Umparametrisierungen und Koordinatentransformation. F (r, φ, ψ) = cos 2 ψ φ + Mathematik für Ingenieure III, WS 29/2 Montag 7.2 $Id: kurven.tex,v.5 29/2/7 6:43:6 hk Exp hk $ 3 Kurven 3.4 Umparametrisierungen und Koordinatentransformation Wir haben gesehen wie man beide Arten von

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

4 Das Riemann-Integral im R n

4 Das Riemann-Integral im R n $Id: nintegral.tex,v 1.11 2012/11/27 14:07:09 hk Exp hk $ 4 Das Riemann-Integral im R n 4.3 Jordan-meßbare engen In der letzten Sitzung hatten wir schließlich das n-dimensionale Riemann-Integral auch auf

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil Inhaltsverzeichnis 1 Vorlesungen: 24.10.2005 und 31.10.2005 Vektor Rechnung: 1.Teil 4 1.1 Definition und Darstellung eines Vektors................... 4 1.2 Rechnen mit Vektoren.............................

Mehr

Flächen- und Volumenintegrale

Flächen- und Volumenintegrale KAPITEL 7 Flächen- und Volumenintegrale. Ebenes Integral.. Flächeninhalt ebener ereiche. Der Flacheninhalt eines Rechtecks mit den eitenlangen und betragt. Uberdeckt man -Ebene mit einem achsenparallelen

Mehr

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche

Mehr

Kapitel 16 SATZ VON FUBINI UND DIE TRANSFORMATIONSFORMEL

Kapitel 16 SATZ VON FUBINI UND DIE TRANSFORMATIONSFORMEL Kapitel 16 SAT VON FUBINI UND DIE TRANSFORMATIONSFORMEL Im folgenden sind X und Y metrische Räume, oder allgemeiner topologische Hausdor räume, und sind Radon-Integrale auf X bzw. Y. Fassung vom 24. Januar

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6

Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6 Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani A. Stadelmaier M. Schwingenheuer Übungen zur Funktionentheorie Lösungen zu Übungsblatt 6. Gegeben sei folgende konforme

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

1 Integrale von Funktionen in mehreren Variablen

1 Integrale von Funktionen in mehreren Variablen Mathematik für Ingenieure III, WS 9/ Montag 9. $Id: integral.te,v.6 9//9 4:7:55 hk Ep $ Integrale von Funktionen in mehreren Variablen.4 Flächen und Volumina Angenommen wir haben einen örper R 3 gegeben.

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Magnetostatik Aufgabe Abb

Magnetostatik Aufgabe Abb 78 3. Magnetostatik 3.2.2 Aufgabe 3.2.2 Abb. 3.. Eine stromdurhflossene, ebene Leitershleife erzeugt eine magnetishe Induktion B(r). Das Stromelement bei P wehselwirkt mit dem von anderen Stromelementen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

2.2 Schwerepotentiale und Schwerefelder von Körpern einfacher Geometrie

2.2 Schwerepotentiale und Schwerefelder von Körpern einfacher Geometrie C:\soffelskript\Grav_01_12.docBibliothek Seite 1 09.11.01 2. Gravimetrie (Schwerefeld und Schwerkraftmethoden) 2.1 Literatur, Allgemeines s. Skript, Bücher aus der Bibliothek 2.2 Schwerepotentiale und

Mehr

Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand)

Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand) Kapitel 6 Metrik, Norm und Skalarproduktl Aus Ihrer täglichen Praxis sind Ihnen die Begriffe Abstand und Länge, möglicherweise gar Winkel wohlvertraut. 6.1 Metrik (Abstand) Definition Metrik : Sei M eine

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Matthias Mahr, Juni 4, Fachhochschule Friourg

Mehr

Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 9 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 9.6.8 Aufgaben. Durch eine Spule mit n Windungen, die einen Querschnitt A 7, 5cm hat, fliesst

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr