Lösung der Aufgabe 4.2.2
|
|
|
- Karl Friedrich
- vor 9 Jahren
- Abrufe
Transkript
1 Elektomagnetische Felde und Wellen: Lösung de Aufgabe Lösung de Aufgabe 422 Übeabeitet von: JüM Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P = P 0 e x Die Kugel befinde sich im Uspung des Koodinatensystems Das elektische Potenzial im gesamten aum soll beechnet weden Zusatzfagen fü die Übung Zu Lösung wid zunächst de Zusammenhang zwischen elektischem Potenzial und Polaisation mit dem Zusammenhang zwischen elektischem Feld und Ladungsdichte veglichen Aus de Analogie folgt, dass es eigentlich genügt, das elektische Feld de homogen geladenen Kugel zu beechnen Elektisches Feld eine homogenen geladenen Kugel a) Wie lautet das elektische Feld eine aumladungsdichte allgemein und fü eine homogen geladene Kugel vom adius in integale Scheibweise? b) Wie lautet das elektische Feld eine aumladungsdichte in diffeentielle Scheibweise (Gaußsches Gesetz)? Was esultiet aus de Kugelsymmetie fü das Feld? Geben Sie die Integalfom des Gaußschen Gesetzes sowie die Lösung mit obigen Egebnissen im gesamten aum an Potenzial de homogen polaisieten Kugel c) Wie lautet de integale Zusammenhang zwischen dem elektostatischen Potenzial und de Polaisation P? Wie veeinfacht sich de Zusammenhang fü den hie voliegenden Fall? d) Welche Lösung egibt sich fü das Potenzial de polaisieten Kugel aus dem Vegleich zwischen den Integalausdücken fü elektisches Feld und Potenzial im gesamten aum? e) Welche Göße hat das elektische Feld de polaisieten Kugel? f) Wie goß ist die dielektische Veschiebung? g) Beechnen Sie die aumladungsdichte ϱ V, die Dichte feie Ladungstäge ϱ fei und die Polaisationsladungsdichte ϱ P als Divegenz de zugehöigen Felde h) Welche Göße hat die Obeflächenladung de Kugel?
2 2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 Lösung a) Das elektische Feld lautet allgemein in integale Dastellung E } = 1 ϱv }( ) d 4π Fü den Fall de homogen geladenen Kugel esultiet mit ϱ V = ϱ 0 fü 0 fü > E } = ϱ 0 4π d Kugel, b) Das elektische Feld eine aumladung lautet in diffeentielle Fom E = ϱ V Auf Gund de Kugelsymmetie des Poblems eduziet sich das Gaußsche Gesetz auf 1 2 (2 E } e ) = ϱ V } Es wid also nu eine adiale Komponente in E angeegt Mit Volumenintegation folgt das Gaußsche Gesetz in Integalfom E } d 2 S = ϱ V d Kugel, Kugel, Das Volumenelement fü eine Kugel vom adius ist d = 2 d sinθ } dθ dϕ Die Integation esteckt sich im Gebiet 0; }, θ 0; π}, ϕ 0; 2π} Das dazugehöige Obeflächenelement ist d 2 S = 2 sinθ } dθ dϕ Daaus esultiet fü das Feld E = E e im Abstand vom Kugelmittelpunkt E } d 2 S = 4π 2 E } Kugel,
3 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 Die Volumenintegation teilt sich danach auf, ob innehalb ode außehalb de Kugel liegt: Kugel, ϱ V d = ϱ 0 4π Das elektische Feld esultiet also zu fü fü > fü E = ϱ 0 e ( ε 0 fü > c) V } = 1 P } ( ) d 4π d) Gemäß Aufgabenstellung ist P nu innehalb de Kugel mit adius von 0 veschieden Es bietet sich also an, hie auf Kugelkoodinaten übezugehen mit = e, = e Die Dastellung fü P lautet dann: P = Damit esultiet fü das Potenzial P 0 e x fü 0 fü > V } = P 0 4π e x Kugel, d Ein Vegleich mit dem Integalausduck weite oben egibt Kugel, d = 4π e fü ( fü > Fü den Einheitsvekto in x-ichtung wid e x = sinθ} cosϕ} e + cosθ} cosϕ} e θ sinϕ} e ϕ
4 4 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 (Siehe Skipt, Anhang C) vewendet Esetzen des Integalausduck im Potenzial de homogen polaisieten Kugel egibt fü V } = P 0 sinθ} cosϕ} ( ε 0 fü > e) Das elektische Feld de homogen polaisieten Kugel folgt aus E = V Hie muss de Nabla-Opeato in Kugelkoodinaten genommen weden Es esultiet fü die einzelnen Komponenten von E: E e = V = P 0 sinθ} cosϕ} E e θ = 1 θ V = P 0 cosθ} cosϕ} E e ϕ = 1 sinθ} ϕ V = P 0 sinϕ} f) Die dielektische Veschiebung esultiet aus D = E + P 1 fü 2 ( fü > 1 fü ( fü > 1 fü ( fü > Fü die Komponenten folgt: D e = P 0 D e θ = P 0 sinθ} cosϕ} cosθ} cosϕ} D e ϕ = P 0 sinϕ} 2 fü 2 ( fü > 2 fü ( fü > 2 fü ( fü > g) Die äquivalente aumladungsdichte, die dasselbe Feld ezeugt hätte, folgt aus und egibt sich mit E = 1 2 (2 E e ) + ϱ V = ( E) 1 sinθ} θ (sinθ} E 1 e θ ) + sinθ} ϕ ( E e ϕ )
5 Elektomagnetische Felde und Wellen: Lösung de Aufgabe zu ϱ V = 0 Die Dichte feie Ladungstäge esultiet aus zu ϱ fei = D Die Dichte de Polaisationsladungen ist als ϱ fei = 0 ϱ P = P definiet Es folgt wegen de Otsunabhängigkeit von P innehalb und außehalb de Kugel ϱ P = 0 h) Auf de Genzfläche muss die Stetigkeit des nomalen D- Feldes hinzugezogen weden Es gilt ( D 2 D 1 ) n = ϱ S Mit D = E + P kann de Ausduck in Analogie zu den üblichen Bezeichnungen in ϱ S = ϱ S,D = ( E 2 E 1 ) n + ( P 2 P 1 ) n = ϱ S,E ϱ S,P ϱ S,E = ϱ S,P + ϱ S umgefomt weden Die Obeflächenladung ϱ S,E, die das Feld E hevouft, kann man sich also aus ϱ S und ϱ S,P zusammengesetzt denken Es egeben sich aus obigen Betachtungen ϱ S,E = ( E 2 E 1 ) n = P 0 sinθ} cosφ} ϱ S,P = ( P 2 P 1 ) n = P 0 sinθ} cosφ} ϱ S,D = ϱ S = 0
Experimentalphysik II (Kip SS 2007)
Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische
Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten
Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos
Streuung an einer harten Kugel
Semina zu Theoie de Kene, Teilchen und kondensieten Mateie 16.1.015 404549 Inhaltsvezeichnis 1 Einleitung 1 Klassische 1 3 Steuung an eine Potentialbaiee 4 5 5 Wikungsqueschnitte 7 6 Zusammenfassung 8
Vektoranalysis Teil 1
Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik
U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr
PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung
Lösungen zur II. Klausur in Theorie D (Quantenmechanik I)
Lösungen zu II Klausu in Theoie D Quantenmechanik I) Aufgabe 1 Teil a) 15 P) Die Komponenten des Opeatos A genügen den gleichen Vetauschungselationen, wie die Komponenten des Dehimpulsopeatos J mit = 1)
Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor.
De elektische Dipol Sind zwei unteschiedliche Ladungen in einem Abstand d angeodnet, dann liegt ein elektische Dipol vo. +q d q Man definiet das Dipolmoment: p q d Das Diplomoment ist ein Vekto, de entlang
Theoretische Physik 1 (Mechanik) Lösung Aufgabenblatt 1
Technische Univesität München Fakultät fü Physik Feienkus Theoetische Physik 1 (Mechanik) SS 018 Aufgabenblatt 1 Daniel Sick Maximilian Ries 1 Aufgabe 1: Diffeenzieen Sie die folgenden Funktionen und entwickeln
Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus
Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische
Elektrodynamik FSU Jena - SS 2007 Klausur - Lösungen
Elektodynamik FSU Jena - SS 7 Klausu - Lösungen Stilianos Louca 9. Febua 8 Aufgabe Seien Φ und E jeweils das elektostatische Potential bzw. elektische Feld. Die Kugel Ladungsdichte ρ befinde sich im Uspung.
Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt
Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung
Mathematische Behandlung der Natur- und Wirtschaftswissenschaften II
Technische Univesität München SS 29 Fakultät fü Mathematik Pof. D. J. Edenhofe Dipl.-Ing. W. Schult Übung 8 Lösungsvoschlag Mathematische Behandlung de Natu- und Witschaftswissenschaften II Aufgabe T 2
Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008
Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges
Mathematik für Ingenieure 2
Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal
Magnetostatik. Feldberechnungen
Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.
Integration von Ortsgrößen zu Bereichsgrößen
Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen
3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen
3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die
Kreisbewegungen (und gekrümmte Bewegungen allgemein)
Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe
Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI
1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35
Anhang 1: Gradient, Divergenz, Rotation
Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen
Mathematikaufgaben > Vektorrechnung > Kugeln
Michael Buhlmann Mathematikaufgaben > Vektoechnung > Kugeln Aufgabe: Gegeben ist eine Kugel K im deidimensionalen katesischen x 1 -x -x 3 -Koodinatensystem mit dem Uspung als Mittelpunkt und dem Radius
Zwei konkurrierende Analogien in der Elektrodynamik
Zwei konkuieende Analogien in de Elektodynamik Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein [email protected] Analogien: Elektodynamik 1 Physikalische Gößen de Elektodynamik elektische Ladung Q
( γ (h(t)) ) h (t) dt =
γ 1 : [, 1] X eine andee Paametisieung von, so existiet eine monoton wachsende diffeenziebae Funktion h : [, 1] [, 1] mit γ 1 t) = γht)), und es esultiet α γ1 t) γ 1 t) ) dt = α γht)) γ ht)) ) h t) dt
Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss
Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential
6.2 Erzeugung von elektromagnetischen Wellen
6.2. ERZEUGUNG VON ELEKTROMAGNETISCHEN WELLEN 29 6.2 Ezeugung von elektomagnetischen Wellen In diesem Abschnitt soll die Entstehung und die Emission von elektomagnetischen Wellen beschieben weden. Die
Theoretische Physik: Elektrodynamik
Ferienkurs Merlin Mitschek, Verena Walbrecht 17.3.15 Ferienkurs Theoretische Physik: Elektrodynamik Übungsblatt Technische Universität München 1 Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht
9.2. Bereichsintegrale und Volumina
9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen
Klausur 2 Kurs Ph11 Physik Lk
26.11.2004 Klausu 2 Kus Ph11 Physik Lk Lösung 1 1 2 3 4 5 - + Eine echteckige Spule wid von Stom duchflossen. Sie hängt an einem Kaftmesse und befindet sich entwede außehalb ode teilweise innehalb eine
Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 5
6 lektomagnetische Wellen egeben sich als Lösungen fü - und B-Felde aus den Maxwel-Gleichungen. Veschiedene Fomen: - Radio- und Mikowellen (Sende): Wellenlängen l 1 3 bis 1 - m, Fequenzen f 1 5 bis 1 11
Inhalt der Vorlesung Experimentalphysik II
Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik 5. Elektodynamik 6. Schwingkeise
Theorie der Kondensierten Materie I WS 2017/ Debye-Waller-Faktor ( =22 Punkte)
Kalsuhe Institut fü Technologie Institut fü Theoie de Kondensieten Mateie Theoie de Kondensieten Mateie I WS 207/208 Pof. D. A. Milin, PD D. I. Gonyi Blatt 9 D.. Kainais, D. S. Rex, J. Klie Bespechung
Einführung in die Physik I. Elektromagnetismus 1
infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative
Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik
Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe
Räumliche Bereichsintegrale mit Koordinatentransformation
Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe
Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt
Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und
Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler
Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives
Statische Magnetfelder
Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch
EXPERIMENTE IN DER STRÖMUNGSMECHANIK I: MODELLUNTERUCHUNGEN IM ÜBUNGSLABOR. Experiment e : Übung "Luftfreistrahl"
EXPEIMENTE IN DE STÖMNGSMECHNIK I: MODELLNTECHNGEN IM ÜBNGSLBO Expeiment e : Übung "Luftfeistahl" Feistahl heißt ein Stom eines Fluides, de aus eine Öffnung in eine mgebung austitt, in de e sich unbeeinflusst
Elektrizitätslehre. Elektrische Ladungen und Felder. Aufbau des Stoffes. Elektrisches Feld Elektrische Ww. Elektrische Ladung. Dauermagnet.
lektizitätslehe lektische Ladungen und elde Aufbau des Stoffes lektische Ladung lektisches eld lektische Ww Stomkeise Stom Induziete Stom Magnetfeld magnetische Ww Dauemagnet lektomagnetische Schwingungen
Der Lagrange- Formalismus
Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.
Newtons Problem des minimalen Widerstands
Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen
Lösung - Schnellübung 4
D-MAVT/D-MATL Analysis I HS 2016 D Andeas Steige Lösung - Schnellübung 1 Ein Keis vom Radius ollt im Innen eines Keises vom Radius R ab Die Kuve t, die dabei ein feste Punkt P auf dem Rand des kleinen
Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen
Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel
{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.
Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)
Elektrostatik. Arbeit und potenzielle Energie
Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen
Aufgaben zu Kräften zwischen Ladungen
Aufgaben zu Käften zwischen Ladungen 75. Zwei gleich geladenen kleine Kugeln sind i selben Punkt an zwei langen Isoliefäden aufgehängt. Die Masse eine Kugel betägt g. Wegen ihe gleichen Ladung stoßen sie
Musso: Physik II Tel 22 Elektrisches Feld II Seite 1
Musso: Phsik II T Elektisches Fd II Seite 1 Tiple-Mosca ELEKTRIZITÄT UND MAGNETISMUS. Das ektische Fd I: kontinuieliche Ladungsveteilungen (The ectic fid II: continuous chage distibutions).1 Beechnung
Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:
Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016
n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r
Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 22 Aufgabe 3 Punkte) Das elektrische Feld liegt parallel zur Grenzfläche, also ist die Welle TE- polarisiert Der Reflektionsfaktor ist laut Skript
6 Die Gesetze von Kepler
6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de
Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung
Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten
Ferienkurs Experimentalphysik Übung 1-Musterlösung
Feienkus Expeimentalphysik 1 2012 Übung 1-Mustelösung 1. Auto gegen Baum v 2 = v 2 0 + 2a(x x 0 ) = 2gh h = v2 2g = km (100 h )2 3.6 2 2 9.81 m s 2 39.3m 2. Spungschanze a) Die maximale Hohe nach Velassen
4.3 Magnetostatik Beobachtungen
4.3 Magnetostatik Gundlegende Beobachtungen an Magneten Auch unmagnetische Köpe aus Fe, Co, Ni weden von Magneten angezogen. Die Kaftwikung an den Enden, den Polen, ist besondes goß. Eine dehbae Magnetnadel
19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion
19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde
PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen
PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität
Vorkurs Mathematik Übungen zu Kurven im R n
Vorkurs Mathematik Übungen zu urven im R n Als bekannt setzen wir die folgende Berechnung voraus: Sei f : [a, b] R eine urve im R. Die Länge L der urve berechnet sich durch L b a f t dt urven in R Aufgabe.
Skala. Lichtstrahl. Wasserbad
. Coulomb sches Gesetz Wi haben gelent, dass sich zwei gleichatige Ladungen abstoßen und zwei ungleichatige Ladungen einande anziehen. Von welchen Gößen diese abstoßende bzw. anziehende Kaft jedoch abhängt
