Experimentalphysik II (Kip SS 2007)
|
|
|
- Catrin Pfaff
- vor 9 Jahren
- Abrufe
Transkript
1 Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische Felde an Genzflächen Z-6 Beechnung von Magnetfelden 8
2 Epeimentalphysik II (Kip SS 7) Z- Integation Z-. Eindimensionale Integation Hauptsatz de Diffeential und Integalechnung: Die Integation ist die Umkehung de Diffeentiation f() F( ) f ( ξ) dξ df d f ( ) Die gelbe Fläche kann mittels eines (bestimmten) Integals ausgedückt weden: F( ) f ( ξ) dξ F() ist eine Stammfunktion. Mit de Stammfunktion kann ein bestimmtes Integal sofot beechnet weden: b a f ) d F( ) F( ) ( b a [ F( ) ] b a Dahe scheibt man auch das so genannte unbestimmte Integal (d.h. das Integal ohne Genzen) in de Fom: f ( ) d F( ) + C 8
3 Epeimentalphysik II (Kip SS 7) Z-. Wiedeholung: Wegintegale Die beit, um einen Köpe von nach zu bingen, wa: W, C F ( ) d Es ist das Integal übe das Kaftfeld von entlang des Weges C nach zu beechnen. C d F() Solche Linien- ode Wegintegale beechnet man duch eine Paametisieung des Weges C als Kuve im deidimensionalen Raum. Dann können sie auf nomale Integale zuückgefüht weden. Paametisieung des Weges C: t [ t, t W, C ] mit ( t) ( t) y( t) z( t) ( t ), ( t F( ) d t t F ( ( t) ) ) d ( t) dt dt De Wet des Integals hängt nicht von de gewählten Paametisieung des Weges C ab. 8
4 Epeimentalphysik II (Kip SS 7) Z-.3 Wiedeholung: Mehdimensionale Integation f (, y) Es soll folgendes Zweifachintegal beechnet weden mit d d dy y Fläche y y f (, y) d ( y) f (, y) ddy ( y) d d dy y 83
5 Epeimentalphysik II (Kip SS 7) Paametisieung von Flächen ( s, t) ( s, t + dt) d b ( s + ds, t + dt) ( s, t) + d ( s, t) a ( s + ds, t) t const. s const. Eine Fläche im Raum kann mit zwei Paameten beschieben weden. Fü beliebige Zahlen s und t liegt de Endpunkt des Vektos ( s, t) auf diese Fläche. Dann gilt fü die totale Ändeung dieses Vektos: d ( s, t) ds + dt Die beiden Ändeungen geben die Richtungen de Koodinatenlinien t const. und s const. an. Dahe sind und somit a ds, b dt d a b ds dt 84
6 Epeimentalphysik II (Kip SS 7) Da de Vekto des Flächenelementes senkecht auf de Fläche d stehen soll, kann einfach d ds dt dsdt sinϑ cosϕ ( ϑ, ϕ) R sinϑ sinϕ cosϑ ϑ [, π ] ϕ [, π ] z geschieben weden. Beispiel: Paametisieung de Obefläche eine Kugel mit dem Radius R Einen Vekto auf de Obefläche eine Kugel mit dem Radius R lässt sich mit den beiden Paameten s ϑ und t ϕ bescheiben. Es gilt dann: dϕ ϑ ϕ R dϑ a b d a b y 85
7 Epeimentalphysik II (Kip SS 7) Fü das infinitesimale Flächenelement auf de Kugelobefläche gilt dann: z ϕ cosϑ cosϕ sinϑ sinϕ d dϑdϕ R cosϑ sin ϕ R sinϑ cosϕ dϑdϕ ϑ ϕ sinϑ dϕ ϑ R dϑ a b y d a b usechnen des Vektopoduktes egibt fü das Flächenelement: sinϑ cosϕ sinϑ sinϑ sinϕ ϑ ϕ cosϑ d R d d Es lässt sich leicht zeigen, das de Richtungsvekto die Länge hat. 86
8 Epeimentalphysik II (Kip SS 7) Beechnung von Obeflächenintegalen duch Paametisieung Mit den Resultaten des voigen bschnittes egibt sich als Fomel zu Beechnung von Obeflächenintegalen übe die Fläche, die in paametisiete Fom voliegt, die folgende Fomel: t s E( ) d E ( ( s, t) ) dsdt t s nmekung: uf de echten Seite steht ein Doppelintegal, dass wie üblich von Innen nach ußen beechnet und somit auf gewöhnliche Integale zuückgefüht weden kann. Die Fomel ist quasi die zweidimensionale Veallgemeineung de Beechnung von Wegintegalen entlang von Kuven im Raum. 87
9 Epeimentalphysik II (Kip SS 7) Beispiel: Beechnung des elektischen Flusses eine Punktladung duch eine Obefläche eine Kugel mit dem Radius R. Das elektische Feld eine Punktladung ist: E( ) uf de Kugelobefläche ist R und: sinϑ cosϕ ( ϑ, ϕ) R sinϑ sin ϕ ϑ [, π ] ϕ [, π ] cosϑ Einsetzen de Resultate des Beispiels aus dem voigen bschnitt egibt: t s E( ) d E ( ( s, t) ) dsdt t s sin cos sin cos π π ϑ ϕ ϑ ϕ sin sin sin sin sin R ϑ ϕ R ϑ ϑ ϕ d ϑ d ϕ R R cosϑ cosϑ 88
10 Epeimentalphysik II (Kip SS 7) Das usechnen des Skalapoduktes unte dem Integal auf de echten Seite füht auf: π π E( ) d ( sin ϑ + cos ϑ ) sinϑ dϑdϕ π π sinϑ dϑ dϕ 4π ε lso egibt sich fü den Fluss duch die Kugelobefläche: Die folgende Scheibweise ist gebäuchlich fü den Fluss duch eine geschlossene Obefläche : E( ) d ε E( ) d Damit lässt sich das Resultat des Beispiels scheiben als: E( ) d ε 89
11 Epeimentalphysik II (Kip SS 7) Beechnung von Obeflächenintegalen duch usnutzung von Symmetien In de Regel weden Obeflächenintegale duch usnutzung von Symmetien und mit Hilfe des Gaußschen Satzes viel einfache beechnet. Fü das letzte Beispiel des Flusses duch eine geschlossene Kugelobefläche mit dem Radius R gilt: dφ E d E( R) d Das elektische Feld auf de Kugelobefläche ist konstant: E( R) R 9
12 Epeimentalphysik II (Kip SS 7) lso folgt: Φ dφ E( ) d E( ) d E( R) d d R E( ) d 4π R R ε Kugelobefläche 4π R De Inhalt de. Mawell-Gleichung ist, dass duch jede beliebige geschlossene Obefläche, die die Ladung umschließt, de gleiche elektische Fluss titt. Duch eine geschickte Wahl diese Fläche kann dahe (fast) imme die aufwendige Beechnung des Obeflächenintegals mittels eine diekten Paametisieung vemieden weden. 9
Vektoranalysis Teil 1
Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik
Lösung der Aufgabe 4.2.2
Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =
U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr
PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung
Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI
1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35
9.2. Bereichsintegrale und Volumina
9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen
Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten
Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos
Elektrostatik. Arbeit und potenzielle Energie
Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen
Mathematik für Ingenieure 2
Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal
Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor.
De elektische Dipol Sind zwei unteschiedliche Ladungen in einem Abstand d angeodnet, dann liegt ein elektische Dipol vo. +q d q Man definiet das Dipolmoment: p q d Das Diplomoment ist ein Vekto, de entlang
Magnetostatik. Feldberechnungen
Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.
Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008
Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges
Magnetismus EM 63. fh-pw
Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von
Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt
Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische
Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt
Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung
2.3 Gekrümmte Oberflächen
2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben
6 Die Gesetze von Kepler
6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de
Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus
Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische
Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss
Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential
7 Differential- und Integralrechung für Funktionen
Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer
Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen
Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel
Statische Magnetfelder
Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch
Einführung in die Physik I. Elektromagnetismus 1
infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative
Inhalt der Vorlesung A1
PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:
Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie
Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man
12. Berechnung reeller Integrale mit dem Residuensatz
72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen
Lösung V Veröentlicht:
1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2
Physik A VL6 ( )
Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete
Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher
Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche
Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):
Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;
Formelsammlung - Grundlagen der Elektrotechnik II. Elektrische Ladung. F (l) d l = Q U U = Q U. J d A. mit ρ 0 = spez. Widerstand bei T = T 0
Fomelsammlung - Glagen de Elektotechnik II Elektische Ladung Coulumbsches Geset F12 = 1 q1 q 2 4π 12 2 ê 12 = 1 q 1 q 2 4π 2 1 2 2 1 2 1 Elektisches Feld d E ( ) = 1 4π dq 2 ê Elektostatische Kaft F =
Inhalt der Vorlesung Experimentalphysik II
Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik 5. Elektodynamik 6. Schwingkeise
Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand
Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine
Einführung in die Theoretische Physik
Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz
Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf
Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale
D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz
Der Lagrange- Formalismus
Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.
Kreisbewegungen (und gekrümmte Bewegungen allgemein)
Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe
Polar-, Zylinder-, Kugelkoordinaten, Integration
Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))
Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler
Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives
Satz von Gauß. Satz von Gauß 1-1
atz von Gauß Für ein stetig differenzierbares Vektorfeld F auf einem regulären räumlichen Bereich V, der durch eine Fläche mit nach außen orientiertem vektoriellen Flächenelement d berandet wird, gilt
Serie 9: Der Satz von Green und Parametrisierungen von Flächen im Raum
: Der Satz von Green und Parametrisierungen von Flächen im Raum Bemerkung: Die Aufgaben der sind der Fokus der Übungsstunden vom 6./8. April.. Überprüfung des Satzes von Green Der Satz von Green besagt
PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen
PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität
34. Elektromagnetische Wellen
Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.
(Gaußscher Integralsatz)
Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene
Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:
Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016
ein geeignetes Koordinatensystem zu verwenden.
1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.
3. Erhaltungsgrößen und die Newton schen Axiome
Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:
Newtons Problem des minimalen Widerstands
Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen
(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:
f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt
Bewegungen im Zentralfeld
Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle
Lösungen zu Koordinatentrafo und Integration im R n
Lösungen zu Koordinatentrafo und Integration im R n für Freitag, 8.9.9 von Carla Zensen Aufgabe : Verschiedene Parametrisierungen a) Zylinderkoordinaten ρ Ψ ϕ Ψ z Ψ cos ϕ ρ sin ϕ DΨρ, ϕ, z) = ρ Ψ ϕ Ψ z
Inhalt Dynamik Dynamik, Kraftstoß Dynamik, Arbeit Dynamik, Leistung Kinetische Energie Potentielle Energie
Inhalt 1.. 3. 4. 5. 6. Dynamik Dynamik, Kaftstoß Dynamik, beit Dynamik, Leistung Kinetische Enegie Potentielle Enegie Pof. D.-Ing. abaa Hippauf Hochschule fü Technik und Witschaft des Saalandes; 1 Liteatu
Vorkurs Mathematik Übungen zu Kurven im R n
Vorkurs Mathematik Übungen zu urven im R n Als bekannt setzen wir die folgende Berechnung voraus: Sei f : [a, b] R eine urve im R. Die Länge L der urve berechnet sich durch L b a f t dt urven in R Aufgabe.
Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung
Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten
Magnetostatik I Grundlagen
Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische
Abstandsbestimmungen
Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode
Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya
Funktionen mehrerer Variablen: Integralrechnung ufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya Inhaltsverzeichnis ii Doppelintegrale. Doppelintegrale.. Doppelintegrale mit konstanten Integrationsgrenzen
14.3 Berechnung gekrümmter Flächen
4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher
Grundwissen. 9. Jahrgangsstufe. Mathematik
Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht
Anhang 1: Gradient, Divergenz, Rotation
Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen
FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld
3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.
Rechnen mit Vektoren im RUN- Menü
Kael 09.. CASIO Teach & talk Jügen Appel Einen deidimenionalen Vekto kann man al Matix mit dei Zeilen und eine Spalte auffaen. Daduch kann man mit Vektoen echnen. D.h. konket, man kann Vektoen addieen
19. Vorlesung. III. Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion
19. Volesung III. Elektizität und Magnetismus 19. Magnetische Felde 20. Induktion Vesuche: Elektonenstahl-Oszilloskop (Nachtag zu 18., Stöme im Vakuum) Feldlinienbilde fü stomduchflossene Leite Feldlinienbilde
Klausur zur Geometrie
PD Dr. A. Kollross Dr. J. Becker-Bender Klausur zur Geometrie Universität Stuttgart SoSe 213 2. Juli 213 Lösungen Aufgabe 1 Sei eine ebene Kurve c: (, ) R 2 durch ( ) 3 t c(t) = 2 t 3/2 definiert. a) Begründen
Linien- und Oberflächenintegrale
Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg
Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern
Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes
Aufgaben zur Vorbereitung Technik
Aufgaben zu Vobeeitung Technik Pof. Dipl.-Math. Usula Lunze Seite Test Anhand des ausgegebenen Tests können Sie selbständig emitteln, wo Ihe Schwächen und Lücken liegen. Die Aufgaben sollen soweit wie
Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes
Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld
I)Mechanik: 1.Kinematik, 2.Dynamik
3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen
Flächenberechnungen 2b
Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung
Mathematik für Ingenieure A III Wintersemester 2008
1 / 61 Mathematik für Ingenieure A III Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 17.10.2008 2 / 61 Wiederholung Parameterintegrale Zweidimensionale Riemann Integrale 3 /
Übungen zu Integralsätzen Lösungen zu Übung 19
9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren
Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir
Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen
19.3 Oberflächenintegrale
19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,
5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße
5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,
e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.
Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung
Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)
Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine
Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt.
Statische Magnetfelde In de Antike wa natülich vokommende Magnetstein und seine anziehende Wikung auf Eisen bekannt.. Jahhundet: Vewendung von Magneten in de Navigation. Piee de Maicout 69: Eine Nadel,
