Der Lagrange- Formalismus

Größe: px
Ab Seite anzeigen:

Download "Der Lagrange- Formalismus"

Transkript

1 Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden. In de klassischen Mechanik kann das gundlegende Gesetz mit Hilfe des Lagange-Fomalismus ausgedückt weden: F ma m dx = = V dt Die Lagange-Funktion wid definiet als L T V L q dq i { { ( i, ) i= 1,..., n dt kinetische potentielle Enegie Teilchenphysik 15

2 De Lagange-Fomalismus wobei q i die veallgemeineten Koodinaten sind und dq i /dt deen zeitliche Ableitungen. Das Pinzip de kleinsten Wikung: das System beitet sich zwischen de Zeit t 1 und t entlang eines Weges aus, entlang welchem die Wikung S minimal wid δs = wobei die Wikung als definiet wid. S Ldt 1 Diese Bedingung füht zu Eule-Lagange-Gleichung: t t d L dt dqi qi dt = i= 1,..., n 8. Lagange-Funktion in de elativistischen Feldtheoie Wi sind an de Bewegungsgleichung von Felden inteessiet. Ein Feld bescheibt ein kontinuieliches System mit unendlich vielen Feiheitsgaden, z.b. die Auslenkung eine klassischen Saite. 16 Teilchenphysik II&III, WS 1/-SS, Pof. A. Rubbia

3 Lagange-Funktion in de elativistischen Feldtheoie Das System wid duch das Feld beschieben, das eine Funktion des Otsvektos und de Zeit ist: xt, x = Das Feld besitzt unendlichviele Feiheitsgade, die mit Hilfe des Otsvektos x indiziet weden. D.h., wi esetzen die disketen Koodinaten q i und deen zeitlichen Ableitungen duch die kontinuielichen Funktionen (x ) und (x ) qi dqi dt ( x ) x 13,,, = (Beachte, dass wi nicht nu die zeitliche Ableitung des Feldes, sonden die vie unabhängigen Ableitungen betachten). Wi fühen die Lagange-Dichte L ein als eine Funktion des Feldes und dessen Ableitungen: ( ) L L, Die Wikung wid 3 S Ldt = dt d x L 4 = d x L wobei wi bemeken, dass de letzte Tem als ein kovaiantes Integal ausgedückt wid. Weil das 4-dimensionale Volumenelement d 4 x eine Invaiante de Loentz-Tansfomation ist, suchen wi eine Lagange-Dichte, die auch eine Invaiante ist. Es gilt, dass Teilchenphysik 17

4 De Lagange-Fomalismus die Invaianz de Lagange-Dichte eine hineichende Bedingung fü die Kovaianz de Theoie ist. (Andee Symmetien können auch in die Lagange-Funktion eingebaut weden, wie z.b. eine Eichinvaianz) Das Pinzip de kleinsten Wikung sagt voaus: = δs = 4 = + δ L dx δ = 4 dx + δ L δ L δ wobei das 4-dimensionale Integal übe ein Raumzeitvolumen Ω läuft. Wi bemeken, dass Ω 4 3 dx (...)= dx(...) wobei Ω die Raumzeitfläche ist, die das Raumzeitvolumen Ω umschliesst. Wi nehmen an, dass das Feld bestimmte Randbedingungen übe die Raumzeitfläche Ω efüllt, so dass δ Es folgt daaus, dass fü eine beliebige Ändeung des Feldes δ gilt Ω = übe die Raumzeitfläche Ω dx δ = 4 Ω 18 Teilchenphysik II&III, WS 1/-SS, Pof. A. Rubbia

5 Lagange-Funktion des skalaen Klein-Godon Felds ode = elativistische Eule Lagange Gleichung Im Allgemeinen kann man meh als ein Feld betachten. Wenn wi n Felde i betachten, wid die Lagange-Funktion so ausgedückt = L L i, i i 1,..., n und wi ehalten n Eule-Lagange-Gleichungen i = i 8.3 Lagange-Funktion des skalaen Klein-Godon Felds Wi betachten ein einziges skalaes Feld x x, x = Wi suchen eine invaiante Lagange-Funktion, die eine Funktion des Feldes und dessen Ableitungen ist: ( ) L L, Teilchenphysik 19

6 De Lagange-Fomalismus Wi scheiben als Ansatz: L KG 1 1 = ( ) m 1 1 = ( ) m Wi beechnen: 1 = m = m und = 1 ( ) =! Beachte die Lage des Index. De Beweis ist de folgende: wi betachten die veschiedenen : 1 [( ) ( )...]= = = und = ( ) [( ) ( ) ( 1) ( 1)...]= 1 = usw Teilchenphysik II&III, WS 1/-SS, Pof. A. Rubbia

7 Lagange-Funktion de Diac-Gleichung Wegen de Eule-Lagange-Gleichung gilt = m = ( ) ok! 8.4 Lagange-Funktion de Diac- Gleichung Wi betachten ein Spinofeld ψ and die folgende Lagange-Funktion L Diac iψγ ψ mψψ Die beiden Spinoen ψund ψ weden als zwei unabhängige Felde betachtet, d.h. wi benutzen zweimal die Eule-Lagange-Gleichung: = und = iγ ψ mψ iγ ψ mψ = ok! ψ ψ und = iψγ und = mψ i ( ψγ ) mψ = ok! ψ ψ 8.5 Invaianzeigenschaft de Lagange- Funktion Wi einnen uns an das Theoem von Nöthe (Emmy Nöthe, 1917): Teilchenphysik 131

8 De Lagange-Fomalismus Wenn die Lagange-Funktion invaiant ist unte eine kontinuielichen Tansfomationguppe, dann gibt es einen ehaltenen Stom des Feldes. Man spicht von Invaianz de Lagange-Funktion unte de Guppe. Die Invaianzeigenschaften de Lagange-Funktion eine Theoie sind fundamental. Wi betachten als Beispiel die Invaianz unte Tanslation. Bei eine infinitesimalen Tanslation ändet sich de Raumzeitvekto so Die Ändeung de Lagange-Funktion ist gleich Wi bemeken, dass wi nu die Ändeung des Feldes betachten, weil wi annehmen, dass die Lagange-Funktion nicht explizit von x abhängt. Es gilt δ = δa x x +δa δl= δ + δ ( ) = Aus de Eule-Lagange-Gleichung ( ) = δ a und δ δ x = 13 Teilchenphysik II&III, WS 1/-SS, Pof. A. Rubbia

9 Invaianzeigenschaft de Lagange-Funktion folgt δl= δ L + = δ = δ Wi können die Ändeung de Lagange-Funktion auch bezüglich de Raumzeitkoodinaten ausdücken: Wenn wi die zwei Gleichungen vegleichen, ehalten wi d.h., wi haben einen ehaltenen Stom gefunden: δ a wobei T de Enegie-Impuls-Tenso des Feldes ist. Enegie des Feldes: Die T Komponente entspicht de Hamilton- Dichte H: δl= L δa = L δa δ x ( ) δ L δa = = L ( ) T wobei T δ L H L T = ( L ) Teilchenphysik 133

10 De Lagange-Fomalismus De Hamilton-Opeato ist gleich 3 3 H = d xh = d xt Wenn wi diese Gleichungen mit dem klassischen Analog vegleichen, können wi die kanonische Impuls-Dichte des Feldes definieen Π L ( ) Mit diese Definition gilt H( pq, )= p dq L dt T = Π( ) L Impuls des Feldes: Die T i Komponenten entspechen dem vom Feld getagenen Impuls: 3 3 Pi d xti = d x i i 3 = dxπ i = 13,, 134 Teilchenphysik II&III, WS 1/-SS, Pof. A. Rubbia

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

Gruppentheoretische Methoden in der Physik 1 Prof. Dr. H.-R. Trebin Auszug aus dem Vorlesungsmanuskript, WS 06/07

Gruppentheoretische Methoden in der Physik 1 Prof. Dr. H.-R. Trebin Auszug aus dem Vorlesungsmanuskript, WS 06/07 1 Guppentheoetische Methoden in de Physik 1 Pof. D. H.-R. Tebin Auszug aus dem Volesungsmanuskipt, WS 06/07 3.3.3 Die eigentlichen Punktguppen Diese Punktguppen enthalten keine Spiegelungen und keine Invesion.

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, [email protected] Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein [email protected] Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Drehbewegung Der Drehimpuls Definition des Drehimpulses

Drehbewegung Der Drehimpuls Definition des Drehimpulses Kapitel 10 Dehbewegung 10.1 De Dehimpuls Bei de Behandlung de Bewegung eines Teilchens haben wi den Impuls eines Teilchens definiet (Siehe Kap..). Diese Gösse wa seh hilfeich, wegen de Ehaltung des Gesamtimpulses

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 [email protected] Expeimentelle Physik II 8. Bandstuktu und

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Übungschef: Dr. Andreas Badertscher (WS 2000/01 SS2001) Abteilung IIIc ETH/Zürich. Gleichförmige Kreisbewegung 57

Übungschef: Dr. Andreas Badertscher (WS 2000/01 SS2001) Abteilung IIIc ETH/Zürich. Gleichförmige Kreisbewegung 57 Physik I-II fü Infomatike Abteilung IIIc ETH/Züich (WS / SS) Pof. D. Andé Rubbia Übungschef: D. Andeas Badetsche Kapitel Vowot Was ist Physik? Die expeimentelle Methode Kapitel Kinematik 5 Bewegung in

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS 200 22. Juni 200 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

4.3 Magnetostatik Beobachtungen

4.3 Magnetostatik Beobachtungen 4.3 Magnetostatik Gundlegende Beobachtungen an Magneten Auch unmagnetische Köpe aus Fe, Co, Ni weden von Magneten angezogen. Die Kaftwikung an den Enden, den Polen, ist besondes goß. Eine dehbae Magnetnadel

Mehr

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r.

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r. Einfühung in die Stochastik Sommesemeste 07 D Walte Oevel 4 6 007 Ü b u n g s b l a t t 9 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten vewendet weden Lösungen von -Aufgaben sind

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Wichtige Begriffe der Vorlesung:

Wichtige Begriffe der Vorlesung: Wichtige Begiffe de Volesung: Abeit, Enegie Stae Köpe: Dehmoment, Dehimpuls Impulsehaltung Enegieehaltung Dehimpulsehaltung Symmetien Mechanische Eigenschaften feste Köpe Enegiesatz de Mechanik Wenn nu

Mehr

Das Ski-Rental-Problem

Das Ski-Rental-Problem Da Ski-Rental-Poblem (Voläufige Veion, 15. Mai 212) Pof. D. Hanno Lefmann Fakultät fü Infomatik, TU Chemnitz, D-917 Chemnitz, Gemany [email protected] 1 Da Ski-Rental-Poblem Bei dem Ski-Rental-Poblem

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

Titrationskurven in der Chemie

Titrationskurven in der Chemie RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

6 Kinetik der Starrkörperdrehung

6 Kinetik der Starrkörperdrehung 43 6 inetik de Staköpedehung Wie beeits gesehen, setzt sich die allgemeine Staköpebewegung aus de Tanslation eines köpefesten Bezugspunktes und eine Dehung um diesen zusammen. Wähend die Tanslation des

Mehr

V10 : Elektronenspinresonanz

V10 : Elektronenspinresonanz V10 : Elektonenspinesonanz Vesuchsaufbau: Kontollaum des Tandemgebäudes Beteue SS 2008 - Robet Lahmann 09131/85-27147, Raum TG223 [email protected] - Rezo Shanidze (Vetetung) 09131/85-27091,

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI 1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) ...... (Name, Mat.-N, Unteschift) Klausu Stömungsmechanik I (Bachelo) & Technische Stömungslehe (Diplom) 1. Aufgabe (9 Punkte) 03.08.2012 Duch ein Leck füllt sich de Ballasttank (Volumen V B ) eines U-Boots

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf!

Der typische erwachsene Mensch probiert die Dinge nur 2-3 x aus und gibt dann entnervt oder frustriert auf! De typische ewachsene Mensch pobiet die Dinge nu -3 x aus und gibt dann entnevt ode fustiet auf! Haben Sie noch die Hatnäckigkeit eines Kleinkindes welches laufen lent? Wie viel Zeit haben Sie mit dem

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc [email protected] Ralf Wiechmann [email protected] 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr