IIR-Filter. SigProc-7-IIR 1

Größe: px
Ab Seite anzeigen:

Download "IIR-Filter. SigProc-7-IIR 1"

Transkript

1 IIR-Flter SgProc-7-IIR

2 FIR IIR IIR-Flter haben komplzertere Blockdagramme, snd schwerer zu entwerfen und analyseren, haben kene lneare Phase, aber se snd selektver! Magntude Magntude Response Normalzed Frequency ( π rad/sample) HammngTP 20. Ordnung --- Butterworth 5. Ordnung SgProc-7-IIR 2

3 yn [ ] bxn [ ] bxn [ ] bxn [ 2] b xn [ L ] 0 2 L ay[ n] ayn [ 2] a yn [ M] L k0 2 M M bxn [ k] a yn [ m] k m T T b x[ n] a y[ n] m b [ b b b 0 L T ] x x[ n] x[ n] xn [ L T a aa2a M y[ n] yn [ ] yn [ 2] xn [ M T SgProc-7-IIR 3

4 DF I SgProc-7-IIR 4

5 L ( ) b0bz bl z X( z) Y z az az a 2 M 2 M L M k bk z Y z k0 m0 X( z) ( ) Y( z) H( z) X( z) L k k0 M m0 k m b bz b z = b L 0 L 2 M az az 2 am z z a z m z a m z m Y( z) (L ) Nullstellen und (M ) Polstellen SgProc-7-IIR 5

6 Frequenzgang H( ) H( z) ze j L k k0 M m0 be jk ae m jm H( ) H( ) gerade ( ) ( ) ungerade SgProc-7-IIR 6

7 b = [ 0.5] a = [ ] Imagnary Part Ampltude mpz(b,a) 0 Impulse Response n (samples) Magntude (db) Phase (degrees) Real Part Normalzed Frequency ( π rad/sample) Normalzed Frequency ( π rad/sample) SgProc-7-IIR 7

8 IIR-Flterstrukturen Drekte Form I Drekte Form II wenger Specherbedarf als Form I, aber glecher Rechenaufwand Transponerte Form I und II Transponerte und drekte Form I & II reageren sehr empfndlch auf Quantserungsfehler, da de Quantserungsfehler rückgekoppelt und summert werden. SgProc-7-IIR 8

9 DF I Bz () Bz () Az () Az () DF II SgProc-7-IIR 9

10 SgProc-7-IIR 0 x(n) y(n) ^ < < < < > > > < > ^ ^ v v v v v v v v Transponerte Form Engang Ausgang Pfele umdrehen Verzwegung Adderer Adderer Verzwegung

11 Transponerte SgProc-7-IIR DF II

12 Achtung! In der Lteratur werden de IIR-Flter oft n der Form H( z) Y( z) X( z) L bz k k0 M m0 k a z m m dargestellt. De Koeffzenten a n den Blockdagrammen nehmen dann negatves Vorzechen an! SgProc-7-IIR 2

13 Kaskaden Kaskaderung wel Kaskaden nur zweter Ordnung: enfacher zu entwerfen wenger anfällg für Quantserungsfehler wenger anfällg für Stabltätsprobleme H ( z) H( zh ) ( z) H ( ) H( ) H( ) kask h [ n] h[ n] h [ n] kask 2 kask 2 2 K K 2 k0 k k2 k 2 k k akz ak2z H( z) G H ( z) G b b z b z SgProc-7-IIR 3

14 Aber de Auftelung der Pole und Nullstellen auf de Subsysteme 2. Ordnung ncht trval ( z z )( z z ) ( z z ) ( )( ) ( ) 2 n H( z) = k z p z p 2 z p m SgProc-7-IIR 4

15 Auftelung der Pole und Nullstellen. Suche des dem Enhetskres nächstgelegenen Poles oder Polpaares 2. Suche der dem Enhetskres nächstgelegenen Nullstelle oder Nullstellenpaares 3. Zusammenfassen der gefundenen Pole und Nullstellen n ene Sekton zweter Ordnung H( z) = ( z z)( z z2) ( z p )( z p ) 2 4. Fortsetzen von bs 3, bs alle Pole und Nullstellen n abnehmenden Abstand von Enhetskres geordnet snd 5. Implementerung der gefundenen Sektonen SgProc-7-IIR 5

16 Kaskaderte Bquads 4. Ordnung SgProc-7-IIR 6

17 Matlabunterstützung für Kaskaden Second Order Sectons (SOS) Umwandlungsfunktonen aus der Polynom- und der PN-Darstellung [z,p,k] = tf2zp(b,a) z, p Vektor der Null- und Polstellen, k Konstante H ( )( ) ( ) ( z ) k z z z z z z = 2 n ( z p )( z p ) ( z p ) 2 SgProc-7-IIR 7 m

18 [sos,g] = zp2sos(z,p,k) sos b b b a a b b b a a = b b b a a 0K K 2K K 2K K 6 Achtung Matlab stellt das Polynom mt postven a dar. De Vorzechen von a müssen daher für unsere Darstellung umgekehrt werden. H( z) = b + b z + b z az + a2z b b z b z H( z) 2 k0 k k2 2 akz ak2z SgProc-7-IIR 8

19 Realserung durch parallele IIR-Flter 2. Ordnung K K k0 k k 2 k kakz ak2z H( z) G H ( z) G b b z De Parallelstruktur kann durch Partalbruchzerlegung der Systemfunkton gewonnen werden. [r,p,k] = resduez(b,a) SgProc-7-IIR 9

20 SgProc-7-IIR 20

21 Stabltät. Ordnung: H( z) = stabl, wenn a < az 2. Ordnung: H( z) = = ( )( ) 2 2 az a2z pz pz a = p p a = pp stabl, wenn p < und p < a 2 = p p < a < + a a 2 a SgProc-7-IIR 2

22 BESTIMMUNG DER KOEFFIZIENTEN SgProc-7-IIR 22

23 Methoden Platzeren von Polen und Nullstellen Invaranz der Impulsantwort Blneare Transformaton SgProc-7-IIR 23

24 Platzeren von PN Magntude Response Pole/Zero Plot Magntude Imagnary Part Normalzed Frequency ( π rad/sample) Real Part Bandpass zweter Ordnung SgProc-7-IIR 24

25 .2 Magntude Response 0.8 Magntude Normalzed Frequency ( π rad/sample) Bandsperre (Notch-/Kerbflter) 2. Ordnung SgProc-7-IIR 25

26 Magntude Response (db) 0 Pole/Zero Plot Magntude (db) Imagnary Part Real Part Normalzed Frequency ( π rad/sample) Ellptsches Flter 5. Ordnung SgProc-7-IIR 26

27 Invarante Impulsantwort SgProc-7-IIR 27

28 Analoger TP. Ordnung A H a s p A - () - h t L H s L Ae a a s p Abtasten m Zetberech p nt h [ n] h ( nt) Ae, n, 2, d a z-transformaton A H() z h ( nt ) z Ae z e n p nt a pt n0 n0 SgProc-7-IIR 28 pt z

29 A A pt s p e z Be Fltern höhere Ordnung Partalbruchzerlegung H () s a 2 2 ( s ) T ze sn T H () z d 2 T 2T z 2ze cost e H H a s () s 2 2 ( s ) 2 T z ze cos T () z z 2ze cost e d 2 T 2T SgProc-7-IIR 29

30 Dese Methode kann nur für scharf begrenzte Tef- oder Bandpässen angewandt werden und verlangt klenes T, um de Impulsantwort genau abzutasten. De Methode kann ncht angewandt werden, wenn das analoge Flter en Hochpass oder ene Bandsperre st, da ja das Spektrum dgtaler Flter perodsch fortgesetzt wrd und es zu Alasng kommt. SgProc-7-IIR 30

31 Deses Verfahren st nvarant für de Impulsantwort, aber ncht nvarant für de Sprungantwort. De Sprungantwort st A A Y H () s astep a s s( s p ) p s s p Laplace-Transformatn o A pt y () t e () t astep p A () pt y t e () t astep p A ( ) p nt y nt e astep p ( t) SgProc-7-IIR 3

32 Berechnen wr de Sprungantwort für deses (Impuls-nvarante) Flter m z-berech müssen wr mt der z-transformerten der Sprungantwort multplzeren und erhalten Y y A A e e z z e e z z Transformaton pt () z dstep pt pt pt z dstep A pt ptn A ( ) pt n ( n) e e [ n] e [ n] p T pt e e SgProc-7-IIR 32

33 y astep A p nt ( nt) e () t p y n A e n e ( ) ( ) pt n [ ] dstep pt SgProc-7-IIR 33

34 Invaranz der Sprungantwort A ( ) p nt y nt e () t astep p nach der z-transformaton wrd A Y () z Hz () astep pt p e z z z pt z A e z pt p T e z p e z p T A Hz () p H() z A e Konstante pt p e z z SgProc-7-IIR pt 34 ze

35 Impulsnvaranz Hz ( ) Sprungnvaranz Hz ( ) e A e A pt pt p z z e pt z SgProc-7-IIR 35

36 jω 3π/T Im z π/t -π/t σ - Re z -3π/T s-ebene z-ebene SgProc-7-IIR 36

37 Blneare Transformaton Darstellung der DGL am»analogrechner«adderer Multplkaton mt Konstante Integrerer SgProc-7-IIR 37

38 Dgtaler Integrerer y () t x () t dt a a y ( nt ) y n x () t dt a a ( n) T a Anfangsbedngung nt T y n x ( nt) x ( n T) a a a 2 Trapezregel SgProc-7-IIR 38

39 T yn ( ) yn ( ) xn ( ) xn ( ) 2 z Transformaton Y() z z Xz ( ) 2 z Analoger Integrerer /s z s 2 z 2 z s T z H () z H () s z 2 d a s T z SgProc-7-IIR 39

40 Von der s- n de z-ebene z st 2 st 2 s j z 0 j j T 0 2 T Imagnäre Achse m s-berech z = wrd zum Enhetskres m z-berech 0 2 SgProc-7-IIR 40

41 z T /2 T / T /2 T / jω Im z σ - Re z s-ebene z-ebene SgProc-7-IIR 4

42 De Abbldung umfasst de gesamte s-ebene, es werden also Pol- und Nullstellen n de z-ebene abgebldet, es kann daher ken Alasng auftreten. De enzge Abwechung vom analogen Flter legt n der numerschen Berechnung der Integraton. SgProc-7-IIR 42

43 Punkte auf der magnäre Achse SgProc-7-IIR sn cos 2 2 tan, 2 arctan 2 2 j j j j z s T z j e e j T T e e T T

44 ω 3 π SgProc-7-IIR 44

45 SgProc-7-IIR 45 Ω

46 Approxmatonen Potenz oder Butterworth Ellptsch oder Cauer Tschebyscheff Typ I & II log Ω SgProc-7-IIR 46

47 SgProc-7-IIR 47

48 Contnuous Phase Response 0-2 Butterworth Contnuous Phase (radans) Cauer Tschebyscheff I Flter # Flter #2 Flter #3 Flter #4-2 Tschebyscheff II Normalzed Frequency ( π rad/sample) SgProc-7-IIR 48

49 Magntude Response (db) 0 Tschebyscheff II -50 Cauer Butterworth -00 Magntude (db) Tschebyscheff I Normalzed Frequency ( π rad/sample) SgProc-7-IIR 49

50 Matlab-Funktonen SgProc-7-IIR 50

51 FIR 79! SgProc-7-IIR 5

52 Egenschaft IIR FIR # Multplkatonen am nedrgsten am höchsten Empfndlchket Koeffzenten Quantserung Auftreten von Overflow-Fehlern hoch (24-bt für HIFI Audo) hoch (besser Kaskaden- oder Parallelstruktur) Stabltät Entwurfskrterum garantert sehr nedrg, 6-bt n der Regel ausrechend sehr nedrg Lneare Phase nen ja, be Symmetre Größe Koeffzentenspecher Analyse Quantserungsrauschen mnmal maxmal sehr schwerg wenger schwerg SgProc-7-IIR 52

Bei Strecken höherer Ordnung wird auch hier die Strecke durch die Methode der Ersatzzeitkonstante

Bei Strecken höherer Ordnung wird auch hier die Strecke durch die Methode der Ersatzzeitkonstante Lösung Übung 9 Aufgabe: eglerauslegung mt blnearer Transformaton n s In der kontnuerlchen egelungstechnk wrd für gewöhnlch en PI-egler verwendet, um de größte Zetkonstante zu kompenseren bzw. be IT-Strecken

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Entwurf von IIR-Filtern

Entwurf von IIR-Filtern Kapitel Entwurf von IIR-Filtern. Einleitung.. Darstellung von IIR-Filtern im Zeitbereich y[n] = b 0 x[n] + b x[n ] + b 2 x[n 2] +... + b M x[n M].) a y[n ] a 2 y[n 2]... a N y[n N] = M N b k x[n k] a m

Mehr

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN ÜBUNG : Z-TRANSFORMATION, SYSTEMSTRUKTUREN 8. AUFGABE Bestimmen Sie die Systemfunktion H(z) aus den folgenden linearen Differenzengleichungen: a) b) y(n) = 3x(n) x(n ) + x(n 3) y(n ) + y(n 3) 3y(n ) y(n)

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Filterentwurf. Aufgabe

Filterentwurf. Aufgabe Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich

Mehr

Übung 6: Analyse LTD-Systeme

Übung 6: Analyse LTD-Systeme ZHAW, DSV, FS2009, Übung 6: Analyse LTD-Systeme Aufgabe : Pol-Nullstellendarstellung, UTF und Differenzengleichung. Die folgenden Pol-Nullstellen-Darstellungen charakterisieren verschiedene LTD- Systeme,

Mehr

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf 5. Dezember 2016 Siehe begleitend: Kammeyer / Kroschel, Digitale Signalverarbeitung, 7. Auflage, Kapitel 4.2 1 Filterentwurfsstrategien 2 Diskretisierung

Mehr

Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technschen Informatk 12. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 12. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert [email protected] Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Potenzen einer komplexen Zahl

Potenzen einer komplexen Zahl Potenzen ener komplexen Zahl 1-E1 1-E Abraham cc de Movre Abraham de Movre (17 175) französscher Mathematker Abraham de Movre der als Emgrant n London lebte glt als ener der Ponere der Wahrschenlchketsrechnung.

Mehr

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am TU Graz, Insttut für Regelungs- und Automatserungstechnk 1 Schrftlche Prüfung aus Sgnaltransformatonen Tel: Dourdoumas am 1. 10. 01 Name / Vorname(n): Kennzahl / Matrkel-Nummer: 1 errechbare Punkte 4 errechte

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung

3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung . Glechstrom und Glechspannung Glechstrom essung elektrscher Größen. Glechstrom und Glechspannung. Wechselstrom und Wechselspannung. essung von mpedanzen. essverstärker.5 Darstellung des etverlaufs elektrscher

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am

Schriftliche Prüfung aus Signaltransformationen Teil: Dourdoumas am TU Graz, Insttut für Regelungs- und Automatserungstechnk 1 Schrftlche Prüfung aus Sgnaltransformatonen Tel: Dourdoumas am 14 10 011 Name / Vorname(n): Kennzahl / Matrkel-Nummer: 1 errechbare Punkte 5 errechte

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2 Übungen zur Vorlesung Physkalsche Chee 1 B. Sc.) Lösungsorschlag zu Blatt Prof. Dr. Norbert Happ Jens Träger Soerseester 7. 4. 7 Aufgabe 1 a) Aus den tabellerten Werten ergbt sch folgendes Dagra. Btte

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

ÜBUNG 4: ENTWURFSMETHODEN

ÜBUNG 4: ENTWURFSMETHODEN Dr. Emil Matus - Digitale Signalverarbeitungssysteme I/II - Übung ÜBUNG : ENTWURFSMETHODEN 5. AUFGABE: TIEFPASS-BANDPASS-TRANSFORMATION Entwerfen Sie ein nichtrekursives digitales Filter mit Bandpasscharakteristik!

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Einfluss endlicher Wortlänge bei IIR-Filtern

Einfluss endlicher Wortlänge bei IIR-Filtern Einfluss endlicher Wortlänge bei IIR-Filtern yn [ ] L H( z) L M M bxn [ ] ay[ n m] m m b z a m m z m (.) Die Koeffizienten a und b in IIR-Filtern verlangen eine hohe Genauigeit, bei einem elliptischen

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Grundlagen der Technischen Informatik. 9. Übung

Grundlagen der Technischen Informatik. 9. Übung Grundlagen der Technschen Informatk 9. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 9. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Grundlagen der Technischen Informatik. 11. Übung

Grundlagen der Technischen Informatik. 11. Übung Grundlagen der Technschen Informatk 11. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 11. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer / Subtraherer Mehr-Operanden-Adderer

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Die großen Etappenziele in GST roter Faden Netzwerkanalyse mit gesteuerten Quellen nicht mehr als 3 Gleichungen

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Matlab-Praktika zur Vorlesung Analoge und digitale Filter 1. Betrachtet wird ein Tiefpass. Ordnung mit

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Elektron Loch Symmetrie und Grundzustand beim Fraktionellen Quanten Halleffekt (FQHE)

Elektron Loch Symmetrie und Grundzustand beim Fraktionellen Quanten Halleffekt (FQHE) Hauptsemnar Theoretsche Physk (Sommersemester 003) Elektron Loch Symmetre und Grundzustand bem Fraktonellen Quanten Halleffekt (FQHE) Srko Plz 04.06.003 Velen Dank an den Betreuer T. Sommer für sene Unterstützung

Mehr

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte [email protected] 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Die Hamilton-Jacobi-Theorie

Die Hamilton-Jacobi-Theorie Kaptel 7 De Hamlton-Jacob-Theore Ausgearbetet von Rolf Horn und Bernhard Schmtz 7.1 Enletung Um de Hamlton schen Bewegungsglechungen H(q, p q k = p k H(p, q ṗ k = q k zu verenfachen, führten wr de kanonschen

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese

9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 08..08 Analyse eines Filters. Ordnung (Aufgabe 7) 0 V V R C 3 0. C R v OPI 4 V.0 E.0 E.0 E0.0 E.0 E Frequency M agnitude d B P hase

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr