6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

Größe: px
Ab Seite anzeigen:

Download "6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)"

Transkript

1 6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

2 Die großen Etappenziele in GST roter Faden Netzwerkanalyse mit gesteuerten Quellen nicht mehr als 3 Gleichungen für jede Aufgabe (Superknoten, Supermaschen) Lineare Algebra, Differentialgleichungen komplexe Wechselstromrechnung zur partikulären Lösung linearer DGLn mit konstanten Koeffizienten für cos-förmige Anregung (fakultativ) Frequenzgänge, Pole und Nullstellen, Bodediagramm Operationsverstärkergrundschaltungen schließlich Filtern Transistorgrundschaltungen Integrierte Schaltungstechnik bis zu Industrieschaltungen Praxis: PSpice und Analog Insydes/Mathematica

3 Problemstellung: Frequenzgangskompensation Rückgekoppelter Verstärker: Transientantwort: Ringing Frequenzgang: Peaking Grund: komplexes Polpaar nahe der imaginären Achse V.V.V V -.V s 5us us 5us us 5us 3us V(OUT) V(Vin:+) Zeit mv.mv.hz KHz GHz V(out) Frequenz Seite 3

4 Die großen Etappenziele in GST roter Faden Netzwerkanalyse mit gesteuerten Quellen nicht mehr als 3 Gleichungen für jede Aufgabe (Superknoten, Supermaschen) Lineare Algebra, Differentialgleichungen komplexe Wechselstromrechnung zur partikulären Lösung linearer DGLn mit konstanten Koeffizienten für cos-förmige Anregung (fakultativ) Frequenzgänge, Pole und Nullstellen, Bodediagramm Operationsverstärkergrundschaltungen schließlich Filtern Transistorgrundschaltungen Integrierte Schaltungstechnik bis zu Industrieschaltungen Praxis: PSpice und Analog Insydes/Mathematica 4

5 Filter mit Operationsverstärker Frequenzgang & Transientantwort Nullstelle: H( j) = Pole: 3j j ( j) + ( j) + Hier steht die DGL/char. Polynom in j d ua ( t) + ua ( t) + ua ( t) = cos( t) dt ( ) H( j) = ( ) + ( ) ua _ part ( t) = cos arctan t + + ( ) ( ) u ( t) = k e cos(3 t) + k e sin(3 t) t t a _ hom = + t ke cos(3 t ) 5

6 P/N, 3D- & Bodediagramm (Frequenzgang) s H ( s ) = mit s s s = + j + + Im s 3 charakteristischen Re s 3 3 Pole= Nullstellen des Polynoms der DGL 3j 3 Filterverhalten: logarithmische Achsenteilung in db lineare Achsenteilung Imaginärachse 6

7 Phasor Hin- und Rücktransformation (polar & kartesisch) Wichtig: Für das Rechnen mit Phasoren muss die Frequenz () bekannt s Phasortrafo Euler a u u b j arctan( ) a + b e cos arctan b a + b t + a a + jb a cos( t) bsin( t) cos cos cos( t) = e + e ( ) ( jt jt ) t + = u e e + u e ( ) komplexer Drehzeiger j jt j jt komplexe Amplitude U (Phasor) t + u e = U j e a t b t a b t = cos( ) + sin( ) = + cos( ) arctan b a 7

8 Bestimmung der partikulären Lösung über KWSR n n m m ( ) ( ) a D + a D a D + a y( t) = b D + b D b D + b u cos( t + ) n n m m HN( D) HZ( D) u Z D u e e HN( D) y( t) = HZ( D) e e + H ( ) Ansatz : Typ der rechten Seite für j j t j jt jt! j HN( D) Ye HZ( D) u e e = u e e Ye j jt jt ( ( ) ( ) ) jt n n m ( ) m ( ) m m j b ( j) + b ( j) b j + b u e ( ) ( ) m m j H( j) ue ( n n ( ) + ( ) ) an j an j a j + a n n m m j a j + a j a j + a Ye = b j + b j b j + b u e e Y = = j jt ( H ( j ) + ) j j H( j ) Y = H( j) e u e = u H( j ) e Ergebnis partikuläre Lösung : j( H ( j ) + ) y ( t) = u H( j) e e part Phasor oder komplexe Amplitude jt jt

9 Bestimmung der partikulären Lösung über KWSR HN( D) y( t) = HZ( D) e e + H ( ) Ansatz : Typ der rechten Seite für u e e be jt =! ( n n ( ) ( ) ) jt an j + an j +... a j + a be = ( ) ( ) HN( D) be HZ( D) u e j e j jt jt ( ( ) ( ) ) m + m ( ) + n n ( ) + ( ) ( ) + jt m m j b j b j b j b u e b = = H( j) u e ( a ) n j an j a j a jh ( ) = ( j ) j j ( ) b H( j ) e u e = u H( j) e = Y * = Y e Ergebnis partikuläre Lösung : u Z D u e e j j t j jt ( ) m + m m m... ( ) j jt b j b j b j b u e e H j + ja j( H ( j ) ) y ( t) = u H( j) e e part + jt Gesamtergebnis partikuläre Lösung (mit Euler und Faktor ½ wieder zugefügt): y ( t) = y ( t) + y ( t) = H( j) u co s( t + + arg[ H( j) ]) part part part j

10 Transformation er DGL zur Bestimmung der Partikulären Lösung für cos/sin-anregungen cny + c y c y ' + c y = g( t) g( t) = a x( t) + a x( t) a x( t)' + a x( t) ( n n ) n n c D + c D c D + c y( t) = m m = ( a D + a D a D + a ) x( t) m m m m amd + am D ad + a n n n + n m m yt () HD ( ) = = x( t) c D c D... c D c H( j) ( n) ( n ) n ( m) ( m ) m m ( ) m ( )... ( ) n n ( ) ( )... ( ) Y am j + a j + + a j + a = = X c j + c j + + c j + c x( t) cos ) n n = U ( t + y( t) = H( j ) U cos ( t + + arg[ H( j )])

11 Problemtransformation: Ersatzschaltbilder D-Operator D = d dt duc juc jt jic KWSR C = i c, Ansatz: uc = Uce e,ic = Ice e jt dt R( ) = Re ( ) e U I U c Laplace jc duc C = i dt CD u = i uc = ic CD c c c j CU = I oder U = I j C C C C C U y = sc c () s duc C = ic L dt x = slx x() scu C(s) Cu C() = I C(s) oder U C(s) = I C + u C() sc s C u () c t i () c t DC C Ic () s Cu() jt 4

12 Partikuläre Lösung der NW-DGL über KWSR 3.Partikuläre Lösung der DGL über KWSR R RC u (t) + u (t) = uˆ cos( t) u u u c C jc = u = u + R + jrc jc j ûe j arc tan RC = e + C c ( R ) ( ) uc û cos( t + ) û u c(t) = cos t arc tan RC + RC ( ) u = uˆ e Hinweis: Nenner enthält DGL in! j y( t) = H( j) U cos( t + + arg[ H( j)]) c c x( t) = U cos( t + ) j 5

13 Aus der GST-Klausur WS7/8 6.Übung: Grundlagen der analogen Schaltungstechnik 6

14 Zurück in die Stzeit: Maschengleichungen, Knotengleichungen, Elementebeziehungen (gleich in integraler Form) anwenden können sollte man es nur 6.Übung: Grundlagen der analogen Schaltungstechnik 7

15 Welche erstaunliche Ähnlichkeit zur vorigen Lösung Aber leider (beide) falsch! 6.Übung: Grundlagen der analogen Schaltungstechnik 8

16 6.Übung: Grundlagen der analogen Schaltungstechnik 9

17 6.Übung: Grundlagen der analogen Schaltungstechnik

18 H( j) = + H( + j) = ( ) x o 6.Übung: Grundlagen der analogen Schaltungstechnik

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x)

6. Vorlesung Grundlagen der analogen Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) 6. Vorlesug Grudlage der aaloge Schaltugstechik : Operatiosverstärker & Dyaik (KWSR + x) 9..6 Die große Etappeziele i GST roter Fade Netzwerkaalyse it gesteuerte Quelle icht ehr als 3 Gleichuge für jede

Mehr

7. Vorlesung Grundlagen der Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Skript: Ab Folie 258

7. Vorlesung Grundlagen der Schaltungstechnik : Operationsverstärker & Dynamik (KWSR + x) Skript: Ab Folie 258 7. Vorlesug Grudlage der Schaltugstechik : Operatiosverstärker & Dyamik (KWSR + x) Skript: Ab Folie 58 Vorlesug: Grudlage der Schaltugstechik - KWSR & Operatiosverstärkerschaltuge.. Die große Etappeziele

Mehr

9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese

9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 9. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 08..08 Analyse eines Filters. Ordnung (Aufgabe 7) 0 V V R C 3 0. C R v OPI 4 V.0 E.0 E.0 E0.0 E.0 E Frequency M agnitude d B P hase

Mehr

Betreutes Rechnen Special Grundlagen der analogen Schaltungstechnik Schaltungsblick I & Netzwerk-DGLn

Betreutes Rechnen Special Grundlagen der analogen Schaltungstechnik Schaltungsblick I & Netzwerk-DGLn Betreutes Rechnen Special Grundlagen der analogen Schaltungstechnik Schaltungsblick I & Netzwerk-DGLn 9..06 Problemtransformation auf inhomogene lineare Gleichungssysteme Querbeziehungen?! Behaupten kann

Mehr

Grundlagen der Schaltungstechnik Wintersemester 2013/2014. Prof. Dr.-Ing. Ralf Sommer

Grundlagen der Schaltungstechnik Wintersemester 2013/2014. Prof. Dr.-Ing. Ralf Sommer & Grundlagen der Schaltungstechnik Wintersemester 213/214 Vorlesungszeiten Vorlesung Donnerstag 17: 18:3 Audimax Große Hörsaal-Übung (fakultativ) Freitag 17: 18:3 Helmholtz-Hörsaal Gruppen-Übungen (Start:

Mehr

Eric Schäfer, Dominik Krauße, Eckhard Hennig, Ralf Sommer

Eric Schäfer, Dominik Krauße, Eckhard Hennig, Ralf Sommer Der "EDA Designerfinger" direkte Frequenzgangskompensation durch automatisierte Schaltungsstrukturmodifikation für hochperformante integrierte Analogverstärker Eric Schäfer, Dominik Krauße, Eckhard Hennig,

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Hausaufgabe im Fach Grundlagen der Schaltungstechnik (WS09/0) Bearbeiter Mat.-nr. Emailadresse Aufgabe erreichte Punkte

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

10. Übung Grundlagen der analogen Schaltungstechnik

10. Übung Grundlagen der analogen Schaltungstechnik . Übung Grundlagen der analogen Schaltungstechnik 7.2.26 Schaltung Netzwerk & Ersatzschaltbilder ( Views ) Schaltung Schaltbild/Schaltplan/Schematic Arbeitspunktersatzschaltbild Kleinsignalersatzschaltbilder

Mehr

10. Übung Grundlagen der analogen Schaltungstechnik

10. Übung Grundlagen der analogen Schaltungstechnik . Übung Grundlagen der analogen Schaltungstechnik Schaltung Netzwerk & Ersatzschaltbilder ( Views ) Schaltung Schaltbild/Schaltplan/Schematic Arbeitspunktersatzschaltbild Kleinsignalersatzschaltbilder

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung Dynamische Systeme 2-ter Ordnung (PT 2 -System) Schwingungsfähige Systeme 2-ter Ordnung. - Systeme mit Speicher für potentielle und kinetische Energie - Beispiel: Feder-Masse-Dämpfer

Mehr

Übungen zu Linearen DGLs (Stand 2013)

Übungen zu Linearen DGLs (Stand 2013) Übungen zu Linearen DGLs (Stand 03) Initialisierung Turn off some warnings. In[]:= OffGeneral::spell, General::spell; Set the current working directory to the directory in which this notebook resides.

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 4. Juni 203 *Aufgabe. Bestimmen Sie die allgemeinen Lösungen der Differentialgleichungen (a) y 2y + y2 = (b) y + ( 2 y)y = 0 Lösung: (a) Bei dieser Differentialgleichung

Mehr

Grundlagen der Schaltungstechnik

Grundlagen der Schaltungstechnik Technische Universität Ilmenau 25. Juli 2007 Fakultät für Elektrotechnik und Informationstechnik FG Elektronische Schaltungen und Systeme Prof. Dr.-Ing. R. Sommer AUFGABE 1 (15MIN): Klausur Grundlagen

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

Einführung in die Elektronik für Physiker

Einführung in die Elektronik für Physiker Hartmut Gemmeke Forschungszentrum Karlsruhe, IPE gemmeke@ipe.fzk.de Tel.: 0747-8-5635 Einführung in die Elektronik für Physiker 4. Breitbanderstärker und analoge aktie Filter. HF-Verhalten on Operationserstärkern.

Mehr

Einführung in die Elektronik für Physiker

Einführung in die Elektronik für Physiker Hartmut Gemmeke Forschungszentrum Karlsruhe, IPE hartmut.gemmeke@kit.edu Tel.: 0747-8-5635 Einführung in die Elektronik für Physiker 4. Breitbandverstärker und analoge aktive Filter. HF-Verhalten von Operationsverstärkern.

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik

Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik Jürgen Struckmeier j.struckmeier@gsi.de, www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme der Beschleuniger-

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 partielle Differentialgleichungen (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

2. Übung Grundlagen der analogen Schaltungstechnik

2. Übung Grundlagen der analogen Schaltungstechnik 2. Übung Grundlagen der analogen Schaltungstechnik 1 Letzte Vorlesung Superknoten-Beispiel 2 Superposition 3 Algorithmus zur Aufstellung von Supermaschen- Gleichungen (Kurzfassung) 1. Stromquellen entfernen

Mehr

Institut für Analysis WS 2017/18 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Tobias Ried, M.Sc.

Institut für Analysis WS 2017/18 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Tobias Ried, M.Sc. Institut für Analysis WS 07/8 PD Dr. Peer Christian Kunstmann 0..07 Dipl.-Math. Leonid Chaichenets Tobias Ried, M.Sc. Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 0. Übungsblatt

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Brückenkurs Mathematik. Freitag Freitag

Brückenkurs Mathematik. Freitag Freitag Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2007 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1.0 x Gegeben ist die Funktion f a

mathphys-online Abiturprüfung Berufliche Oberschule 2007 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1.0 x Gegeben ist die Funktion f a Abiturprüfung Berufliche Oberschule 007 Mathematik 3 Technik - A I - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a mit f a ( ) ln mit a IR + und der maimalen Definitionsmenge D IR. a fa Teilaufgabe.

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung:

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: (3q.6) folgt auch direkt, wenn ein exp-ansatz für x(t),

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Fourier-Transformation Faltungseigenschaft, Sinusförmiger Input an LTI-Systemen

Fourier-Transformation Faltungseigenschaft, Sinusförmiger Input an LTI-Systemen Telekommunikation und Informatik, Mathematik 2, T. Borer Übung 6-2003/04 Übung 6 Fourier-Transformation Faltungseigenschaft, Sinusförmiger Input an LTI-Systemen Lernziele - die Faltungseigenschaft der

Mehr

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden, 16. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) Name: Matrikel-Nr.:

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Hausaufgabe im Fach Grundlagen der Schaltungstechnik GST (WS11/1) Bearbeiter Mat.-nr. Emailadresse Aufgabe erreichte Punkte

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Partikuläre Lösung inhomogener DGLen 2. Ordnung mit konstanten Koeffizienten

Partikuläre Lösung inhomogener DGLen 2. Ordnung mit konstanten Koeffizienten Partikuläre Lösung inhomogener DGLen 2. Ordnung konstanten Koeffizienten Seite 1 von 5 Partikuläre Lösung inhomogener DGLen 2. Ordnung konstanten Koeffizienten Tabelle: Lösungsansatz für eine partikuläre

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Filterentwurf. Aufgabe

Filterentwurf. Aufgabe Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich

Mehr

Wechselspannungen und -ströme

Wechselspannungen und -ströme Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker Sensorik PID-egler

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider!

15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider! 15. Übung Grundlagen der analogen Schaltungstechnik Die Letzte leider! 1 Na, wie sieht es aus mit Eurem Schaltungsblick? Schade, das spart Rechenarbeit, aber Sie müssen sich natürlich sicher sein. 2 Aufgabe

Mehr

ELEKTRONIK 2 SCHALTUNGSTECHNIK L5-1/18 Prof. Dr.-Ing. Johann Siegl. L5 Frequenzgangdarstellung im Bodediagramm

ELEKTRONIK 2 SCHALTUNGSTECHNIK L5-1/18 Prof. Dr.-Ing. Johann Siegl. L5 Frequenzgangdarstellung im Bodediagramm 1 von 18 15.03.2008 11:39 ELEKTRONIK 2 SCHALTUNGSTECHNIK L5-1/18 Die Frequenzgangdarstellung mittels Bodediagramm ist ein wichtiges Hilfsmittel zur Veranschaulichung der Frequenzverläufe von Übertragungsfaktoren,

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Hausaufgabe im Fach Grundlagen der analogen Schaltungstechnik GaST (WS 205/6) Bearbeiter Matr.-Nr. Emailadresse Aufgabe

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Hausaufgabe im Fach Grundlagen der analogen Schaltungstechnik GaST (WS 04/5) Bearbeiter Matr.-Nr. Emailadresse Aufgabe

Mehr

PRÜFUNG AUS MATHEMATIK 3

PRÜFUNG AUS MATHEMATIK 3 (8 P.) Berechnen Sie das Integral tan(ln x) dx. x (8 P.) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y 2y + 2y = x 2 + 5 cos x. (8 P.) Entwickeln Sie f(x) = sin(x) für x [ π/2, π/2] mit

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

ÜBUNG 4: ENTWURFSMETHODEN

ÜBUNG 4: ENTWURFSMETHODEN Dr. Emil Matus - Digitale Signalverarbeitungssysteme I/II - Übung ÜBUNG : ENTWURFSMETHODEN 5. AUFGABE: TIEFPASS-BANDPASS-TRANSFORMATION Entwerfen Sie ein nichtrekursives digitales Filter mit Bandpasscharakteristik!

Mehr

sin ωt sin (ωt + ϕ) d sin ωt = ω cos ωt d cos ωt = ω sin ωt sin ωt dt = 1 ω cos ωt cos ωt dt = 1 ω sin ωt sin ωt =cos (ωt + π 2 )

sin ωt sin (ωt + ϕ) d sin ωt = ω cos ωt d cos ωt = ω sin ωt sin ωt dt = 1 ω cos ωt cos ωt dt = 1 ω sin ωt sin ωt =cos (ωt + π 2 ) Elektronische Ssteme 4. Wechselspannungskreise 4. Wechselspannungskreise 4. Phasenbeziehungen sin t sin (t ) nachfolgend sin (t + ) voreilend < 0: nachfolgend positiv verschobene eitachse, Rechtssinn gedreht

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 2. x (t) = tx(t), t R

Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 2. x (t) = tx(t), t R Tutor: Martin Friesen, martin.friesen@gm.de Klausur-Übungen Gewöhnliche Differentialgleichungen - Analysis 1. Man berechne alle Lösungen der Differentialgleichung: (t) = t(t), t R Wir benutzten hier den

Mehr

11.2. Lineare Differentialgleichungen erster Ordnung

11.2. Lineare Differentialgleichungen erster Ordnung 112 Lineare Differentialgleichungen erster Ordnung Dynamische Entwicklung von Populationen Entwickelt sich eine bestimmte Größe, zb die einer Population oder eines einzelnen Organismus, nicht nur proportional

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Digitale Signalverarbeitung Übungsaufgaben

Digitale Signalverarbeitung Übungsaufgaben Kapitel : Einleitung -: Analoger Tiefpass Dieser Tiefpass mit den Werten R = Ω, L =.5mH R L und C =.5µF ist wie folgt zu analysieren: U e C R. Es springe U e bei t =.5ms auf 5V und bei t = ms wieder auf.

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

Lösung Serie 1 (Differentialgleichungen 1-ter Ordnung)

Lösung Serie 1 (Differentialgleichungen 1-ter Ordnung) Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 1 (Differentialgleichungen 1-ter Ordnung) Dozent: Roger Burkhardt Klasse: Studiengang

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1 Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe System zur digitalen Signalverarbeitung: Signal- Quelle AAF ADC DAC RCF DSP Po rt Po rt Signal- Ziel Das Bild zeigt ein allgemeines System zur

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

DIFFERENTIALGLEICHUNGEN (DGL)

DIFFERENTIALGLEICHUNGEN (DGL) DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analsis WS 0/5 PD Dr. Peer Christian Kunstmann 05..0 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Phsik Lösungsvorschläge zum. Übungsblatt Aufgabe 6: a Es handelt

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr