Elektron Loch Symmetrie und Grundzustand beim Fraktionellen Quanten Halleffekt (FQHE)

Größe: px
Ab Seite anzeigen:

Download "Elektron Loch Symmetrie und Grundzustand beim Fraktionellen Quanten Halleffekt (FQHE)"

Transkript

1 Hauptsemnar Theoretsche Physk (Sommersemester 003) Elektron Loch Symmetre und Grundzustand bem Fraktonellen Quanten Halleffekt (FQHE) Srko Plz Velen Dank an den Betreuer T. Sommer für sene Unterstützung

2 Glederung:. Enführende Betrachtungen. Elektron Loch Symmetre 3. Der Grundzustand 4. Dskusson der Wellenfunkton von Laughln 5. Zusammenfassung

3 . Enführende Betrachtungen: Im Experment wrd der FQHE nur be gebrochenzahlgen Füllfaktoren der Landau-Nveaus mt ungeradem Nenner beobachtet. De für den Quanten-Halleffekt nötge Energelücke m Anregungsspektrum st für gebrochenzahlge ν ncht m Enelektronenspektrum vorhanden. Enbezehung der Coulomb-Wechselwrkung zur Betrachtung des FQHE nötg Charakterstsche Egenschaften des Ganzzahlgen Quanten- Halleffekts (IQHE)waren: Delokalserung der Zustände als zentrale Voraussetzung Lokalserung der Zustände durch das Verunrengungspotental V Imp (mt Ausnahmen m Zentrum der Landau-Nveaus) Verbreterung der Landau-Nveaus durch das Verunrengungspotental. De Coulomb-Wechselwrkung zwschen den Elektronen sorgt für de Delokalserung be gebrochenzahlgem ν mt ungeradem Nenner, welche den FQHE erst möglch macht. 3

4 Des kann man ntutv recht lecht verstehen. Dazu betrachtet man den Grenzfall enes starken Magnetfeldes: ohne Coulomb-Wechselwrkung: Elektronen auf Äqupotentallnen des Verunrengungspotentals lokalsert mt Coulomb-Wechselwrkung: Abstoßung durch das Coulomb- Potental (V Coul. ) der anderen Elektronen, deren Orte sch mmerzu ändern für V Coul. >> V Imp : Delokalserung für erste Betrachtungen des FQHE st das Verunrengunspotental vernachlässgbar. 4

5 . Elektron Loch Symmetre: e - Maß für Coulombenerge: U 0 B 4πε l (l bestmmt dabe den Orbt der Enelektronenwellenfunkton.) - Abstand der Landau-Nveaus: ω c B e m Grenzfall starkes Magnetfeld: ωc >> = U 0 4 πε l Term der knetschen Energe überwegt. für Untersuchung des Grundzustandes: - Anfüllung der Landau-Nveaus vom untersten an - Wechselwrkung als Störung betrachten Es exstert ene Mschung der Landau-Nveaus aufgrund der Coulomb-Wechselwrkung: Mschung proportonal zu B /, d.h. verschwndet für große B Experment: FQHE besonders gut be starkem Magnetfeld Mschung ncht essentell für FQHE Betrachte: hω/π 5

6 Wr betrachten nun en System mt belebgem ν: allgemen: ν = [ν] + α = n + α mt 0 α <, n Ν Fallunterschedung: a) α=0: nur untersten n Landau-Nveaus besetzt, Anregung kostet ω c Zustand nert, entsprcht Vakuum b) α 0: n unterste Landau-Nveaus völlg besetzt und nächstes zum α- ten Tel besetzt unterste n Landau-Nveaus ohne Enfluss (sehe a) System mt ν entsprcht enem System mt ν-n = α als Füllfaktor. Hamltonoperator n Landau-Echung ohne V Imp : H = H k.e. + H nt mt: Erzeuger a + N,X, Vernchter a N,X und Wellenfunktonen ϕ N,X ( r ), wobe: N... Landau-Nveau-Quantenzahl und X Mttelpunktskoordnate H k. E. N c a N= 0 X a + + ω N, X N, X = H nt = N = 0N = 0N = 0N = 0 X X X X A N a +,..., N4, X,..., X 4 N, X N, X N3, X3 N4, a + a a X 4 6

7 mt: A = betrachte Grenzfall starkes Magnetfeld: * e ( r ) ϕ N, ( r ), ( r ), ( ) X ϕ N3 X ϕ 3 N4 X 4πε r r d r d r ϕ r * N,..., N4, X,..., X 4 N, X 4 - Elektronenanzahl n den Nveaus konstant Term der knetschen Energe konstant und aus Summaton - Wechselwrkungsmatrxelemente konstant bs auf de Terme, de nur N=[ν]+ enthalten, damt ebenfalls aus Summaton gezogen - Betrachte A N,..., N4, X,..., X als Parameter 4 H selbe Form für alle ν und nur H nt übrg ausrechend en Landau- Nveau zu betrachten mt: b X = a + X Erzeuger für Löcher, d.h. unbesetzte Zustände, und b + X = a X Vernchter für Löcher H =(bs auf konstanten Term)= H nt + + A b b b b = (H = H + ) = X, X, X 3, X 4 X 4 X 3 X X X X X X 3 4 = X 4, X 3, X, X X X X 3 X 4 X X X X 3 4 A b + b + b b H Löcher = H Elektronen Elektron-Loch-Symmetre ν = [ν] + α äquvalent zu [ν] +- α = - ν +[ν] nur noch ν ½ zu betrachten 7

8 3. Der Grundzustand - Betrachtung von H nt als Störung ncht möglch, da enzger verblebener Term - Grundzustand mnmert Energe der Wechselwrkung E nt Varatonsmethode: - Grenzfall starkes Magnetfeld: H engeschränkt auf erstes Landau-Nveau betrachten - Enelektronenwellenfunkton n symmetrscher Echung: z / 4 ( r ) = f ( z) e Φ mt z = (x - y)/l und f ( z)... Polynom n z - Reduzerter Hlbertraum: Jede Wellenfunkton st Lnearkombnaton von Slater Φ r Determnanten der ( ) allgemener Ansatz: Ψ ( r,..., r ) = f ( z,..., z ) exp z / 4 N - f als Polynom n allen z besteht aus Termen a z mt: m... Drehmpulsquantenzahl = m - M Quantenzahl des Gesamtdrehmpulses L ges der Slater-Determnante mt desem Term N m - L ges erhalten, da nur Coulomb-Wechselwrkung betrachtet 8

9 Wähle f so, dass eder Term gleches M enthält f homogenes Polynom () - Paul-Prnzp: f total antsymmetrsch () - nur paarwese Coulomb-Wechselwrkung betrachtet Ψ abhängg vom Abstand zweer Elektronen Annahme: Wellenfunkton (n f) nur vom Abstand zweer Elektronen abhängg f ( z,..., zn ) = g( z z ) > g vom Typ ( ) q g z = z mt q = n, n {,,...} q ( ) ( ) Ψ q r,..., rn = z z exp z / 4 > LAUGHLINsche Wellenfunkton (LWF) Zu beachten: q enzger Parameter zur Varaton! 9

10 4. Dskusson der Wellenfunkton von Laughln: m thermodynamschen Glechgewcht: Ψ q ( r,..., r ) = exp( βh ) mt H = ( l ) r qβ N β ln z z (3) Des entsprcht formal der kanonschen Vertelung enes klassschen Entelchenplasmas n zwe Dmensonen mt: > H ρσ = r 4ε > σ ln r πε r, σ < 0 Telchenladung Entelchenplasma sollte fast mmer elektrsche Neutraltät bestzen Telchendchte sollte ρ n = m thermschen Glechgewcht sen. σ Mt Koeffzentenverglech von (3) und (4): ρ σ = 4ε (5), βl σ q = πε β (6) () 5 ρ π = = ( 6) σ 4l q mt ρ σ = n q = π nl = ν q enzger Parameter, aber durch ν schon festgelegt 0

11 Nullstellen der Wellenfunkton von Laughln: Be ν = /3: Ψ 0 für z z 0 und fällt dort z z 6 Laughlnsche Wellenfunkton gut geegnet, um kurzrechwetgen Tel der Coulomb Abstoßung der Elektronen zu mnmeren Begründung dafür durch Verglech mt anderen Zuständen be ν = /3: - En Drttel der Enelektronenzustände bs = 3( N ) N... Elektronenanzahl - Allgemene Wellenfunkton: Ψ ( r,..., r ) = f ( z,..., z ) exp z / 4 N N M besetzt, f weder Polynom n z bs zur Potenz M M Nullstellen - f weder antsymmetrsch und Ψ 0 für z z 0 Faktor ( z ) > z ausklammern f, als Funkton enes z,hat (N - ) Nullstellen an den Postonen der anderen Elektronen. De restlchen (N ) Nullstellen können rgendwo sen. Be Laughlns Wellenfunkton snd alle Nullstellen an de Orte der anderen Elektronen gebunden. Free Nullstellen erhöhen Coulomb Energe, denn: - Se erhöhen de Wahrschenlchket der Annäherung zweer Elektronen - De Elektronendchte st dort gernger, de postve Hntergrundladung also wenger abgeschrmt Laughln Zustand mnmert Coulomb Energe

12 5. Zusammenfassung: Coulomb Wechselwrkung der Elektronen war Schlüssel zur Betrachtung des Fraktonellen Quanten- Halleffekts Der Grenzfall enes starken Magnetfeldes und de Elektron Loch Symmetre schränken de zu betrachtenden Füllfaktoren auf ν ½ en. Durch wenge Forderungen an de Wellenfunkton m Grundzustand konnte de Laughlnsche Wellenfunkton gewonnen werden. Se muss ncht mehr varert werden, da hr enzger Parameter schon durch den Füllfaktor des Systems gegeben st. De Laughlnsche Wellenfunkton st ene gute Näherung für den Grundzustand für ν > /7, da se den kurzrechwetgen Term der Coulomb Wechselwrkung mnmert.

Temperaturabhängigkeit der Beweglichkeit

Temperaturabhängigkeit der Beweglichkeit Temperaturabhänggket der Beweglchket De Beweglchket nmmt mt zunehmender Temperatur ab! Streuung mt dem Gtter! Feldabhänggket der Beweglchket Für sehr hohe Feldstärken nmmt de Beweglchket n GaAs ab! Feldabhänggket

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

Protokoll zu Versuch C1-Mischungsvolumina

Protokoll zu Versuch C1-Mischungsvolumina Protokoll zu Prnz: De sezfschen Mschungsvolumna ener Lösung werden durch auswegen fester Flüssgketsvolumna bekannter Lösungszusammensetzungen mt Hlfe von Pyknometern bestmmt. Theoretsche Grundlagen: Um

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk

Mehr

Die kanonische Zustandssumme (System) und ihr Zusammenhang mit der molekularen Zustandssumme (Einzelmolekül) unterscheidbare Teilchen:

Die kanonische Zustandssumme (System) und ihr Zusammenhang mit der molekularen Zustandssumme (Einzelmolekül) unterscheidbare Teilchen: De molekulare Zustandssumme βε = e mt β = De kanonsche Zustandssumme (System) und hr Zusammenhang mt der molekularen Zustandssumme (Enzelmolekül) unterschedbare elchen: Q = ununterschedbareelchen Q : =!

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Übungen zur Theoretischen Physik Fb SS 18

Übungen zur Theoretischen Physik Fb SS 18 Karlsruher Insttut für Technologe Insttut für Theore der Kondenserten Matere Übungen zur Theoretschen Physk Fb SS 8 Prof Dr A Shnrman Blatt PD Dr B Narozhny Lösungsvorschlag Thermodynamk von Phononen:

Mehr

10 Einführung in die Statistische Physik

10 Einführung in die Statistische Physik 10 Enführung n de Statstsche Physk More s dfferent! P.W. Anderson, Nobelpres 1977 10.1 Prolegomena Technsch gesehen st de Rolle der Statstschen Mechank der Glechgewchtssysteme, ausgehend von unseren Kenntnsse

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferenkurs Theoretsche Physk: Mechank Sommer 018 Vorlesung 4 (mt freundlcher Genehmgung von Gramos Qerm, Jakob Unfred und Verena Walbrecht) Technsche Unverstät München 1 Fakultät für Physk Inhaltsverzechns

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Theoretische Physik II Elektrodynamik Blatt 2

Theoretische Physik II Elektrodynamik Blatt 2 PDDr.S.Mertens M. Hummel Theoretsche Physk II Elektrodynamk Blatt 2 SS 29 8.4.29 1. Rechnen mt Nabla. Zegen Se durch Auswertung n kartesschen Koordnaten de folgende Relaton und werten Se de anderen Relatonen

Mehr

Course Dec 15, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Rationale

Course Dec 15, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Rationale Dec 15, 2016 ASC, room A 238, phone 089-21804210, emal hartmut.ruhl@lmu.de Patrc Böhl, ASC, room A205, phone 089-21804640, emal patrc.boehl@phys.un-muenchen.de. Dsusson der Besetzungszahldarstellungen

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit

Kurs Mikroökonometrie Rudolf Winter-Ebmer Thema 3: Binary Choice Models Probit & Logit. Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit BINARY CHOICE MODELS 1 mt Pr( Y = 1) = P Y = 0 mt Pr( Y = 0) = 1 P Bespele: Wahlentschedung Kauf langlebger Konsumgüter Arbetslosgket Schätzung mt OLS? Y = X β + ε Probleme: Nonsense Predctons ( < 0, >

Mehr

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T.

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T. hermodynamsche resonse -unktonen: 9 zwete Abletungen der thermodynamschen Potentale sezfsche Wärme (thermscher resonse) E C S be konstantem olumen (sochor):,,, be konstantem Druck (sobar): C S Komressbltät

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Die Hamilton-Jacobi-Theorie

Die Hamilton-Jacobi-Theorie Kaptel 7 De Hamlton-Jacob-Theore Ausgearbetet von Rolf Horn und Bernhard Schmtz 7.1 Enletung Um de Hamlton schen Bewegungsglechungen H(q, p q k = p k H(p, q ṗ k = q k zu verenfachen, führten wr de kanonschen

Mehr

14 Exakte Statistik nichtwechselwirkender Teilchen

14 Exakte Statistik nichtwechselwirkender Teilchen Woche 4 Exakte Statstk nchtwechselwrkender Telchen 4 Bose-Ensten Statstk Engeführt von Satyendra ath Bose 924) für Photonen von A Ensten für massve Telchen 925) Voraussetzung: Bosonen Telchen mt ganzzahlgen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Insttut für Technologe Insttut für Theore der Kondenserten Matere Klasssche Theoretsche Physk II Theore B Sommersemester 016 Prof. Dr. Alexander Mrln Musterlösung: Blatt 7. PD Dr. Igor Gorny,

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Zusammenfassung. 1) Falls Zwangsbedinungen die Freiheitsgrade einschränken, kann man die abhängige Koordinaten aus der Lagrangfunktion elimieren;

Zusammenfassung. 1) Falls Zwangsbedinungen die Freiheitsgrade einschränken, kann man die abhängige Koordinaten aus der Lagrangfunktion elimieren; Zusammenfassung 1) Falls Zwangsbednungen de Frehetsgrade enschränken, kann man de abhängge Koordnaten aus der Lagrangfunkton elmeren; 2) Es st auch möglch de Zwangsbednungen mt Hlfe der Lagrangefaktoren

Mehr

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 2

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 2 Physk T Dortmund SS28 Götz hrg Shaukat Khan Kaptel 2 Drftgeschwndgket der Elektronen n enem Draht Elektronen bewegen sch unter dem Enfluss enes elektrschen Felds durch en Metall, wobe se oft Stöße mt Atomen

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 8. Übung (08.01.2008) Agenda Agenda Verglech Rasch-Modell vs. 2-parametrsches logstsches Modell nach Brnbaum 2PL-Modelle n Mplus Verglech

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Kapitel 5. Der Metamagnet Fe 1-x Mg x Br 2

Kapitel 5. Der Metamagnet Fe 1-x Mg x Br 2 87 Kaptel 5 Der Metamagnet Fe 1-x Mg x Br In dem folgenden Kaptel 6 wrd auf das schwach verdünnte System Fe 0,95 Mg 0,05 Br engegangen werden. We n der Enletung berets erwähnt wurde, stellt deses System

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Proseminar Theoretische Physik und Astroteilchenphysik

Proseminar Theoretische Physik und Astroteilchenphysik Prosemnar Theoretsche Physk und Astrotelchenphysk Thermodynamsches Glechgewcht Ferm- und Bose Gase Hennng Wenck . Entrope Um thermodynamsche Prozesse zu beschreben muss man zunächst den Begrff der Entrope

Mehr

7 Schrödingergleichung

7 Schrödingergleichung 36 7 Schrödngerglechung 7 Schrödngerglechung De Schrödngerglechung spelt n der Quantenmechank ene zentrale Rolle. Mt hr wrd de Wellenfunkton des Systems berechnet. Der erste Bestandtel der Schrödngerglechung

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Die mathematischen Grundlagen der Wellenmechanik

Die mathematischen Grundlagen der Wellenmechanik De mathematschen Grundlagen der Wellenmechank Zustände und deren Darstellung En physkalsches System wrd durch enen Zustand u charaktersert, ndem es durch ene bestmmte expermentelle Präparaton gebracht

Mehr

Sicherheit von Π MAC2

Sicherheit von Π MAC2 Scherhet von Π MAC2 Satz Scherhet von Π MAC2 Se Π scher. Dann st Π MAC2 ebenfalls scher. Bewes: Se A en Angrefer für Π MAC2 mt Erfolgsws ɛ(n). Wr konstrueren enen Angrefer A für Π. Algorthmus Angrefer

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Diskrete Logarithmen. Teil II

Diskrete Logarithmen. Teil II Dskrete Logarthmen Ron-Gerrt Vahle Hendrk Radke Unverstät Potsdam Insttut für Informatk Semnar Kryptographe SS2005 Tel II Glederung Pohlg-Hellman Index-Calculus Theoretsche Grenzen Endlche Körper Eplog

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Molekularfeld. raumzeitlich konstantes Feld

Molekularfeld. raumzeitlich konstantes Feld 11.1 Weßsche Molekularfeldtheore betrachte Isng-Modell auf D-dmensonalem hyperkubschem Gtter jeder Platz hat q = 2D n.n. S = ±1 externes homogenes Magnetfeld B H = J S S j B 2 j Idee der Molekularfeld-Theore:

Mehr

1.2 Verhalten nahe T=0, Fermi-Druck

1.2 Verhalten nahe T=0, Fermi-Druck 1. Fermgase 1 1.1 Ferm-Vertelung 1. Verhalten nahe T=0, Ferm-Druck 1.3 Endlche Temperaturen G. Kahl & F. Lbsch (E136) Statstsche Physk II Kaptel 1 14. März 014 1/4 1.1 Ferm-Vertelung 1.1 Ferm-Vertelung

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität) 71

Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität) 71 Statstsche Physk, G Schön, Karlsruher Insttut für echnologe (Unverstät) 7 5 Ideale Gase 5 Das (Maxwell -) Boltzmann-Gas Als deales Gas bezechnet man en System ncht-wechselwrkender elchen, de aber dennoch

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Äquivalenzen stetiger und glatter Hauptfaserbündel

Äquivalenzen stetiger und glatter Hauptfaserbündel Äquvalenzen stetger und glatter Hauptfaserbündel Chrstoph Müller Chrstoph Wockel Fachberech Mathematk Unverstät Darmstadt 31. Süddeutsches Kolloquum über Dfferenzalgeometre Glederung 1 De Problemstellung

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Noethertheorem. 30. Januar 2012

Noethertheorem. 30. Januar 2012 Noethertheorem 30. Januar 2012 1 Inhaltsverzechns 1 Symmetre 3 1.1 Symmetre n der Geometre................... 3 1.2 Symmetre n der Mathematk.................. 3 1.3 Symmetre n der Physk.....................

Mehr

Kapitel 5. Symmetrien und Erhaltungsgrößen. 5.1 Symmetrietransformationen

Kapitel 5. Symmetrien und Erhaltungsgrößen. 5.1 Symmetrietransformationen Kaptel 5 Symmetren un Erhaltungsgrößen 5.1 Symmetretransformatonen Betrachte en mechansches System mt en Koornaten q 1,... q f un er Lagrangefunkton L(q 1,... q f, q 1,... q f, t). Nun soll ene Transformaton

Mehr

3.6 Molekulare Dynamik

3.6 Molekulare Dynamik 3.6 Molekulare Dynamk In den letzten 5 Jahrzehnten wurden drekte numersche Smulatonen zur statstschen Auswertung von Veltelchensystemen mmer wchtger. So lassen sch Phasenübergänge, aber auch makroskopsche

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

Plastizität, Rekristallisation, Kriechen

Plastizität, Rekristallisation, Kriechen Werkstoffe und Fertgung II Prof.Dr. K. Wegener Sommersemester 007 Semnarübung 8 Plastztät, Rekrstallsaton, Krechen Musterlösung Insttut für Werkzeugmaschnen und Fertgung, ETH Zentrum Übungsassstenz:, Mchael

Mehr

Musterlösung zu Übung 4

Musterlösung zu Übung 4 PCI Thermodynamk G. Jeschke FS 05 Musterlösung zu Übung erson vom 6. Februar 05) Aufgabe a) En Lter flüssges Wasser egt m H O, l ρ H O, l L 998 g L 998 g. ) De Stoffmenge n H O, l) von enem Lter flüssgen

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper Raometrsche Kalbrerung Tratoneller Ansatz Kalbrerung aus mehreren Blern Behanlung von übersteuerten Blern Zweck Das Antwortverhalten es Systems Kamera Framegrabber st ncht mmer lnear Grauwerte sn ncht

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretsche Physk 2 (Theoretsche Mechank Prof. Dr. Th. Feldmann 28. Oktober 2013 Kurzzusammenfassung Vorlesung 4 vom 25.10.2013 1.6 Dynamk mehrerer Massenpunkte Dynamk für = 1... N Massenpunkte mt.a. komplzerter

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1 MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104 Kaptel 4: Unscherhet n der Modellerung Modellerung von Unscherhet Machne Learnng n der Medzn 104 Regresson Modellerung des Datengenerators: Dchteschätzung der gesamten Vertelung, t pt p p Lkelhood: L n

Mehr

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ).

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ). 5 Interpolaton 5.1 De Lagrangesche Interpolatonsaufgabe Mt È n bezechnen wr den Raum der reellen Polynome vom Grad n. Gegeben seen n+1 verschedene Stützstellen x j Ê, j = 0,...,n, und n + 1 ncht notwendg

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

2. Grundbegriffe der Statistik

2. Grundbegriffe der Statistik Statstsche Physk, G. Schön, Karlsruher Insttut für Technologe (Unverstät) 3. Grundbegrffe der Statstk.1 Elementare Begrffe Im Folgenden betrachten wr ene oder mehrere stochastsche Varablen X oder auch

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

Gauss sche Fehlerrrechnung

Gauss sche Fehlerrrechnung Gauss sche Fehlerrrechnung T. Ihn 24. Oktober 206 Inhaltsverzechns Modell und Lkelhood 2 Alle Standardabwechungen σ snd bekannt, bzw. de Kovaranzmatrx der Daten st bekannt: Mnmeren der χ 2 -Funkton. 6

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 2. Übung (05.02.2009) Agenda Agenda Datenbsp. scalefactors.dat Berechnen der Varanzen der Latent Response Varablen Berechnen der modellmplzerten

Mehr