16. Vorlesung Sommersemester

Größe: px
Ab Seite anzeigen:

Download "16. Vorlesung Sommersemester"

Transkript

1 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector, egenvalue). In Komponentenschrebwese st das n A x = λx, = 1...n. (2) =1 Indem man de rechte Sete mttels der Enhetsmatrx ebenfalls als Matrxmultplkaton schrebt, erhält man (A λi) x = 0 () oder n Komponentenschrebwese (A λδ )x = 0. (4) Als Matrxglechung ausgeschreben seht das so aus: A 11 λ A A 1n A 21 A 22 λ... A 2n.... A n1... A n,n 1 A nn λ x 1. x n = 0. (5) Das st en homogenes lneares Glechungssystem, bekanntlch st de Bedngung für ene nchttrvale Lösung de Säkularglechung: det(a λ1) = 0. (6) Se bestmmt de möglchen Werte von λ. Da det(a λ1) en Polynom n-ten Grades n λ st, f(λ) = det(a λ1) = a n λ n + a n 1 λ n a 1 λ + a 0 = 0 (7) 1

2 glt für de Lösungen der Hauptsatz der Algebra: Es gbt genau n Lösungen, de. a. komplex sen können und ncht alle verscheden müssen. Was bedeutet es, wenn ene Lösung mehrmals vorkommt? Seen de Lösungen λ 1,λ 2... λ n, Dann kann man schreben f(λ) = n a λ = C (λ λ 1 )(λ λ 2 )...(λ λ n ) (8) =0 und wenn ene Lösung mehrfach vorkommt, z. B. λ 1 = λ 2 = λ, dann wrd f(λ) = C (λ λ 1 ) (λ λ 4 )...(λ λ n ) (9) Man kann Mehrfachnullstellen auf 2 Arten feststellen, ndem man entweder das Polynom dvdert: blde f(λ) λ λ 1 hat dann mmer noch λ 1 als Nullstelle; man muss dremal dcvderen, bs das ncht mehr der Fall st, oder man bldet de Abletung an der Nullstelle: be λ λ 1 verhält sch f(λ) we (λ λ 1 ), es verschwnden also de erste und zwete Abletung an der Stelle λ 1. Allgemen hat man also ene k-fache Nullstelle, wenn de Abletungen bs zur k 1-fachen verschwnden. 2 Relle symmetrsche Matrzen Für relle symmetrsche Matrzen mt der Egenschaft glt: A = A T = A oder A = A = A,, = 1...n (10) 1. alle Egenwerte snd reell. Der Bewes st enfach. Se λ en u. U. komplexer Egenwert mt Egenvektor x. Dann bldet man das Skalarprodukt mt x : A x = λx = λ x A x = λ x A x. (11) Anderesets kann man dasselbe mt der komplex konugerten Glechung machen: A x = λ x = x A x = λ x x = λ x A x = λ x A x. (12) En Verglech beder Glechungen zegt, dass λ = λ, also λ reell sen muss. Nebenbemerkung: der Bewes zegt, dass auch ene komplexe Matrx, de de Bedngung A = A oder A = AT erfüllt, ene hermtesche Matrx deselbe Egenschaft hat. 2

3 Da de Egenwertglechung nunmehr vollständg relle Koeffzenten hat de Matrx und der Egenwert snd rell kann man auch o. B. d. A. relle Egenvektoren annehmen. 2. Für reelle symmetrsche Matrzen snd Egenvektoren zu verschedenen Egenwerten orthogonal. Es se A x = λ 1 x, A y = λ 2 y (1) Dann kan man weder de Skalarprodukte blden y A x = λ 1 x y, x A y = λ 2 x y (14), und bekommt durch Ausnutzen der Symmetre: (λ 1 λ 2 ) x y = 0 x y = x y = 0. (15) Bespel Noch enmal de Bestmmung der Hauptträghetsmomente und Hauptträghetsachsen des Würfels, der um ene Ecke rotert. Es war J = Ma2 8 8 (16) 12 8 Für de Säkularglechung zehen wr den konstanten Faktor heraus und betrachten 12J ma 2 8 λ det 8 λ = 0 = f(λ). (17) 8 λ Das führt auf f(λ) = λ + 24λ 2 λ. (18) De Lösungen snd: λ 1 = 2, λ 2 = 11, λ = 11 mt Egenvektoren r 1 (Komponenten x 1, {1, 2, }) usw. De Egenvektoren bestmmt man aus dem Egenwertproblem durch Ensetzen ewels enes der Egenwerte, z. B. 8 λ 1 8 λ 1 8 λ 1 x 11 x 12 x 1 = 0 (19) Mt r 1 st auch edes Velfache c r 1 Lösung: nur de Rchtung st bestmmt! De Länge kann man fre wählen, mest wrd r 1 = 1 verlangt. 6 6 x 11 x 12 = 0. (20) 6 x 1

4 De erste Glechung führt auf 6x 11 x 12 x 1 = 0 x 11 = 1 2 (x 12 + x 1 ) (21) Subtraheren der beden anderen Glechungen und Ensetzen deses Ergebnsses ergbt 9x 12 9x 1 = 0 x 12 = x 1 (22) Da de Länge a unbestmmt st, kann man enfach ene der (nchtverschwndenden) Komponenten wählen, z. B. x 1 = 1, woraus x 12 = 1, x 11 = 1 folgt. Damt hat man den Egenvektor r 1 = C(1, 1, 1) normert: r 1 = 1 (1, 1, 1). (2) Für de beden anderen Egenwerte λ 2 = 11, λ = 11 st noch zu beachten, dass ede belebge Lnearkombnaton zweer Egenvektoren zu desem Egenwert ebenfall en Egenvektor st: aus folgt A r 2 = 11 r 2 A r = 11 r (24) A(c 2 r 2 + c r ) = 11 (c 2 r 2 + c r ) (25) Es wrd also nur ene Ebene bestmmt. Entsprechend wrd das Egenwertproblem für desen Egenwert zu dre dentschen Glechungen x 21 x 22 = 0, (26) x 2 entsprcht also ener enzgen Glechung x 21 + x 22 + x 2 = 0. (27) Dese Glechung besagt übrgens enfach, dass der Egenvektor orthogonal zu r 1 sen muss, we es a für Egenvektoren zu verschedenen Egenwerten be ener reellen symmetrschen Matrx sen muss: r 2 r 1 = 1 (1, 1, 1) (x 21, x 22, x 2 ) = 1 (x 21 + x 22 + x 2 ) = 0 (28) Man kann nur den Vektor r 2 unter deser Bedngung fre wählen, z.b. r 2 = 1 2 (1, 1, 0). Der noch fehlende Egenvektor r muss dann ebenfalls zu r 1 orthogonal sen, sollte aber vernünftgerwese auch zu r 2 orthogonal gewählt werden. Das kann man über das Vektorprodukt errechen oder enfach durch Erraten. Ene Wahl st r = 1 6 (1, 1, 2). 4

5 4 Der Begrff des Tensors En tensor k-ter Stufe st en Obekt mt Komponenten, de durch k Indzes numerert werden, T 1, 2,... k, 1, 2,... k {1, 2, }, (29) und das be Drehungen der Koordnaten n edem Index we en Vektor transformert (dazu unten Näheres, be (6)). Festgehalten werden sollte edoch schon, dass der Begrff Tensor physkalsch durch Transformatonsegenschaften defnert st. Das unterschedet z. B. den Träghetstensor von ener Matrx (de nchts weter st als ene rechteckge Anordnung von Zahlen). Zunächst Bespele: Für k = 0 blebt ene enzge Zahl: es handelt sch also um enen Skalar. Für k = 1 ergbt sch en Obekt mt dre Komponenten, also en Vektor. Für k = 2 bekommt man de häufgste Art von echtem Tensor, we etwa der Träghetstensor J mt senen Komponenten J kl. Da dese be wetem am häufgsten vorkommen, nennt man se oft auch enfach Tensoren. Tensoren mt k > 2 kommen vor allem n der allgemenen Relatvtätstheore vor. 5 Tensoren und Drehungen Unter Drehungen werden de Komponenten enes Vektors mt Hlfe ener Matrx transformert. Wenn wr de Drehung R nennen, so st zu schreben a = R a, a = R a, {1, 2, }. (0) =1 De Drehmatrx kennen wr aus dem letzten Semester; für ene Drehung um de z-achse z. B. st cosφ snφ 0 R = sn φ cosφ 0. (1) De Drehmatrzen müssen ene wchtge mathematsche Egenschaft erfüllen. Da nämlch unterdrehungen sch de Länge und der Wnkel zwschen zwe Vektoren ncht ändert, muss a b = a b sen, oder n Komponenten ( ) R a R k b k = a b. (2) k 5

6 Das kann nur dann für belebge Vektoren a und b erfüllt sen, wenn R Rk = δ k () st. Mt der transponerten Matrx (R T ) = R kann man das n Matrxschrebwese formuleren: R T R = I oder RR 1 = I (4) mt I der Enhetsmatrx (de entlang der Dagonalen Ensen und sonst Nullen enthält. Des st de Bedngung für ene orthogonale Matrx. An der Drehung um de z-achse oben seht man sofort, dass de transponerte Matrx enfach der Drehung um φ entsprcht, also der nversen Drehung. We seht es nun mt Tensoren aus? Nach der Formel über den Drehmpuls sollte L = J ω selbst weder en Vektor sen, und unter ener Drehung sollte gelten L = J ω, (5) d. h. man kann den gedrehten Drehmpulsoperator entweder drekt durch Drehung aus L erhalten, oder den gedrehten Träghetstensor J auf das gedrehte ω anwenden. Wr werden sehen, dass das genau mt mt der oben gegebenen Defnton enes Tensors überenstmmt: n edem Index we enen Vektor transformeren. Für den Träghetstensor ergbt des J = R k R l J kl. (6) k,l=1 Setzen wr das und de Transformaton der Vektoren n (5) en (man muss nur de Summatonsndzes e nach Bedarf umbenennen, um Doppelverwendung zu vermeden): R m L = L m = k,l ( ) R mk R l J kl R n ω n = n ( J L ) m. (7) Dabe wurden de Bestandtele der rechten Sete von (5) engeklammert, um se vonenander abzuheben. Wr dürfen aber nun alle Summen belebg vertauschen und de enthaltene Summe R l R n = δ ln (8) wegen der Orthogonaltät verenfachen. Damt st aber rechts nur noch dese Summe wegzulassen und m Rest l = n (auch kene Summe über l mehr!) zu setzen, womt R m L = ( ) R mk J kl ω l = R mk L k (9) k l k 6

7 resultert. Bs auf de rrelevante Bennenung des Summatonsndex snd bede Seten dentsch. Damt st klar, dass de Transformaton des Tensors gemäß (6) de gewünschte Egenschaft hat. 7

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

19. Vorlesung Sommersemester

19. Vorlesung Sommersemester 19. Vorlesung Sommersemester 1 Allgemene Bewegung des starren Körpers Bsher wurde nur der Fall behandelt, dass de Drehachse festgehalten wrd. Im allgemenen Fall kommen als Probleme hnzu, dass 1. de Drehachse

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade

Der starre Körper. 1 Grundlagen. Dominik Fauser. 1.1 Denition. 1.2 Freiheitsgrade Der starre Körper Domnk Fauser 1 Grundlagen 1.1 Denton Als enen starren Körper bezechnet man en System von Massepunkten m, deren Abstände zuenander konstant snd: r j = r r j. Mest betrachtet man ene sehr

Mehr

Die mathematischen Grundlagen der Wellenmechanik

Die mathematischen Grundlagen der Wellenmechanik De mathematschen Grundlagen der Wellenmechank Zustände und deren Darstellung En physkalsches System wrd durch enen Zustand u charaktersert, ndem es durch ene bestmmte expermentelle Präparaton gebracht

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Ko- und kontravariante Darstellung

Ko- und kontravariante Darstellung Ko- und kontravarante Darstellung Physkalsche Sachverhalte snd vom verwendeten Koordnatensystem unabhängg. Sehr oft st es snnvoll, se n verschedenen Koordnatensystemen darzustellen. Berets erwähnt wurden

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

3. Vorlesung Sommersemester

3. Vorlesung Sommersemester 3. Vorlesung Sommersemester 1 Bespele (Fortsetzung) 1. Der starre Körper: Formulerung der Zwangsbedngungen später. Anschaulch snd schon de Frehetsgrade: dre der Translaton (z. B. Schwerpuntsoordnaten)

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt

2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt Lneare Algebra Wel Gao September Gauss sches Elmnatonsverfahren a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mnx n = b m Das LGS mt m Glechungen und n Unbekannten n ene erweterte

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan Lneare Algebra IIa - 04 orlesung - Pro Dr Danel Roggenkamp & Sen Balnojan 93 Untäre ektorräume hermtesche Form au enem C ektorraum sesqulnear (ant-lnear m ersten lnear m zweten Argument (, w (w, (, 2 R

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Bei Strecken höherer Ordnung wird auch hier die Strecke durch die Methode der Ersatzzeitkonstante

Bei Strecken höherer Ordnung wird auch hier die Strecke durch die Methode der Ersatzzeitkonstante Lösung Übung 9 Aufgabe: eglerauslegung mt blnearer Transformaton n s In der kontnuerlchen egelungstechnk wrd für gewöhnlch en PI-egler verwendet, um de größte Zetkonstante zu kompenseren bzw. be IT-Strecken

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferenkurs Theoretsche Physk: Mechank Sommer 018 Vorlesung 4 (mt freundlcher Genehmgung von Gramos Qerm, Jakob Unfred und Verena Walbrecht) Technsche Unverstät München 1 Fakultät für Physk Inhaltsverzechns

Mehr

3 Elastizitätstheorie

3 Elastizitätstheorie 3 Elastztätstheore Für en elastsches Medum nmmt man enen spannungsfreen Referenzzustand an, der n Eulerkoordnaten durch x = Ax, t) gegeben st. Abwechungen werden beschreben durch de Verschebung ux, t)

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

1 Ergänzungen zur Linearen Algebra

1 Ergänzungen zur Linearen Algebra LA E 15 1 1 Ergänzungen zur Lnearen Algebra 1.1 Ergänzungen zu den orthogonalen Projektonen Als erstes Ergänzungen zu Summen von Unterräumen. Snd V 1,..., V k Unterräume des R n, so soll de Menge {x 1

Mehr

ijk n j x k + O( 2 ) für i =1, 2, 3 x k + O( 2 ) für i =1, 2, 3 ijk n j ~ (i~ ijk )n j x k + O( 2 ) für i =1, 2, 3. (V.28)

ijk n j x k + O( 2 ) für i =1, 2, 3 x k + O( 2 ) für i =1, 2, 3 ijk n j ~ (i~ ijk )n j x k + O( 2 ) für i =1, 2, 3. (V.28) V.3 Drehungen 83 V.3 Drehungen Jetzt werden dredmensonale Drehungen und hre Wrkung betrachtet. Wenn ~n der Enhetsvektor entlang der Drehachse und der Wnkel der Drehung snd, kann wrd de Transformaton des

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materalen zur Vorlesung Theoretsche Mechank, WS 005/06 Dörte Hansen Semnar 0 Starrer Körper und Kreseltheore. Der starre Körper.. A dfferent pont of vew Raum -und körperfeste Koordnatensysteme

Mehr

Wir steuern einen Mini-Roboter!

Wir steuern einen Mini-Roboter! Wr steuern enen Mn-Roboter! Telnehmer: Marek Bartusch Cecla Lange Yannck Lehmann Johannes-Lucas Löwe Ncolas Menzel Huong Thao Pham Floran Pogatzk Anne Reulke Jonas Wanke Maran Zuska mt tatkräftger Unterstützung

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gauslng, M.Sc. C. Hendrcks, M.Sc. Sommersemester 1 Bergsche Unverstät Wuppertal Fachberech C Mathematk und Naturwssenschaften Angewandte Mathematk / Numersche Analyss Enführung

Mehr

Die Hamilton-Jacobi-Theorie

Die Hamilton-Jacobi-Theorie Kaptel 7 De Hamlton-Jacob-Theore Ausgearbetet von Rolf Horn und Bernhard Schmtz 7.1 Enletung Um de Hamlton schen Bewegungsglechungen H(q, p q k = p k H(p, q ṗ k = q k zu verenfachen, führten wr de kanonschen

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Theoretische Physik II Elektrodynamik Blatt 2

Theoretische Physik II Elektrodynamik Blatt 2 PDDr.S.Mertens M. Hummel Theoretsche Physk II Elektrodynamk Blatt 2 SS 29 8.4.29 1. Rechnen mt Nabla. Zegen Se durch Auswertung n kartesschen Koordnaten de folgende Relaton und werten Se de anderen Relatonen

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Semnar Enführung n de Kunst mathematscher Unglechungen Cauchys erste Unglechung und de Unglechung vom arthmetschen und geometrschen Mttel Sopha Volmerng. prl 0 Inhaltsverzechns Cauchys erste Unglechung.

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Grundlagen der numerischen Strömungsmechanik, WS 2011/12

Grundlagen der numerischen Strömungsmechanik, WS 2011/12 Lehrstuhl für Aerodynamk und Strömungsmechank Prof H-J Kaltenbach Assstenz: E Lauer Grundlagen der numerschen Strömungsmechank, WS / Lösung zu Übung 5 Aufgabe : Fnte-Elemente-Verfahren De Dfferentalglechung

Mehr

3 Das Lanczos Verfahren

3 Das Lanczos Verfahren Computatonal Physcs III, SS 2014, c Burkhard Bunk, HU Berln 13 3 Das Lanczos Verfahren 3.1 Idee Ausgehend von enem (normerten) Startvektor v 0 soll durch wederholtes Anwenden der (hermteschen) Matrx A

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Seminar über Numerische Mathematik

Seminar über Numerische Mathematik Andreas Mester Semnar über Numersche Mathematk Semnar m Wntersemester 008/009 Unverstät Kassel Fachberech Mathematk Inhaltsverzechns Bezer-Kurven 1 1 Enletung 1 Der Algorthmus von de-castelau.1 Parabeln....................................

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie Prof. Dr. Jürgen Dassow Otto-von-Guercke-Unverstät Magdeburg Fakultät für Informatk Coderungstheore und Kryptographe Sommersemester 2005 1 2 Inhaltsverzechns 1 Defnton und Charakterserung von Codes 5 1.1

Mehr

Zwei Sätze von Joseph Wolstenholme. Johann Cigler

Zwei Sätze von Joseph Wolstenholme. Johann Cigler Zwe Sätze von Joseh Wolstenholme Johann Cgler Vor enger Zet sandte mr Herr P., en hlosohsch gebldeter älterer Mann, enge Bemerkungen zu enem Resultat von Joseh Wolstenholme, das er folgendermaßen formulerte:

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

Denavit-Hartenberg-Notation

Denavit-Hartenberg-Notation DENAVIT und HARTENBERG haben ene Methode engeführt, de es erlaubt für alle knematsche Ketten de Lagen der Gleder zuenander enhetlch auszudrücken. De Gelenke, de de Gleder mtenander verbnden, dürfen dabe

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

5 Quantenmechanische Berechnung von Eigenschaften

5 Quantenmechanische Berechnung von Eigenschaften 4 5 Quantenmechansche Berechnung von Egenschaften 5 Quantenmechansche Berechnung von Egenschaften De Quantentheore ermöglcht es prnzpell, physkalsche Egenschaften vorherzusagen, also das Resultat enes

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert bat@un-paderborn.de Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Lösungen aller Aufgaben und Lernkontrollen

Lösungen aller Aufgaben und Lernkontrollen Oft gbt es be den Aufgaben mehr als nur enen rchtgen Lösungsweg. Es st jedoch mest nur ene Lösung dargestellt. Aufgaben u Kaptel Lösung u Aufgabe a) nach Defnton von. b) 4 ( ) ( ). c) 5 4. d) ( ) (( )

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Übersicht der Vorlesung

Übersicht der Vorlesung Überscht der Vorlesung. Enführung. Blderarbetung. orphologsche Operatonen 4. Bldsegmenterung 5. erkmale on Objekten 6. Klassfkaton 7. Dredmensonale Bldnterpretaton 8. Bewegungsanalyse aus Bldfolgen 9.

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Noethertheorem. 30. Januar 2012

Noethertheorem. 30. Januar 2012 Noethertheorem 30. Januar 2012 1 Inhaltsverzechns 1 Symmetre 3 1.1 Symmetre n der Geometre................... 3 1.2 Symmetre n der Mathematk.................. 3 1.3 Symmetre n der Physk.....................

Mehr

2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1

2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1 2 VEKTOREN 1 2 Vektoren 2.1 Vektorraum In der Physk unterscheden wr skalare Grössen von vektorellen. En Skalar st ene reelle Messgrösse, mathematsch enfach ene Zahl, phykalsch ene dmensonsbehaftete Zahl.

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

1.11 Beispielaufgaben

1.11 Beispielaufgaben . Bespelaufgaben Darstellung komplexer Zahlen Aufgabe. Man stelle de komplexe Zahl z = +e 5f n algebrascher Form, also als x + y dar. Damt man de Formel für de Dvson anwenden kann, muss zunächst der Nenner

Mehr

=, grad Z(s) = m n = grad N(s).

=, grad Z(s) = m n = grad N(s). 4 7... Stabltätsprüfung anhand der Übertragungsfunkton (.9) leferte den Zusammenhang zwschen der Gewchtsfunkton g(t) und der Übertragungsfunkton G(s) enes lnearen zetnvaranten Systems G (s) { g ( t)}.

Mehr

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E Höhere nalss Komplexe Zahlen Tel Darstellung der komplexen Zahlen als Vektoren mt Polarkoordnaten trgonometrsch oder exponentell Eulersche Funkton E Date Nr. 500 Stand. November 08 FRIEDRICH W. BUCKEL

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

8 Numerik von Eigenwertproblemen

8 Numerik von Eigenwertproblemen 8 Numerk von Egenwertproblemen 8 Das Lanczos-Verfahren Mt dem Lanczos-Verfahren bestmmt man für ene hermtesche Matrx A n n ene untäre Matrx U mt U H AU = T, wobe T ene reelle symmetrsche Trdagonalmatrx

Mehr

8 Numerik von Eigenwertproblemen

8 Numerik von Eigenwertproblemen 8 Numerk von Egenwertproblemen 8 Das Lanczos-Verfahren Mt dem Lanczos-Verfahren bestmmt man für ene hermtesche Matrx A n n ene untäre Matrx U mt U H AU = T, wobe T ene reelle symmetrsche Trdagonalmatrx

Mehr