Wir steuern einen Mini-Roboter!

Größe: px
Ab Seite anzeigen:

Download "Wir steuern einen Mini-Roboter!"

Transkript

1 Wr steuern enen Mn-Roboter! Telnehmer: Marek Bartusch Cecla Lange Yannck Lehmann Johannes-Lucas Löwe Ncolas Menzel Huong Thao Pham Floran Pogatzk Anne Reulke Jonas Wanke Maran Zuska mt tatkräftger Unterstützung durch: Laura-Cornna Reeder Gruppenleter: Caren Tschendorf Käthe-Kollwtz-Gymnasum Käthe-Kollwtz-Gymnasum Humboldt-Unverstät zu Berln Humboldt-Unverstät zu Berln, Matheon 27

2 1. Problemstellung En Roboter soll enen Parcours mt Hndernssen selbstständg durchfahren. Dazu sollen möglche Fahrwege des Roboters gefunden und hnschtlch der benötgten Zet getestet werden. ZIEL START Abbldung 1: Blau: Kürzeste Verbndungsstrecke zwschen Start und Zel um de Hndernsse herum; Magenta: Möglcher Fahrweg des Roboters 2. Grundlagen 2.1. Parametrsche Darstellung von Geraden Koordnatendarstellung zweer Punkte n der Ebene n Spaltenform: a1 b1 a, b a 2 b 2 x 2 a b Darstellung der Punkte x auf der Geraden durch a und b: x1 (1 λa1 + λb x (1 λa + λb 1 (1 λa 2 + λb 2 x 2 x 1 Abbldung 2: Lneare Interpolaton zwschen a und b mt λ [0, 1] x (1 λ a + }{{} :α }{{} λ :β b αa + βb mt α + β 1 Defnton 1. (α, β heßen de baryzentrschen Koordnaten von x bezüglch der Punkte a und b n der Ebene. x 2 b x a 0 β λ α 1 x 1 Abbldung 3: Baryzentrsche Koordnaten enes Punktes x bezüglch der Punkte a und b Für de Längen #» ax und #» xb glt: ax #» xb #» β α. 28

3 Defnton 2. Se c en Punkt auf der Geraden durch de Punkte a und b n der Ebene. Dann se das Telverhältns defnert durch: β T V (a, c, b : λ }{{} α 1 λ. baryzentrsche Koordnaten 2.2. Satz von Menelaos Satz 1. Seen p 1, p 2, p 3 dre verschedene Punkte n der Ebene und t s reelle Zahlen. Se weter a t (1 tp 1 + tp 2, b t (1 tp 2 + tp 3, a s (1 sp 1 + sp 2 und b s (1 sp 2 + sp 3. Dann glt für den Schnttpunkt c der Geraden durch a t und b t mt der Geraden durch a s und b s : T V (a t, c, b t s 1 s und T V (a s, c, b s t 1 t. a t a s t : (1 t s : (1 s p 2 c s : (1 s b t t : (1 t t : (1 t s : (1 s p 1 b s Abbldung 4: Vsualserung des Satzes von Menelaos p 3 Bewes. Es st zu zegen, dass c (1 ta s + tb s und c (1 sa t + sb t glt. Wr zegen (1 ta s + tb s (1 sa t + sb t. Dann legt c : (1 ta s + tb s (1 sa t + sb t sowohl auf der Geraden durch a t und b t als auch auf der Geraden durch a s und b s, d.h. c st Schnttpunkt der beden Geraden. Durch Ensetzen der Defnton der Punkte a t, b t, a s und b s folgt: (1 ta s + tb s (1 sa t + sb t (1 t(1 sp 1 + (1 tsp 2 + t(1 sp 2 + tsp 3 (1 s(1 tp 1 + (1 stp 2 + s(1 tp 2 + stp 3 29

4 3. Bézerkurven 3.1. Defnton Defnton 3. Seen b 0, b 1,..., b n n der Ebene. Dann st B[b 0,..., b n ] ene Bézerkurve zu den Kontrollpunkten b 0,..., b n, falls de Punkte auf B[b 0,..., b n ] we folgt defnert snd: B[b 0,..., b n ](t : b [n] 0 (t mt t R und 0,..., n t R : b [0] (t b, r 1,..., n 0,..., n r t R : b [r] (t (1 tb [r 1] (t + tb [r 1] +1 (t. b 1 b 0 b 2 Abbldung 5: Ene enfache Bézerkurve für n 2 und t [0, 1]. Bézerkurven haben ene Rehe nützlcher Egenschaften. Für de Beschrebung von möglchen Wegen für den Roboter snd de beden wchtgsten Egenschaften de konvexe Hüllenegenschaft und de Dfferenzerbarket. Zum Nachwes deser Egenschaften benutzen wr ene Darstellung der Bézerkurven mt Hlfe von Bernsten-Polynomen Bernsten-Polynome Defnton 4. Für t R, n N und {0,..., n} snd de Bernsten-Polynome defnert als B [n] n (t t (1 t n. Lemma 1. Für t R, n N und {0,..., n} glt: mt B [0] 0 (t : 1 und B[n] (t : 0 / {0,..., n}. B [n] (t (1 tb [] 1 (t + tb [] 1 (t Bewes. B [n] (t n t (1 t n n (1 t t (1 t n n 1 (1 t t (1 t n ( (1 tb [] (t 1 n ( n 1 (1 t n }{{} n t (1 t 30

5 Nebenrechnung: n 1 (n 1! n n!(n 1! (n 1! ( 1!(n! De Nebenrechnung können wr oben ensetzen und erhalten B [n] (t (1 tb [] (t + (1 tb [] ( n 1 1 (t + tb [] (t. 1 t (1 t n n 1 1 Lemma 2. Für t R, n N und {0,..., n} glt: B [n] (t 1. 0 Bewes. 0 B [n] (t n t }{{} (1 t }{{} n a b 0 0 (a + b n (Bnomscher Satz (t + (1 t n 1 n 1 n a b n Satz 2. Bnomscher Satz (a + b n 0 n a b n Bewes. per Indukton über n Induktonsanfang: n 0 lnke Sete: (a + b 0 1 rechte Sete: 0 Induktonsschrtt: n n + 1 Zu zegen: (a + b n+1 n+1 (a + b n+1 (a + b(a + b n I.Vor. (a + b n a +1 b n + 0 n+1 n a b n ( 1 + ( n 0 ( n n a b n ( 0 0 a b n n a b n+1 a b ( 0 0 a 0 b 0 1 a b n+1. ( n+1 Nebenrechnung: n n! 1 ( 1!(n + 1! (n + 1! n + 1!(n + 1! n + 1 n + 1 n n!!(n! n + 1 (n + 1! n + 1!(n + 1! n + 1 n + 1 n

6 De Nebenrechnung können wr nun oben ensetzen. n+1 (a + b n+1 n + 1 ( a b n+1 n + 1 n n + 1 n n+1 n+1 n + 1 ( a b n ( n + 1 n + 1 n n+1 n + 1 a b n+1 0 a b n+1 a b n Zusammenhang von Bézerkurven und Bernsten-Polynomen Lemma 3. Seen b 0, b 1,..., b n de Kontrollpunkte ener Bézerkurve. Dann glt für r {0,..., n} und {0,..., r}: r b [r] (t b + B [r] (t mt b[0] (t b für 0,..., n. Bewes. per Indukton über r 0 Induktonsanfang: r 0 Induktonsschrtt: r r + 1 r 0 b +B [r] (t b B [0] 0 (t b b [0] (t Zu zegen st: b [r+1] (t r+1 (t 0 b +B [r+1] b [r+1] (t Def. (1 tb [r] (t + tb [r] +1 (t ( r I.Vor. (1 t b + B [r] (t + t 0 0 ( r (1 t b + B [r] (t + t (1 t ( r+1 0 b + B [r] (t + t ( r+1 ( r 1 ( r r+1 [ ] b + (1 tb [r] (t + tb[r] 1 (t 0 0 r+1 b + B [r+1] (t wegen Lemma?? b +1+ B [r] (t b + B [r] 1 (t b + B [r] 1 (t, da B [r] r+1 (t 0 und B[r] 1 (t 0 Satz 3. (Darstellung von Bézerkurven mttels Bernstenpolynomen Für de Punkte ener Bézerkurve glt: B[b 0,..., b n ](t b B [n] (t 0 Bewes. Per Defnton glt: B[b 0,..., b n ](t b [n] Lemma?? 0 (t 32 n 0 b B [n] (t.

7 4. Egenschaften von Bézerkurven 4.1. Konvexe Hüllenegenschaft Defnton 5. De konvexe Hülle von Punkten b 0,..., b n st de Menge { λ b λ 0, 0 0 } λ 1. Lemma 4. Zur konvexen Hülle von Punkten b 0,..., b n gehören alle Punkte der Strecken, de de Punkte b 0,..., b n paarwese verbnden. Das größte Polygon, das aus desen Verbndungsstrecken gebldet werden kann, bldet (nklusve sener nneren Punkte de konvexe Hülle von b 0,..., b n. Bewes. 1 Für de Punkte z, de auf der Strecke zwschen b 0 und b 1 legen, exstert en λ [0, 1], so dass z λb 0 + (1 λb 1 λ b mt λ 0 λ, λ 1 1 λ, λ 2... λ n 0. 0 Also gehört de Strecke zwschen b 0 und b 1 zur konvexen Hülle. 2 Des glt analog für alle Punkte auf den Verbndungsstrecken zwschen b und b für, 0,..., n. 3 Se z en belebger Punkt des größten Polygons. Dann fnden wr Punkte b, b und b k so, dass z auf der Strecke zwschen dem Punkt b und enem Punkt z auf der Strecke von b nach b k legt. Somt exsteren λ [0, 1] und λ [0, 1], so dass glt: z λ b + (1 λ z λ b + (1 λ [λb + (1 λb k ] Setze λ λ, λ (1 λ λ, λ k (1 λ (1 λ und alle anderen λ l 0 (für l, l, l k. z λ l b l l0 und λ l λ + λ + λ k λ + (1 λ λ + (1 λ (1 λ l0 λ + (1 λ 1. Da λ [0, 1] und λ [0, 1], so glt λ λ 0, λ (1 λ λ 0 und λ k (1 λ (1 λ 0. Somt gehört z zur konvexen Hülle. 4 Es blebt zu zegen, dass edes z der konvexen Hülle auch zu dem größtmöglchen Polygon gehört. Der Bewes wurde mangels Zet ncht vorgeführt. Satz 4. Das Bld der Bézerkurve B[b 0,..., b n ](t legt n der konvexen Hülle von b 0,..., b n. Bewes. Satz?? lefert B[b 0,..., b n ](t n 0 b B [n] (t. Wr setzen λ : B [n] (t. Dann blebt zu zegen: 1 n 0 λ 1 Des glt wegen n 0 λ n 0 B[n] Lemma?? (t 1. 2 λ 0 0,..., n Des glt wegen λ B [n] (t Def. ( n t (1 t n 0 für t [0, 1]. 33

8 4.2. De Abletung von Bézerkurven Satz 5. d dt B[b 0,..., b n ](t n (b +1 b B [] (t 0 Bewes. Nach Satz 2.4 glt: B[b 0,..., b n ](t n 0 b B [n] (t mt B [n] (t ( n t (1 t n. Für de Abletung der Bernsten-Polynome glt d n n dt B[n] (t t 1 (1 t n t (1 t n 1 (n n 1 n 1 n t 1 (1 t n n t (1 t n 1 1 nb [] (t nb[] (t 1 Damt folgt für de Abletung der Bézerkurve: d dt B[b 0,..., b n ](t ( b 0 0 nb [] 1 n b B [] 1 n b B [] 1 1 n 0 (t nb[] (t (t n 0 (t 0 b +1 B [] (t b B [] b B [] 0 (t (t b B [] (t 5. Splnes n Bézerform Defnton 6. En Splne n Bézerform st ene Zusammensetzung von Bézerkurven, be denen der Endpunkt der vorhergehenden Bézerkurve mt dem Anfangspunkt der nächsten Bézerkurve überenstmmt. Problem: Splnes n Bézerform können Kncke haben, sehe folgende Abbldungen.... b b n+1 b 0 b n... b 2n Abbldung 6: En ncht dfferenzerbarer Splne b 0... b b n b n+1... Abbldung 7: En dfferenzerbarer Splne b 2n 34

9 Satz 6. En Splne n Bézerform, der aus zwe Bézerkurven B[b 0,..., b n ] und B[b n,..., b 2n ] zusammengesetzt st, st dfferenzerbar, falls glt: b n+1 b n b n b. Bewes. Es st zu zegen, dass de Abletung der Bézerkurve B[b 0,..., b n ] m Punkt b n und de Abletung der Bézerkurve B[b n,..., b 2n ] m Punkt b n überenstmmen. Dazu muss man de Abletung der Bézerkurve B[b 0,..., b n ] n t 1 und de Abletung der Bézerkurve B[b n,..., b 2n ] m Punkt t 0 auswerten. d dt B[b 0,..., b n ](t d t1 dt B[b n,..., b 2n ](t t0 n 0 (b +1 b B [] (t n t1 0 n(b n b n(b n+1 b n Herbe haben wr ausgenutzt, dass { B [] 0, für n 1 (1 1, für n 1 und b n b b n+1 b n B [] (0 { 0, für 0 1, für 0 (b n++1 b n+ B [] glt. (t t0 6. Programm zur Erzeugung von Splnes zur Hndernsumfahrung Das Programm sucht selbstständg geegnete Kontrollpunkte und berechnet de Bézerkurven sukzessve von Start bs Zel. De Hndernsse können varabel vom Nutzer engegeben werden. Abbldung 8: Bespellösung ener Hndernsumfahrung 35

10 Realserung des Programms zur Pfadfndung n Python: Mt der Methode createcontrolponts werden de Kontrollpunkte so gelegt, dass deren konvexe Hülle de Hndernsse ncht schnedet. Mt der Routne plotbezer wrd ene Bézerkurve mt den entsprechenden Kontrollpunkten gezechnet. def plotpath ( o b s t a c l e s, l a s t C o n t r o l P o n t : p l t. pause ( 0. 5 f len ( o b s t a c l e s >3: CPS c r e a t e C o n t r o l P o n t s ( o b s t a c l e s [ 0 ], o b s t a c l e s [ 1 ], o b s t a c l e s [ 2 ] drawponts (CPS, 10, bx p l t. pause ( 1 coords x [ ] coords y [ ] coords x. append ( o b s t a c l e s [ 0 ] [ 0 ] coords y. append ( o b s t a c l e s [ 0 ] [ 1 ] f len ( l a s t C o n t r o l P o n t >0: c o o r d s x. append ( l a s t C o n t r o l P o n t [ 0 ] c o o r d s y. append ( l a s t C o n t r o l P o n t [ 1 ] f len ( o b s t a c l e s >3: c o o r d s x. append (CPS [ 0 ] [ 0 ] c o o r d s y. append (CPS [ 0 ] [ 1 ] coords x. append ( o b s t a c l e s [ 1 ] [ 0 ] coords y. append ( o b s t a c l e s [ 1 ] [ 1 ] p l o t b e z e r ( coords x, c o ords y o b s t a c l e s. pop ( 0 f len ( o b s t a c l e s >2: plotpath ( o b s t a c l e s,cps [ 1 ] ; Abbldung 9: Am Ende testeten wr de berechneten Splnes mt unserem Mnroboter Nbobee. Da ener der Odometresensoren defekt war, nutzten wr de Lnensensoren. Damt konnte der Mnroboter den zuvor berechneten Splne-Pfaden folgen. 36

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Semnar Enführung n de Kunst mathematscher Unglechungen Cauchys erste Unglechung und de Unglechung vom arthmetschen und geometrschen Mttel Sopha Volmerng. prl 0 Inhaltsverzechns Cauchys erste Unglechung.

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Seminar über Numerische Mathematik

Seminar über Numerische Mathematik Andreas Mester Semnar über Numersche Mathematk Semnar m Wntersemester 008/009 Unverstät Kassel Fachberech Mathematk Inhaltsverzechns Bezer-Kurven 1 1 Enletung 1 Der Algorthmus von de-castelau.1 Parabeln....................................

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ).

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ). 5 Interpolaton 5.1 De Lagrangesche Interpolatonsaufgabe Mt È n bezechnen wr den Raum der reellen Polynome vom Grad n. Gegeben seen n+1 verschedene Stützstellen x j Ê, j = 0,...,n, und n + 1 ncht notwendg

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fchberech Mthemtk Algebr und Zhlentheore Chrstn Curll Grundbldung Lnere Algebr und Anltsche Geometre (LPSI/LS-M) Bltt 1 SoSe 011 - C. Curll/ B. Jnssens Präsenzufgben (P1) Mch Se sch be den folgenden Glechungssstemen

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Lineare Optimierung Einführung

Lineare Optimierung Einführung Kaptel Lneare Optmerung Enführung B... (Dre klasssche Anwendungen) Im Folgenden führen wr de ersten dre klassschen (zvlen) Anwendungen der lnearen Optmerung an: BS... (Produktonsplanoptmerung) En Betreb

Mehr

konvergiert punktweise, wenn es l : U C C gibt derart, dass konvergiert gleichmäßig, wenn es l : U C C gibt derart, dass

konvergiert punktweise, wenn es l : U C C gibt derart, dass konvergiert gleichmäßig, wenn es l : U C C gibt derart, dass Funktonentheore, Woche 4 Konvergenz und Folgen 4. Glechmäßge Konvergenz Ene Zahlenfolge {α n } n N C konvergert, wenn es en l C gbt derart, dass ε > 0 N ε N : n > N ε = α n l < ε. Auch zu Folgen von Funktonen

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie Prof. Dr. Jürgen Dassow Otto-von-Guercke-Unverstät Magdeburg Fakultät für Informatk Coderungstheore und Kryptographe Sommersemester 2005 1 2 Inhaltsverzechns 1 Defnton und Charakterserung von Codes 5 1.1

Mehr

3. Vorlesung Sommersemester

3. Vorlesung Sommersemester 3. Vorlesung Sommersemester 1 Bespele (Fortsetzung) 1. Der starre Körper: Formulerung der Zwangsbedngungen später. Anschaulch snd schon de Frehetsgrade: dre der Translaton (z. B. Schwerpuntsoordnaten)

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Bachelorarbeit. Cayley s Formel und das Abzählen von Bäumen. Viktoria Piribauer. Wien, September 2013

Bachelorarbeit. Cayley s Formel und das Abzählen von Bäumen. Viktoria Piribauer. Wien, September 2013 Bachelorarbet Cayley s Formel und das Abzählen von Bäumen Vktora Prbauer Wen, September 2013 Matrkelnummer: 1007394 Studenrchtung: A 033621 Mathematk Betreuer: Mag. Dr. Bernhard Krön, Prvatdoz. Inhaltsverzechns

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gauslng, M.Sc. C. Hendrcks, M.Sc. Sommersemester 1 Bergsche Unverstät Wuppertal Fachberech C Mathematk und Naturwssenschaften Angewandte Mathematk / Numersche Analyss Enführung

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Diplomvorprüfung DI H 04 VD : 1

Diplomvorprüfung DI H 04 VD : 1 Dplomvorprüfung DI H 04 VD : Aufgabe : Bewesen Se (zum Bespel mt Hlfe der Dfferentalrechnung) de folgende Glechung: ln(snh(x) + cosh(x)) + ln(cosh(x) snh(x)) 0, für alle x R. Es gbt (mnd.) 2 Möglchketen:.

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Äquivalenzen stetiger und glatter Hauptfaserbündel

Äquivalenzen stetiger und glatter Hauptfaserbündel Äquvalenzen stetger und glatter Hauptfaserbündel Chrstoph Müller Chrstoph Wockel Fachberech Mathematk Unverstät Darmstadt 31. Süddeutsches Kolloquum über Dfferenzalgeometre Glederung 1 De Problemstellung

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten.

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten. ayessches Theorem Das ayessche Theorem st en Ergens aus der ahrschenlchetstheore und lefert enen Zusammenhang zwschen edngten ahrschenlcheten.. ayessches Theorem für Eregnsse Senen und zwe elege Eregnsse.

Mehr

I) Mechanik 1.Kinematik (Bewegung)

I) Mechanik 1.Kinematik (Bewegung) I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Die mathematischen Grundlagen der Wellenmechanik

Die mathematischen Grundlagen der Wellenmechanik De mathematschen Grundlagen der Wellenmechank Zustände und deren Darstellung En physkalsches System wrd durch enen Zustand u charaktersert, ndem es durch ene bestmmte expermentelle Präparaton gebracht

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Zwei Sätze von Joseph Wolstenholme. Johann Cigler

Zwei Sätze von Joseph Wolstenholme. Johann Cigler Zwe Sätze von Joseh Wolstenholme Johann Cgler Vor enger Zet sandte mr Herr P., en hlosohsch gebldeter älterer Mann, enge Bemerkungen zu enem Resultat von Joseh Wolstenholme, das er folgendermaßen formulerte:

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am U Graz, Insttt Regelngs- nd Atomatserngstechnk Schrftlche Prüfng as Sstemtechnk am 3.. Name / Vorname(n): Matrkel-Nmmer: Bonspnkte as den MALAB-Übngen: O ja O nen 3 4 errechbare Pnkte 5 6 6 4 errechte

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden.

Der stöchiometrische Luftbedarf einer Reaktion kann aus dem Sauerstoffbedarf der Reaktion und der Zusammensetzung der Luft berechnet werden. Stoffwerte De Stoffwerte für de enzelnen omponenten raftstoff, Luft und Abgas snd den verschedenen Stellen aus den Lteraturhnwesen zu entnehmen, für enge Stoffe sollen jedoch de grundlegenden Zusammenhänge

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Grundlagen der numerischen Strömungsmechanik, WS 2011/12

Grundlagen der numerischen Strömungsmechanik, WS 2011/12 Lehrstuhl für Aerodynamk und Strömungsmechank Prof H-J Kaltenbach Assstenz: E Lauer Grundlagen der numerschen Strömungsmechank, WS / Lösung zu Übung 5 Aufgabe : Fnte-Elemente-Verfahren De Dfferentalglechung

Mehr

2.9 Freiformkurven und -flächen

2.9 Freiformkurven und -flächen 2.9 Freformkurven und -flächen Motvaton 2 Darstellung geometrscher Objekte, Farbe, Freformkurven- und Freformflächentechnken haben n den letzten Jahren ene große Bedeutung für de Entwcklung bzw. den Ausbau

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 13. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 13. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Folensatz Mchael Brnkmeer Technsche Unverstät Ilmenau Insttut für Theoretsche Informatk Sommersemester 009 TU Ilmenau Sete / Sorteren TU Ilmenau Sete / Das Sorterproblem Das Sorterproblem Daten: ene total

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Approximationsalgorithmen. Facility Location K-Median. Cheng, Wei 12. Juli

Approximationsalgorithmen. Facility Location K-Median. Cheng, Wei 12. Juli Approxmatonsalgorthmen aclty Locaton K-Medan heng We 12. Jul aclty Locaton Defnton Gegeben: möglche Standorte = { 1 2 m } Städte = { 1 2 n } Eröffnungskosten f für Verbndungskosten c zwschen und Dreecksunglechung

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Algorithmen und Datenstrukturen 6. Vorlesung

Algorithmen und Datenstrukturen 6. Vorlesung Algorthmen und Datenstrukturen 6. Vorlesung Karl-Henz Nggl. Ma 006 Sorteralgorthmen Bsher behandelte Sorteralgorhtmen: nserton-sort(a[..n]) mt worst-case und average-case Laufzet O(n ) merge-sort(a,p,r)

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

MECHATRONISCHE NETZWERKE

MECHATRONISCHE NETZWERKE MECHATRONISCHE NETZWERKE Jörg Grabow Tel 3: Besondere Egenschaften 3.Besondere Egenschaften REZIPROZITÄT REZIPROZITÄT Neben den allgemenen Enschränkungen (Lneartät, Zetnvaranz) be der Anwendung der Verpoltheore

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Theoretische Physik II Elektrodynamik Blatt 2

Theoretische Physik II Elektrodynamik Blatt 2 PDDr.S.Mertens M. Hummel Theoretsche Physk II Elektrodynamk Blatt 2 SS 29 8.4.29 1. Rechnen mt Nabla. Zegen Se durch Auswertung n kartesschen Koordnaten de folgende Relaton und werten Se de anderen Relatonen

Mehr

arxiv: v1 [math.nt] 10 Apr 2014

arxiv: v1 [math.nt] 10 Apr 2014 Über de ratonalen Punkte auf der Sphäre von Nkolay Moshchevtn 1 Moskau) arxv:1404.907v1 [math.nt] 10 Apr 014 Wr beschäftgen uns her mt der Approxmaton von Punkten auf der n-dmensonalen Sphäre durch ratonale

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

3 Elastizitätstheorie

3 Elastizitätstheorie 3 Elastztätstheore Für en elastsches Medum nmmt man enen spannungsfreen Referenzzustand an, der n Eulerkoordnaten durch x = Ax, t) gegeben st. Abwechungen werden beschreben durch de Verschebung ux, t)

Mehr

Bemerkungen zum LCG Rupert Hartung,

Bemerkungen zum LCG Rupert Hartung, mt Bemerkungen zum LCG Rupert Hartung, 24.6.2005 Wr betrachten den Lnear Congruental Generator (LCG) X 0, X 1,..., X,... X +1 = ax + c mod N (1) zur Erzeugung von Pseudozufallszahlen mäÿger Qualtät. De

Mehr

Protokoll zu Versuch C1-Mischungsvolumina

Protokoll zu Versuch C1-Mischungsvolumina Protokoll zu Prnz: De sezfschen Mschungsvolumna ener Lösung werden durch auswegen fester Flüssgketsvolumna bekannter Lösungszusammensetzungen mt Hlfe von Pyknometern bestmmt. Theoretsche Grundlagen: Um

Mehr

Course Dec 15, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Rationale

Course Dec 15, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Rationale Dec 15, 2016 ASC, room A 238, phone 089-21804210, emal hartmut.ruhl@lmu.de Patrc Böhl, ASC, room A205, phone 089-21804640, emal patrc.boehl@phys.un-muenchen.de. Dsusson der Besetzungszahldarstellungen

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Einführung in geostatistische Methoden der Datenauswertung

Einführung in geostatistische Methoden der Datenauswertung MUC 2.3 und MC 2.1.1 Praktkum Umweltanalytk II Enführung n geostatstsche Methoden der Datenauswertung Enführung n geostatstsche Methoden der Datenauswertung Zel: Anwendung der geostatstschen Methoden Semvarogrammanalyse

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Versuch Nr. 6. Chemische Kinetik Aktivierungsenergie (Inversion von Saccharose)

Versuch Nr. 6. Chemische Kinetik Aktivierungsenergie (Inversion von Saccharose) Chrstan Wdlng, Georg Deres Versuch Nr. 6 Chemsche Knet Atverungsenerge (Inverson von Saccharose) Zel des Versuchs: Das Zel des Versuches st de Bestmmung der Atverungsenerge der Reaton von Saccharose (S)

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

(Essentiell) τ-äquivalente Tests:

(Essentiell) τ-äquivalente Tests: (Essentell) τ-äquvalente Tests: τ-äquvalenz: Essentelle τ-äquvalenz: τ τ τ τ +λ Repräsentatonstheore (Exstenzsatz): De Tests,..., snd genau dann τ-äquvalent, wenn ene reelle Zufallsvarable η sowereellekonstantenλ,...,

Mehr