Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Größe: px
Ab Seite anzeigen:

Download "Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. ."

Transkript

1 Neuronale Netze M. Gruber Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll er den Wert +1 annehmen, auf der ween den Wert 1. Als Baustene stehen zwe Perzeptrons zur Verfugung, deren Wrkung n Abb.1 lnks bzw. mtte zu sehen st. Wr konstrueren den Klasskator m Stl enes neuronalen Netzes und wahlen Bezechnungen, de fur neuronale Netze ublch snd. Typsch fur neuronale Netze st de herarchsche Schchtstruktur. Man stellt sch vor, dass en Rez aus der Engabeschcht zu enem Sgnal fur de nachste Schcht verarbetet wrd, das dort weder enen Rez auslost usw.. Am Ende kommt n der Ausgabeschcht en Sgnal an und lost enen Rez aus. Unser neuronales Netz wrd ver Schchten (layers haben, nummerert mt l = 0; 1; ;. Aus Rezen x der Schcht l 1 werden Sgnale s (l. Aus desen gehen de Reze x (l der Schcht l hervor. Alles wrd durch Abbldungen realsert. Engabeschcht st n unserem Fall de Menge f1g X. De Komponente mt der Ens zahlt als nullte Komponente. Nullte Komponenten werden zur Verrechnung von Schwellwerten (thresholds genutzt. Im Sgnal s (1 steckt de Wrkung unserer Perzeptrons. Ist Perzeptron 1 de Abbldung x 7! sgn(u T 1 x und Perzeptron de Abbldung x 7! sgn(u T x, so st s (1 = (W (1 T x (0 mt W (1 = u 1 u. Der von s (1 ausgeloste Rez st x (1 = (1 (s (1 mt (1 (s = 1 sgn(s 1 sgn(s T. De Abbldung (1 st m Wesentlchen ene komponentenwese sgn-funkton. Der Ubergang von Schcht l = 0 zu Schcht l = 1 wrd durch F 1 = (1 (W (1 T realsert. Wr snd nun n Schcht l = 1, de zu den \verborgenen" Schchten (hdden layers des neuronalen Netzes zahlt. Der Ubergang zur nachsten verborgenen Schcht l = st ahnlch. Er wrd durch de Funkton F = ( (W ( T realsert. Dabe st ( = (1 und W ( = v 1 v T mt v 1 = 1:5 1 1 T und v = 1:5 1 1 T. Se x ( = F (x (1 = ( (W ( T x (1. In Komponente 1 von x ( erschent genau dann +1, wenn Perzeptron 1 den Wert 1 und Perzeptron den Wert +1 gelefert hat. In Komponente erschent genau dann +1, wenn Perzeptron 1 den Wert +1 und Perzeptron den Wert 1 gelefert hat. F lefert de Bestandtele ener XOR-Verknupfung an Schcht l =. Es fehlt nur noch de OR-Verknupfung deser Bestandtele. De letzte Schcht (l = st de Ausgabeschcht. Den Ubergang zu hr vermttelt F = ( (W ( T. Her st W ( T = 1:5 1 1 und ( = sgn. De enspaltge Matrx W ( realsert de OR-Verknupfung. De Ausgabeschcht hat kene nullte Komponente (man braucht kene mehr und se st endmensonal. In hr steht das Rechenergebns des neuronalen Netzes. 1

2 WS 015/16 Statstcal Learnng Vorlesung 8 De Funkton F = F F F 1 st en neuronales Netz mt ener Engabeschcht, zwe verborgenen Schchten und ener Ausgabeschcht. De Dmensonen der Schchten snd d (0 = d (1 = d ( =, d ( = 1 (nullte Komponenten zahlen ncht. De Funkton F erfullt de Anforderung genau. Se klasszert fehlerlos. Im Untersched zu unserem Bespel snd be Problemen, de mt neuronalen Netzen gel ost werden, nur de Engabe- und Ausgabeschcht bekannt. Mt neuronalen Netzen bldet man ene unbekannte Funkton f, de sch nur n Tranngsdaten dokumentert, bestmoglch nach. Man hat en Fehlerma, das de Abwechung der Netzfunkton F von f auf der Tranngsmenge msst. Der Fehler wrd mnmert, ndem man optmale \Gewchte" W (k ndet. Man braucht Derenzerbarket nach den Komponenten der W (k 's. Statt der sgn-funkton verwendet man deshalb glatte, sgn-artge Funktonen (soft thresholds, bespelswese = tanh. Defnton 1 (Neuronales Netz, nformell En neuronales Netz st ene Funkton, de zu enem Engabevektor n L Schrtten enen skalaren Ausgabewert zwschen 1 und +1 berechnet. Jeder Schrtt st ene Funkton F l, l = 1; : : : ; L de aus zwe Operatonen besteht. De ene, lneare, berechnet \Sgnale", de andere, sgn-artge, verarbetet de Sgnale zu \Rezen" +1 oder 1. De Anzahl L der Schrtte und de Dmensonen d (l der Wertebereche von F l konnen fur l = 1; : : : ; L 1 gewahlt werden. Der Werteberech von F L st endmensonal. De lnearen Operatonen n den F l enthalten de Parameter, uber de man de Egenschaften des neuronalen Netzes verandern und an Erfordernsse anpassen kann. Defnton (Neuronales Netz, formal En neuronales Netz st ene Funkton mt folgenden Egenschaften: 1. F = F L F L 1 F 1 mt (a F 1 : f1g R d(0! f1g [ 1; 1] d(1, F : f1g R d(0! [ 1; 1] (b F l : f1g [ 1; 1] d! f1g [ 1; 1] d(l fur 1 < l < L, (c F L : f1g [ 1; 1] d(l 1! [ 1; 1] (d.h. d L = 1. Dabe snd de Dmensonen d (0 ; : : : ; d (L 1 N nf0g und d (L = 1.. Jedes F l st von der Form F l (x = (l (W (l T x mt (a W (l R d +1 R d(l fur 1 l L, (b (l : R d(l! f1g [ 1; 1] d(l, s 7! 1 (s 1 (s d (l T (c (L =. fur 1 l < L, Dabe st ene sgn-artge glatte Funkton, z.b. = tanh. We kann en neuronales Netz tranert werden? Gegeben se ene Tranngsmenge D = f[x 1 ; y 1 ]; : : : ; [x N ; y N ]g. Se f de unbekannte Funkton, de de Tranngsmenge erzeugt hat (y n = f(x n, n = 1; : : : ; N. Se F das neuronale Netz, das mt f moglchst gut uberenstmmen soll. Unser Fehlerma muss von enen Parametern abh angen, de wr vareren wollen, um den Fehler zu drucken, d.h. von den Koezenten der W (1 ; : : : ; W (L.

3 WS 015/16 Statstcal Learnng Vorlesung 8 Abbldung 1: Zwe Perzeptrons (lnks und mtte telen de Inputmenge. Blaue Bereche snd +1- Bereche, wee 1-Bereche. Der Klasskator rechts wrd aus desen Perzeptrons als neuronales Netz konstruert. Denken wr uns de Elemente deser Matrzen n enem Vektor w angeordnet und schreben wr F (x; w statt F (x. Das passende Fehlerma fur unser Vorhaben st Err n (w = 1 N X 1nN (F (x n ; w y n =: Zur Mnmerung des n-sample errors betet sch das Gradentenabstegsverfahren an. Be der Berechnung des Gradenten muss nach Komponenten von w derenzert werden. Unter anderem muss man auch derenzeren. Wr wahlen e s (s = tanh(s = es e s + e : s Dese Funkton st +1 fur s! 1 und 1 fur s! 1 und hat zudem de schone Egenschaft 0 (s = 1 (s : Das klasssche Grandentenabstegsverfahren erfordert enen hohen Rechenaufwand, denn be eder Berechnung des Gradenten wrd de gesamte Lernmenge ausgewertet. Be neuronalen Netzen hat sch das stochastsche Gradentenabstegsverfahren als Alternatve bew ahrt. Her wrd be edem Schrtt en n f1; : : : ; Ng zufallg bestmmt und der Gradent des Elementarfehlers zur Berechnung des neuen w herangezogen: e n (w = (F (x n ; w y n = w neu w alt re n (w alt : Der Vollstandgket halber geben wr an, we w konstruert werden kann. De Elemente der Matrx W (l seen w (l. De Groe w(l st das Gewcht, mt dem de -te Komponente des Rezes x multplzert wrd und damt zur -ten Komponente des Sgnals s (l betragt. Man denke sch de Spalten w (l ; zu enem Vektor w(l ; anenandergereht. De Vektoren w (l ; denke man sch zum Vektor w anenandergereht. De Groe e n (w kann man von der l-ten Schcht aus berechnen, wenn man das Sgnal s (l kennt, denn dann kann man weterrechnen bs zur Ausgabeschcht. Also kann man e n auch als Funkton des Sgnals s (l auassen und entsprechend derenzeren. Das wollen wr etzt tun. Wr fuhren noch ene neue Bezechnung en: (l n (s (l :

4 WS 015/16 Statstcal Learnng Vorlesung 8 Im Fall l = L gbt es nur en, namlch = 1, und man erhalt sofort (L 1 (s (L 1 = ((s (L 1 y n (1 (s (L 1 : Schcht fur Schcht kann man nun weterrechnen. Angenommen, man hat (l 1 ; : : : ; (l schon. Dann d (l st mt s = h (s n Wegen und st T s 1 s d und s (l = (s = X 1d (l (s = n (s (l ((W (l T (s = (w (l ; h s (l 1 s (l d (l T (s = X ((W (l T (s 1d (l T (s = w (l 0 (s (s (l X (s = (l (s (l w (l 1 (1 (s(l fur l = ; : : : ; L: (1 1d (l De Bezehung (1 kennt man unter dem Namen back propagaton. Damt haben wr nun en ezentes Verfahren zur Berechnung des w-gradenten von e n n der Hand. Es st n (l De n (s (l st (l und (l (l st enfach x. : ( Bespel (Computer-Experment Mt dem neuronalen Netz aus Bespel 1 wurde ene Tranngsmenge vom Umfang N = 100 erzeugt. De Umrsse der 1-gelabelten Telmenge seht man als voletten Berech n Abb. lnks. En neuronales Netz mt zwe verdmensonalen hdden layers wurde an den Daten tranert. Ergebns war ene Funkton mt Werten n [ 1; 1], dessen Kontur man n Abb. rechts seht. Als Gewchtsmatrzen des neuronalen Netzes ergaben sch W (1 = W ( = 6 0: :0607 0:9557 0:99 0:8988 :869 0:590 0: :969 0:568 :1167 1:0667 0: : : : :958 0: :78 0: :8155 0:65 0:1158 1:6605 0: : :876 1:1659 0: : : : :0116 1:76 W ( = 6 1:75 7 1:095 5 : 1:880 5 ; 7 5 ; (s :

5 WS 015/16 Statstcal Learnng Vorlesung 8 Der Lernkoezent fur den stochastschen Grandentenabsteg war = 0:1. De Iteraton wurde beendet, sobald das Norm-Quadrat des Gradenten den Wert unterschrtt. De obere Schranke fur de Anzahl der Iteratonen war Abbldung : Umrsse der Tranngsmenge (lnks und Konturplot des neuronalen Netzes (rechts. 5

Statistical Learning

Statistical Learning Statistical Learning M. Gruber KW 42 Rev.1 1 Neuronale Netze Wir folgen [1], Lec 10. Beginnen wir mit einem Beispiel. Beispiel 1 Wir konstruieren einen Klassifikator auf der Menge, dessen Wirkung man in

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Multi-Layer Networks and Learning Algorithms

Multi-Layer Networks and Learning Algorithms Mult-Layer Networks and Learnng Algorthms 16.12.03 Referent: Alexander Perzylo Betreuer: Martn Bauer Hauptsemnar: Machne Learnng 2 Überblck Mult-Layer Perceptron und Back-Propagaton Hopfeld Netze (Hebb-Regel)

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

7. Aufgabe (Pumping-Eigenschaft, kontextfreie Grammatik) Es seien = {a,b,c}. und L = { a b a c i,

7. Aufgabe (Pumping-Eigenschaft, kontextfreie Grammatik) Es seien = {a,b,c}. und L = { a b a c i, 7. Aufgabe (Pumpng-Egenschaft, kontextfree Grammatk) Es seen = {a,b,c}. und L = { a b a c, j 0, k 1}. j k a) Geben Se en 3- und en 5-aufpumpbares Wort n L an, und begründen Se Ihre Wahl. b) Geben Se en

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie

Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik. Codierungstheorie und Kryptographie Prof. Dr. Jürgen Dassow Otto-von-Guercke-Unverstät Magdeburg Fakultät für Informatk Coderungstheore und Kryptographe Sommersemester 2005 1 2 Inhaltsverzechns 1 Defnton und Charakterserung von Codes 5 1.1

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

( a ) z + ( 1 b ) z = ( 1 c ) z.

( a ) z + ( 1 b ) z = ( 1 c ) z. Hans Walser, [2000509a] Fermat mt negatven Exponenten Anregung: T. G., B. Vgl. [Morgan 200] Ausgangsrage Gesucht snd Lösungen a,b,c! der Glechung: a z + b z = c z, z! 2 Bespele und Gegenbespele a) Für

Mehr

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell Modellerung von Hydrosystemen Numersche und daten-baserte Methoden BHYWI-22-21 @ 2018 Fnte-Elemente-Methode Selke-Modell Olaf Koldtz *Helmholtz Centre for Envronmental Research UFZ 1 Technsche Unverstät

Mehr

Sicherheit von Π MAC2

Sicherheit von Π MAC2 Scherhet von Π MAC2 Satz Scherhet von Π MAC2 Se Π scher. Dann st Π MAC2 ebenfalls scher. Bewes: Se A en Angrefer für Π MAC2 mt Erfolgsws ɛ(n). Wr konstrueren enen Angrefer A für Π. Algorthmus Angrefer

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Manhattan-Metrik anhand des Beispiels

Manhattan-Metrik anhand des Beispiels Bestmmung durch Manhattan-Metrk 3 Manhattan-Metrk anhand des Bespels Gesucht werden de zwe Standorte für zwe Ausleferungslager. De Standpunkte der Nachfrager () snd durch de Koordnaten ( x/y ) gegeben.

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Kapitel V. Parameter der Verteilungen

Kapitel V. Parameter der Verteilungen Kaptel V Parameter der Vertelungen D. 5.. (Erwartungswert) Als Erwartungswert ener Zufallsvarablen X bezechnet man: E( X ) : Dabe se vorausgesetzt: = = + p falls X dskret f d falls X stetg und = + p

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Kapitel 4: Lernen als Optimierung. Maschinelles Lernen und Neural Computation

Kapitel 4: Lernen als Optimierung. Maschinelles Lernen und Neural Computation Kaptel 4: Lernen als Optmerung 71 Lernen als Funktonsoptmerung Gegeben: Fehlerfunkton (.a. neg. log Lkelhood) n z.b.: 2 E E ( ) ( ( ) W = f x ; W t ) n = 1 ( ) ( ( ) ( = + ) ( ( W t log f x t f x ) n ;

Mehr

Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technschen Informatk 12. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 12. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer

Mehr

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz Prof. Dr. P. Kschka WS 2012/13 Lehrstuhl für Wrtschafts- und Sozalstatstk Klausur Statstsche Inferenz 15.02.2013 Name: Matrkelnummer: Studengang: Aufgabe 1 2 3 4 5 6 7 8 Summe Punkte 6 5 5 5 5 4 4 6 40

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert bat@un-paderborn.de Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

1.11 Beispielaufgaben

1.11 Beispielaufgaben . Bespelaufgaben Darstellung komplexer Zahlen Aufgabe. Man stelle de komplexe Zahl z = +e 5f n algebrascher Form, also als x + y dar. Damt man de Formel für de Dvson anwenden kann, muss zunächst der Nenner

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

Lineare Optimierung Einführung

Lineare Optimierung Einführung Kaptel Lneare Optmerung Enführung B... (Dre klasssche Anwendungen) Im Folgenden führen wr de ersten dre klassschen (zvlen) Anwendungen der lnearen Optmerung an: BS... (Produktonsplanoptmerung) En Betreb

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Bemerkungen zum LCG Rupert Hartung,

Bemerkungen zum LCG Rupert Hartung, mt Bemerkungen zum LCG Rupert Hartung, 24.6.2005 Wr betrachten den Lnear Congruental Generator (LCG) X 0, X 1,..., X,... X +1 = ax + c mod N (1) zur Erzeugung von Pseudozufallszahlen mäÿger Qualtät. De

Mehr

Teil XIV. Lösung linearer Gleichungssysteme. Scientific Computing in Computer Science, Technische Universität München

Teil XIV. Lösung linearer Gleichungssysteme. Scientific Computing in Computer Science, Technische Universität München Tel XIV Lösung lnearer Glechungssysteme IN8008, Wntersemester 010/011 89 Gauss Algorthmus Zwe Schrtte: Vorwärtselmnaton und Rückwärtssubsttuton Vorwärtselmnaton Erzeugen ener Stufenform Zelen dürfen mt

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Lehrveranstaltung Stereostatik

Lehrveranstaltung Stereostatik Lehrveranstaltung Stereostatk Thema 4: Vertelte Lasten Mechank 1 Vertelte Lasten 4.1 Problemstellung De Varablen n unseren Glechgewchtsbedngungen snd mmer Enzelkräfte (Bassenhet N) N bzw. Enzelmomente

Mehr

5.3.3 Relaxationsverfahren: das SOR-Verfahren

5.3.3 Relaxationsverfahren: das SOR-Verfahren 53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx

Mehr