7. Aufgabe (Pumping-Eigenschaft, kontextfreie Grammatik) Es seien = {a,b,c}. und L = { a b a c i,

Größe: px
Ab Seite anzeigen:

Download "7. Aufgabe (Pumping-Eigenschaft, kontextfreie Grammatik) Es seien = {a,b,c}. und L = { a b a c i,"

Transkript

1 7. Aufgabe (Pumpng-Egenschaft, kontextfree Grammatk) Es seen = {a,b,c}. und L = { a b a c, j 0, k 1}. j k a) Geben Se en 3- und en 5-aufpumpbares Wort n L an, und begründen Se Ihre Wahl. b) Geben Se en Wort aus L an, das n L ncht 4-aufpumpbar st, und begründen Se Ihre Wahl. c) Geben Se ene kontextfree Grammatk für L an. Lösungsbespele a) Für 3: cccc, für 5: cccccc, da das Pumpen (Strechen oder Vervelfachen) der Schlefe v m Wort, zerlegt n uvw mt uv 3 bzw. 5 ncht-leere c-folgen erzeugt, welche auch zur Sprache gehören (=j=0). b) aaaabaaaac, da 4-Pumpen (Vervelfachen oder Strechen enes nchtleeren Telworts nnerhalb der ersten 4 Zechen) de erste Gruppe von a s auch länger oder kürzer als de zwete Gruppe macht, also ken j k a b a c ergbt. c) S DC C, Zerlegung n a b j a und c k D ada aa B, Zwebelschalentechnk für de a s rund um de evtl. b s B b Bb, b s, mndestens ens; Fall ken b st oben schon erledgt C c cc c s, mndestens ens

2 8. Aufgabe (Chomsky-Normalform und CYK) a) Transformeren Se de Grammatk G = [, V, S, R] mt { a, b}, V { A, B, C} und den unten folgenden Regeln n ene Grammatk n Chomsky-Normalform mt glecher Sprache: S aa bb, A Baa ba C, B bcc ab, C A b) Prüfen Se nach, ob das Wort bbbaba zur Sprache von G gehört. Lösungsbespel a) S aa S bb A Baa A ba A C B bcc B ab C A 4. Lange rechte Seten n Zweerschrtte zerlegen: 1. Zyklen und X>X raus: S aa S bb A Baa A ba B baa B ab 2. X Y übersprngen: unnötg, erledgt b CYK) 3. Varablen vor Konstanten schalten: S DA S EB A BDD A ED B EAA B DE D a E b JA! S DA EB A FD ED B GA DE D a E b F BD G EA S - B G - S,F - - A B A E E E D E D b b b a b a gelb unterlegt: Parsngbaum, sehe zwete b-lösung unten (b) entweder geometrsch, CYK mt der Technk der zwe Pyramdenkletterer mt dem Sel über der Pyramde (oben) oder durch sonst we gefundene explzte Abletung aus der Grammatk (unten). b Abletung aus Grammatk) S (2) EB (8) bb (8) bga (10) beaa (10) bbaa (10) bbeda (10) bbeda (8) bbbda (7) bbbaa (4) bbbaed (8) bbbabd (7) bbbaba De Regeln snd 1-10 nummerert. De angewendete Regel st jewels angegeben. Gezegt wrd ene Lnksabletung, deren Parsngbaum n (b-cyk) steckt.

3 9. Aufgabe (Kellerautomaten) n 2n Gegeben se de Sprache L {0 1 n IN } a) Leten Se aus ener kontextfreen Grammatk für L enen Kellerautomaten K 1 mt Kelleralphabet ={S,0,1} ab, der L beschrebt und ncht determnstsch st. b) Geben Se de Übergangsfunkton enes determnstschen Kellerautomaten K 2 mt Kelleralphabet ={a} an, der de Sprache L beschrebt. c) Demonstreren Se de Berechnung n K 2 für de Engabe 10 und 01 bs zur Ablehnung und für de Engabe bs zum Akzepteren (n z e ). Lösungsbespel Anfangszustand z0, akzepterender Zustand ze (a) Grammatkregeln: S 011 0S11 (Zwebelschalentechnk) (z0,, $, z1, S) Grammatk m Keller, zunächst S hnenstecken, (z1,, S, z1, 011) dann de Abletungsschrtte oben auf dem Stapel vollzehen (z1,, S, z1, 0S11) dto (z1, 0, 0, z1, ) Erzeugte Termnalzechen mt Engabewort verrechnen (z1, 1, 1, z1, ) dto (z1,, $, ze, ) Ende wenn Keller weder leer (b) Her z.b. folgende Methode: Pro 0 en a n den Keller, pro a m Keller zwemal 1 verrechnen, genauer: umfasst folgende Transtonen: (z0, 0, $, z0, a) pro 0 en a n den Keller, erstmals (z0, 0, a, z0, aa) pro 0 en a n den Keller, wetere (z0, 1, a, z1, a) verbraucht de erste 1, lässt a noch legen (z1, 1, a, z2, ) verbraucht de zwete (also ene gerade ) 1 und das a (z2, 1, a, z1, a) verbraucht ene wetere ungerade 1, lässt a noch legen (z2,, $, ze, $) Es kamen doppelt so vele Ensen we a s, also we Nullen Alternatv könnte man das a mt der ungeraden 1 löschen, dann aber noch ene gerade 1 ohne en a verbrauchen. Noch anders: Pro 0 zwe a s n den Keller, dann ene 1 pro a verbrauchen: (z0, 0, $, z0, aa) pro 0 zwe a n den Keller, erstmals (z0, 0, a, z0, aaa) pro 0 zwe a n den Keller, wetere (z0, 1, a, z1, ) verbraucht de erste (ene ungerade ) 1 und das oberste a (z1, 1, a, z2, ) verbraucht de nächste (also ene gerade ) 1 und en a (z2, 1, a, z1, a) verbraucht ene wetere ungerade 1 und en a (z3,, $, ze, $) Es kamen so vele 1 we a, also doppelt so vele we Nullen (c) (z0, 10, $) stoppt mangels (z0, , $) passendem Übergang (z0, 01111, a$) (z0, 1111, aa$) (z0, 01, $) (z1, 111, aa$) (z0, 1, a) (z2, 11, a$) (z1,, a) stoppt mangels (z1, 1, a$) passendem Übergang (z2,, $) (ze,, $) akzeptert und stoppt Berechnung mt dem oberen Programm von (b) (mt unterem ähnlch)

4 10. Aufgabe (Kellerautomaten) Gegeben se de Sprache L = {a m b n m > n 1 }. a) Geben Se de Übergangsfunkton enes determnstschen Kellerautomaten K mt Kelleralphabet = {A,a} an, der de Sprache L beschrebt. Tpps: Der Kellerautomat kann m akzepterenden Zustand bs zu ener gewssen Zahl wetere b akzepteren, wll des aber bem untersten a m Keller ncht tun, damt er nur wenger b s als a s akzeptert. We können wr deses unterste a markeren, damt der Kellerautomat es erkennt? b) Und we gnge das Ganze mt Kelleralphabet = {a}? Lösungsbespele a) besondere Zustände: Start z0, akzepterend: z akz, Fehler: z err (z0, a, $, z0, A) erstes a als A engekellert (z0, a, A, z0, aa) zwetes a (z0, a, a, z0, aa) und wetere a enkellern (z0, b, a, z akz, ) noch OK: nach a s mndestens en b (z0, b, A, z err, ) UPPS: Das war ab, das st ncht n L, Fehler (z akz, b, a, z akz, ) OK solange wenger b s als a s (z akz, b, A, z err, ) UPPS: Das war en a n b n, das st ncht n L, Fehler b) besondere Zustände: Start z0, akzepterend: z akz, Fehler: z err (z0, a, $, z1, ) erstes a wrd nur (per Zustand) gemerkt, ncht engekellert (z1, a, $, z1, a) zwetes a (z1, a, a, z1, aa) und wetere a enkellern (z1, b, a, z akz, ) noch OK: nach a s mndestens en b (z1, b, $, z err, ) UPPS: Das war ab, das st ncht n L, Fehler (z akz, b, a, z akz, ) OK solange wenger b s als a s (z akz, b, $, z err, ) UPPS: Das war en a n b n, das st ncht n L, Fehler

5 11. Aufgabe (Turng-Maschnen) Ene Turng-Maschne mt En-/Ausgabe-Alphabet = Bandalphabet = {a,b,c}, Startzustand z s und Endzustand z e soll folgendes lesten: Be jedem engegebenen Wort w der Sprache (a+b)(a+b)* (also aus a s und b s und mt mndestens enem Zechen) soll se zwar jedes Zechen mt a überschreben, aber jedes drtte Zechen stattdessen mt c. Das so entstandene Wort soll se als Ergebns lefern. Bespel: abababb aacaaca. a) Schreben Se ene passende Zustandsüberführungsfunkton mt möglchst wengen Zuwesungen für dese Turng-Maschne. b) Geben Se de Folge der Konfguratonen Ihrer Turng-Maschne aus (a) an, wenn se mt der Engabe abb rechnet. Lösungsbespel (a) (z s,a) = (z s,b) = (z 1,a,R), 1. Zechen a, (B nakzeptabel) (z 1,a) = (z 1,b)=(z 2,a,R) 2. Zechen a (z 1,B)=(z zur,b,l) B zurück nach L (z 2,a) = (z 2,b)=(z 0,c,R) 3. Zechen c (z 2,B)=(z zur,b,l) B zurück nach L (z 0,a) = (z 0,b)=(z 1,c,R) we zs, erlaubt aber auch B (z 0,B)=(z zur,b,l) B zurück nach L (z zur,a)=(z zur,a,l) ganz nach lnks (z zur,c)=(z zur,c,l) dto (z zur,b)=(z e,b,r) zurück auf Anfang vom Output, erledgt b) Achtung: Konfguraton = (Zustand, was steht lnks von her, was begnnt her)! (z s,,aba), Wegen (z s,a) = (z 1,a,R) blebt das a stehen, und der SL-Kopf geht nach rechts auf das b, und z 1 wrd aktueller Zustand (usw.) (z 1,a,ba), (z 2,aa,a), (z 0,aac,B), (z zur,aa,cb), (z zur,a,acb), (z zur,,aacb), (z 3,,BaacB), (z e,b,aacb)

6 12. Aufgabe (Turng-Maschnen) Es se M ene Turng-Maschne mt der Zustandsmenge Z, dem Anfangszustand z 0, dem Endzustand z e, dem Bandalphabet und der Zustandsüberführungsfunkton. Ferner se bekannt, dass M de folgende Funkton f über den natürlchen Zahlen (n Bnärdarstellung) n gutem Stl (nchts außer Output auf dem Band) berechnet: 1, wenn x durch 187 telbar st, f (x) 0 sonst. Geben Se ene 1-Band Turng-Maschne M 0 an, de de folgende Funkton f 0 über den natürlchen Zahlen (n Bnärdarstellung) berechnet: 1, wenn x ncht durch 187 telbar st, f (x) 0 sonst. Hnwes: Verwenden Se de Komponenten von M. Lösungsbespel Neue Zustandsmenge Z { z f }, mt z f Z, Anfangszustand z 0, Endzustand z f, Bandalphabet (muss ja mndestens 0, 1 enthalten) Zustandsüberführungsfunkton : we, und zusätzlch ( z e,0) = ( z f,1,n) ( z e,1) = ( z,0,n) f

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stchwörter von der letzten Vorlesung können Se sch noch ernnern? Gasgesetz ür deale Gase pv = nr Gelestete Arbet be sotherme Ausdehnung adabatsche Ausdehnung 2 n Reale Gase p + a 2 ( V nb) =

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Algorithmen und ihre Programmierung -Teil 3-

Algorithmen und ihre Programmierung -Teil 3- Veranstaltung Pr.-Nr.: Algorthmen und hre Programmerung -Tel - Veronka Waue WS / Veronka Waue: Grundstudum Wrtschaftsnformatk WS/ Übung Ersetzen Se n folgendem Bespel de For schlefe durch ene WhleWend-Schlefe

Mehr

Vorlesung 3 Differentialgeometrie in der Physik 13

Vorlesung 3 Differentialgeometrie in der Physik 13 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R >

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

MECHATRONISCHE NETZWERKE

MECHATRONISCHE NETZWERKE MECHATRONISCHE NETZWERKE Jörg Grabow Tel 3: Besondere Egenschaften 3.Besondere Egenschaften REZIPROZITÄT REZIPROZITÄT Neben den allgemenen Enschränkungen (Lneartät, Zetnvaranz) be der Anwendung der Verpoltheore

Mehr

1.11 Beispielaufgaben

1.11 Beispielaufgaben . Bespelaufgaben Darstellung komplexer Zahlen Aufgabe. Man stelle de komplexe Zahl z = +e 5f n algebrascher Form, also als x + y dar. Damt man de Formel für de Dvson anwenden kann, muss zunächst der Nenner

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gauslng, M.Sc. C. Hendrcks, M.Sc. Sommersemester 1 Bergsche Unverstät Wuppertal Fachberech C Mathematk und Naturwssenschaften Angewandte Mathematk / Numersche Analyss Enführung

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Contents blog.stromhaltig.de

Contents blog.stromhaltig.de Contents We hoch st egentlch Ihre Grundlast? Ene ncht ganz unwchtge Frage, wenn es um de Dmensonerung ener senannten Plug&Play Solar-Anlage geht. Solarsteckdosensystem für jermann, auch für Meter lautete

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Rte de Tavel 10 - Case postale / Postfach Fribourg - Tél. 026 / Fax 026 /

Rte de Tavel 10 - Case postale / Postfach Fribourg - Tél. 026 / Fax 026 / 2011.03.30 Benutzeranletung Onlne Termnreservaton Zu unseren Interndenstlestungen gelangen Se unter www.ocn.ch 1. ASS ONLINE NLINE anklcken 2. Termne Technsche Kontrollen anklcken a Rte de Tavel 10 - Case

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

LITECOM infinity Infinity-Modus

LITECOM infinity Infinity-Modus LITECOM nfnty Infnty-Modus nfnty Rechtlche Hnwese Copyrght Copyrght Zumtobel Lghtng GmbH Alle Rechte vorbehalten. Hersteller Zumtobel Lghtng GmbH Schwezerstrasse 30 6850 Dornbrn AUSTRIA Tel. +43-(0)5572-390-0

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell

Modellierung von Hydrosystemen Numerische und daten-basierte Methoden 2018 Finite-Elemente-Methode Selke-Modell Modellerung von Hydrosystemen Numersche und daten-baserte Methoden BHYWI-22-21 @ 2018 Fnte-Elemente-Methode Selke-Modell Olaf Koldtz *Helmholtz Centre for Envronmental Research UFZ 1 Technsche Unverstät

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abturprüfung 2014 (ohne CAS) Baden-Württemberg Lneare Optmerung Hlfsmttel: GTR, Formelsammlung beruflche Gymnasen (AG, BTG, EG, SG, TG, WG) Alexander Schwarz www.mathe-aufgaben.com Oktober

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Teil XIV. Lösung linearer Gleichungssysteme. Scientific Computing in Computer Science, Technische Universität München

Teil XIV. Lösung linearer Gleichungssysteme. Scientific Computing in Computer Science, Technische Universität München Tel XIV Lösung lnearer Glechungssysteme IN8008, Wntersemester 010/011 89 Gauss Algorthmus Zwe Schrtte: Vorwärtselmnaton und Rückwärtssubsttuton Vorwärtselmnaton Erzeugen ener Stufenform Zelen dürfen mt

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk

Mehr

BA_T3Compact_IPO_v1.0 (Draft_B)_050719

BA_T3Compact_IPO_v1.0 (Draft_B)_050719 BA_T3Compact_IPO_v1.0 (Draft_B)_050719 Inhalt Inhalt...2 Machen Se sch mt Ihrem Telefon vertraut Wchtge Hnwese... 3 Ihr T3 Compact auf enen Blck... 6 T3 IP Telefon n Betreb nehmen (I5)... 7 Grundregeln

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert bat@un-paderborn.de Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel)

In der beschreibenden Statistik werden Daten erhoben, aufbereitet und analysiert. Beispiel einer Datenerhebung mit Begriffserklärungen (Vokabel) Rudolf Brnkmann http://brnkmann-du.de Sete.. Datenerhebung, Datenaufberetung und Darstellung. In der beschrebenden Statstk werden Daten erhoben, aufberetet und analysert. Bespel ener Datenerhebung mt Begrffserklärungen

Mehr

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung 2. Übungsblatt (mt en) 3.0 VU Formale Modellerung Maron Scholz, Gernot Salzer November 2014 Aufgabe 1 (0.3 Punkte) Se A der folgende Moore-Automat. 0 0 0 Z 0 0 1 Z 1 0 1 1 Z 2 1 (a) Geben Se de Ausgaben

Mehr

BA_T3Classic_IPO_v1.0 (Draft_B)_050719

BA_T3Classic_IPO_v1.0 (Draft_B)_050719 BA_T3Classc_IPO_v1.0 (Draft_B)_050719 Inhalt Inhalt...2 Machen Se sch mt Ihrem Telefon vertraut Wchtge Hnwese... 3 Ihr T3 Classc auf enen Blck... 6 T3 IP Telefon n Betreb nehmen (I5)... 7 Grundregeln für

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 12. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technschen Informatk 12. Übung Chrstan Knell Kene Garante für Korrekt-/Vollständgket 12. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Komparator Adderer/Subtraherer Mehr-Operanden-Adderer

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Gültig ab dem ! Einfache Abrechnung in der Cloud. Für jeden der richtige Tarif und Service

Gültig ab dem ! Einfache Abrechnung in der Cloud. Für jeden der richtige Tarif und Service Gültg ab dem 1.4.2019! Enfache Abrechnung n der Cloud Für jeden der rchtge Tarf und Servce Jetzt entscheden xxxx So enfach geht s Tarf und Servcepaket bestellen und sofort loslegen 2 Wählen Se den passenden

Mehr

Gültig ab dem ! Abrechnung und Software in der Cloud. Für jeden der richtige Tarif und Service

Gültig ab dem ! Abrechnung und Software in der Cloud. Für jeden der richtige Tarif und Service Gültg ab dem 1.4.2019! Abrechnung und Software n der Cloud Für jeden der rchtge Tarf und Servce Jetzt entscheden xxxx So enfach geht s Tarf und Servcepaket bestellen und sofort loslegen 2 Wählen Se den

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

Bemerkungen zum LCG Rupert Hartung,

Bemerkungen zum LCG Rupert Hartung, mt Bemerkungen zum LCG Rupert Hartung, 24.6.2005 Wr betrachten den Lnear Congruental Generator (LCG) X 0, X 1,..., X,... X +1 = ax + c mod N (1) zur Erzeugung von Pseudozufallszahlen mäÿger Qualtät. De

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Beschreibung von Vorgängen durch Funktionen

Beschreibung von Vorgängen durch Funktionen Beschrebung von Vorgängen durch Funktonen.. Splnes (Sete 6) a +b c Zechenerklärung: [ ] - Drücken Se de entsprechende Taste des Graphkrechners! [ ] S - Drücken Se erst de Taste [SHIFT] und dann de entsprechende

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Tutorium Makroökonomik I:

Tutorium Makroökonomik I: UNIVERITÄTKOLLEG Unverstätskolleg: #tdm+ Ttorm Makroökonomk I:. Lneare Fnktonen mehrerer Varablen Dr. Krstn aetz Tobas Fscher Kostenlose satzangebote nd Lehrmateralen für alle tderenden Ttorm Makroökonomk

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Gültig ab dem ! Einfache Abrechnung in der Cloud. Für jeden der richtige Tarif und Service

Gültig ab dem ! Einfache Abrechnung in der Cloud. Für jeden der richtige Tarif und Service Gültg ab dem 1.4.2019! Enfache Abrechnung n der Cloud Für jeden der rchtge Tarf und Servce Jetzt entscheden xxxx So enfach geht s Tarf und Servcepaket bestellen und sofort loslegen 2 Wählen Se den passenden

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

Die Dreieckschaltung

Die Dreieckschaltung De Dreeckschaltung Handrechung zur Präsentaton Raphael Denert 5. Oktober 2016 Inhaltsverzechns 1 Wederholung: Knoten- und Maschenregel 1 1.1 Maschenregel.............................. 1 1.1.1 Bespel Maschenregel.....................

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 2 Übungen zur Vorlesung Physkalsche Chee 1 B. Sc.) Lösungsorschlag zu Blatt Prof. Dr. Norbert Happ Jens Träger Soerseester 7. 4. 7 Aufgabe 1 a) Aus den tabellerten Werten ergbt sch folgendes Dagra. Btte

Mehr

2 Telefonbenutzeroberfläche für Messaging-Dienste

2 Telefonbenutzeroberfläche für Messaging-Dienste Telefonbenutzeroberfläche für Messagng-Denste Über de Telefonbenutzeroberfläche für Messagng-Denste können Se von jedem belebgen nternen oder externen Telefon aus auf de Funktonen zum Abrufen und Verwalten

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Lösungen zu Übungsblatt 1 Höhere Mathematik 1 WS 10/11 Prof. Dr.B.Grabowski. Zu Aufgabe 1. Zu Aufgabe 2

Lösungen zu Übungsblatt 1 Höhere Mathematik 1 WS 10/11 Prof. Dr.B.Grabowski. Zu Aufgabe 1. Zu Aufgabe 2 Lösunen zu Übunsblatt 1 Höhere Matheatk 1 WS 10/11 Prof. Dr.B.rabowsk Zu Aufabe 1 Zu Aufabe 2 1 Lösunen zu Übunsblatt 1 Höhere Matheatk 1 WS 10/11 Prof. Dr.B.rabowsk 2 Zu Aufabe 3 Se de Mene aller Studerenden

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Wir steuern einen Mini-Roboter!

Wir steuern einen Mini-Roboter! Wr steuern enen Mn-Roboter! Telnehmer: Marek Bartusch Cecla Lange Yannck Lehmann Johannes-Lucas Löwe Ncolas Menzel Huong Thao Pham Floran Pogatzk Anne Reulke Jonas Wanke Maran Zuska mt tatkräftger Unterstützung

Mehr

Über eine besondere Teilung einer Dreieckfläche

Über eine besondere Teilung einer Dreieckfläche Paper-ID: VGI 93202 Über ene besondere Telung ener Dreeckfläche Leopold Herzka Hofrat. R., Wen Österrechsche Zetschrft für Vermessungswesen 30 (), S. 3 6 932 BbT E X: @ARTICLE{Herzka_VGI_93202, Ttle =

Mehr