Lineare zeitinvariante Systeme
|
|
|
- Wolfgang Meyer
- vor 6 Jahren
- Abrufe
Transkript
1 Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1
2 Signalflussgraphen Nach z-transformation ist Verzögerung eine Multiplikation mit vereinfachte Darstellung möglich c c 2
3 FIR-Filter der Länge L = M + 1 Filterstrukturen X(z) b 0 b 1 b 2 b 3 b M Y (z) Alternative Realisierung X(z) b M b 3 b 2 b 1 b 0 Y (z) 3
4 Filterstrukturen IIR-Filter mit Zählergrad M und Nennergrad N Differenzengleichung y(n) = M b i x(n i) + i=0 j=1 z-übertragungsfunktion H(z) = z N M M b i z M i i=0 z N + N c j y(n j) N c j z N j j=1 4
5 Filterstrukturen IIR-Filter mit Zählergrad M und Nennergrad N Direktform I X(z) b 0 b 1 b 2 b 3 b M Y (z) c N c 4 c 3 c 2 c 1 5
6 Filterstrukturen IIR-Filter mit Zählergrad M und Nennergrad N Vertauschung der beiden Teilfilter X(z) c N c 4 c 3 c 2 c 1 W (z) b M b 3 b 2 b 1 b 0 Y (z) 6
7 Filterstrukturen IIR-Filter mit Zählergrad M = Nennergrad N Direktform II X(z) W (z) c 1 c 2 c 3 c 4 c N b 0 b 1 b 2 b 3 b 4 b N Y (z) 7
8 Filterstrukturen Alternative Struktur für IIR-Filter mit Zählergrad M = Nennergrad N X(z) b N b 3 b 2 b 1 b 0 Y (z) c N c 3 c 2 c 1 8
9 Filterstrukturen Alternative Struktur für IIR-Filter mit Zählergrad M = Nennergrad N X(z) b N c N b 4 b 3 c 4 b 2 c 3 b 1 c 2 b 0 c 1 Y (z) 9
10 Weitere Strukturen für IIR-Filter Filterstrukturen Aus Pol-Nullstellendarstellung: Kettenform M (z z 0,i ) H(z) = z N M b 0 a 0 i=1 N (z z,j ) j=1 je ein Paar von konjugiert komplexen Polen und Nullstellen System 2. Ordnung reeller Pol und Nullstelle System 1. Ordnung 10
11 Teilsysteme für die Kettenform Filterstrukturen X(z) X(z) c 1 c 2 b 0 b 1 b 2 Y (z) c 1 b 0 b 1 Y (z) Zuordnung und Reihenfolge wählbar wichtig für Realisierungen mit begrenzter Rechengenauigkeit 11
12 Filterstrukturen Aus Partialbruchzerlegung: Parallelform konjugiert komplexes Polpaar System 2. Ordnung reeller Pol System 1. Ordnung konstanter Term Multiplizierer Alle Ausgänge werden addiert 12
13 Fouriertransformation zeitdiskreter Folgen Zeitkontinuierliches Signal x C (t) abgetastet bei t n = nt : zeitdiskretes Signal x D (n) = x C (nt ) Impulsfolge x R (t) = x D (n)δ(t nt ) = x C (t) δ(t nt ) FT: X R (jω) = X(e jω ) = = 1 T n= n= x R (t)e jωt dt = k= n= ) X C (j(ω kω s ) x(n)e jωn mit ω = ΩT n= x D (n)e jnωt mit Ω s = 2π T entpricht für ω π FT eines bandbegrenzten Signals mit T = 1 13
14 Fouriertransformation zeitdiskreter Folgen Rücktransformation bei Bandbegrenzung auf Ω π T x r (t) = 1 X R (jω)e jωt dω 2π = 1 π T X C (jω)e jωt dω δ(t nt ) 2π π T n= Vergleich mit inverser z-transformation x(n) = 1 X(z)z n 1 dz 2πj C Integration entlang des Einheitskreises: z = e jω dz dω = jejω, dz = je jω dω x(n) = 1 π X(e jωn )e jωn dω entspricht inverser FT 2π π 14
15 Fouriertransformation zeitdiskreter Folgen Definition der Fouriertransformation für zeitdiskrete Folgen X(e jω ) = x(n)e jωn x(n) = 1 2π n= π π X(e jωn )e jωn dω entspricht z-transformation für z = e jω ist aber auch anwendbar, wenn Einheitskreis z = 1 nicht im Konvergenzbereich liegt 15
16 Fouriertransformation zeitdiskreter Folgen Beispiel: x(n) = 1 = u(n) + u( n) δ(n) Z{u(n)} konvergiert für z > 1 Z{u( n)} konvergiert für z < 1 z-transformierte existiert nicht aber X(e jω ) = k= 2πδ(ω + k2π) 16
17 Fouriertransformation zeitdiskreter Folgen Weitere Beispiele: x(n) = e jω 0n X(e jω ) = 2πδ(ω ω 0 + k2π) k= ( x(n) = cos ω 0 n = 1 2 e jω 0 n + e ) jω 0n X(e jω ) = πδ(ω ω 0 + k2π) + πδ(ω + ω 0 + k2π) k= x(n) = sin ω 0 n = j ( 2 e jω 0 n e ) jω 0n X(e jω ) = jπδ(ω ω 0 + k2π) + jπδ(ω + ω 0 + k2π) k= 17
18 Fouriertransformation zeitdiskreter Folgen - Eigenschaften Folge Fouriertransformierte ax(n) + by(n) ax(e jω ) + by e jω ) x(n n d ) e jωn dx(e jω ) e jω 0n x(n) X(e j(ω ω 0) ) x( n) X(e jω ) nx(n) j dx(ejω ) dω x(n) y(n) X(e jω )Y (e jω ) x(n)y(n) 1 2π π π X(e jϕ )Y (e j(ω ϕ) )dϕ 18
19 Fouriertransformation zeitdiskreter Folgen - Eigenschaften Parseval sches Theorem: x(n) 2 = 1 π X(e jω ) 2 dω 2π n= n= x(n)y (n) = 1 2π π π π X(e jω )Y (e jω )dω 19
20 Fouriertransformation spezieller zeitdiskreter Folgen Folge Fouriertransformierte δ(n) 1 δ(n n 0 ) e jωn 0 1 2πδ(ω + 2πk) u(n) a n u(n) ( a < 1) sin ω 0 n πn k= 1 1 e jω + (0 ω 0 < π) X(e jω ) = k= πδ(ω + 2πk) 1 1 ae { jω 1, ω < ω0 0, ω 0 < ω π 20
21 Fouriertransformation spezieller zeitdiskreter Folgen { 1, 0 n N x(n) = 0, sonst e jω 0n cos(ω 0 n + ϕ) k= k= sin(ω(n + 1)/2) sin(ω/2) 2πδ(ω ω 0 + 2πk) [ πe jϕ δ(ω ω 0 + 2πk) +πe jϕ δ(ω + ω 0 + 2πk) ] 21
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer
Lösungen der Übungsaufgaben zur Vorlesung Digitale Signalverarbeitung
Institut für Informationsverarbeitung Laboratorium für Informationstechnologie Lösungen der Übungsaufgaben zur Vorlesung Digitale Signalverarbeitung Wintersemester 009-00 Aufgabe : Diskrete Faltung Vorerst:
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00
Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008
Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)
Lösungen der Übungsaufgaben zur Vorlesung Digitale Signalverarbeitung
Institut für Informationsverarbeitung Laboratorium für Informationstechnologie Lösungen der Übungsaufgaben zur Vorlesung Digitale Signalverarbeitung Wintersemester 00-0 Mathematische Grundlagen I. Geometrische
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf
Fouriertransformation, z-transformation, Differenzenglei- chung
Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:
5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main
5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:
Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:
Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00
Diskrete Folgen, z-ebene, einfache digitale Filter
apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches
Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2
Leibniz Universität Hannover Institut für Kommunikationstechnik Prof. Dr. J. Peissig Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Universität Hannover, Institut für Kommunikationstechnik,
ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN
ÜBUNG : Z-TRANSFORMATION, SYSTEMSTRUKTUREN 8. AUFGABE Bestimmen Sie die Systemfunktion H(z) aus den folgenden linearen Differenzengleichungen: a) b) y(n) = 3x(n) x(n ) + x(n 3) y(n ) + y(n 3) 3y(n ) y(n)
Integraltransformationen
Fourier-ransformation Integraltransformationen Fakultät Grundlagen Juli 00 Fakultät Grundlagen Integraltransformationen Übersicht Fourier-ransformation Fourier-ransformation Motivation Fakultät Grundlagen
Übungsaufgaben Digitale Signalverarbeitung
Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen
Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications
Filterentwurf. Aufgabe
Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich
Systemtheorie Teil B
d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher
Musterlösung zur Klausur Signale und Systeme
Musterlösung zur Klausur Signale und Systeme Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum Herbst 005 Aufgabe : Kontinuierliche und diskrete Signale..a) y t ).b) y t ) -3T -T -T T T
Signale und Systeme I
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische
MusterModulprüfung. Anteil Transformationen
MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation
Zusammenfassung der 1. Vorlesung
Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox
Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2
Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt
Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.
442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name
Spektrum zeitdiskreter Signale
Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile
Übungen zu Signal- und Systemtheorie
Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.
In diesem Kapitel werden wir eine weitere Klasse von diskreten Filtern kennen lernen, die Infinite Impulse Response Filter.
Kapitel IIR-Filter In diesem Kapitel werden wir eine weitere Klasse von diskreten Filtern kennen lernen, die Infinite Impulse Response Filter.. Vom FIR- zum IIR-Filter FIR Filter verwenden zur Berechnung
Zeitdiskrete Signalverarbeitung
Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario
Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................
Kleine Formelsammlung zu Signale und Systeme 2
Kleine Formelsammlung zu Signale und Systeme 2 Florian Franzmann 6. März 2006 Inhaltsverzeichnis Elementare Grundlagen 3. Lösungsformel für quadratische Gleichungen................. 3.2 Definition einiger
Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora -
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister... Matr.Nr:.......................... Erasmus
Signale, Transformationen
Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =
3.3 Das Abtasttheorem
17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann
Signale und Systeme I
FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard
Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation
Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation 7. November 2016 1 Laplacetransformation 2 z-transformation Ziel: Reverse-Engineering für Digitale Filter Einführung der z-transformation
Fourier- und Laplace- Transformation
Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)
Zeitdiskrete Signalverarbeitung
Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario
Warum z-transformation?
-Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von
Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme
Arbeit zum Seminar Digitale Signalverarbeitung Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Thomas Wilbert [email protected] 29.06.2005 Zusammenfassung Dieses Dokument befasst sich mit der
Systemtheorie Teil B
d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...
Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen
Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen 21. November 2016 Siehe Skript, Kapitel 8 Kammeyer & Kroschel, Abschnitt 4.1 1 Einführung Filterstrukturen: FIR vs. IIR 2 Motivation: Grundlage
3. Beschreibung dynamischer Systeme im Frequenzbereich
3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik
Grundlagen der Signalverarbeitung 1 (Integraltransformationen)
Grundlagen der Signalverarbeitung 1 (Integraltransformationen) Prof. Dr.-Ing. Dr. h.c. Norbert Höptner Fakultät Technik Bereich Informationstechnik (IT) Hochschule Pforzheim Stand: 17.01.2017 v9 @ Prof.
Grundlagen der Signalverarbeitung
Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:
Digitale Signalverarbeitungssysteme II: Praktikum 2
Digitale Signalverarbeitungssysteme II: Praktikum 2 Emil Matus 10. Dezember 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:
Allpass-Transformation
Grundidee: Allpass-Transformation Entwurf eines IIR-Filters H p (z) mit bekanntem Verfahren Abbildung des Frequenzgangs durch Transformation der Frequenzvariablen Transformation durch Substitution ζ =
Signal- und Systemtheorie
Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung
Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11
Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /
x[n-1] x[n] x[n+1] y[n-1] y[n+1]
Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],
Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation
Digitale Signalverarbeitung, Vorlesung 3: Laplace- und z-transformation 30. Oktober 2017 1 Moodle-Test 2 Laplacetransformation 3 z-transformation Ziel: Reverse-Engineering für Digitale Filter Einführung
ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.
ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale
ÜBUNG 4: ENTWURFSMETHODEN
Dr. Emil Matus - Digitale Signalverarbeitungssysteme I/II - Übung ÜBUNG : ENTWURFSMETHODEN 5. AUFGABE: TIEFPASS-BANDPASS-TRANSFORMATION Entwerfen Sie ein nichtrekursives digitales Filter mit Bandpasscharakteristik!
Grundlagen der Signalverarbeitung
Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich
Einführung in die digitale Signalverarbeitung WS11/12
Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl usterlösung 1. Aufgabenblatt 1. Digitale Filter 1.1 Was ist ein digitales Filter und zu welchen Zwecken wird die Filterung
Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale
Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)
Mathematik für Sicherheitsingenieure II (MScS, MScQ)
Priv.-Doz. Dr. J. Ruppenthal Wuppertal,..28 Mathematik für Sicherheitsingenieure II (MScS, MScQ) Modulteil: Mathematik II Aufgabe. (6+7+7 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x +
,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge
Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,
Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale
Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes
Signale und Systeme I
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 07 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:
Einführung in die Systemtheorie
Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen
Probeklausur Signale + Systeme Kurs TIT09ITA
Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen
Theorie digitaler Systeme
Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei
Runde 9, Beispiel 57
Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, [email protected], TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische
3. Quantisierte IIR-Filter R
. Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben
Musterlösung zur Klausur Digitale Signalverarbeitung
Musterlösung zur Klausur Digitale Signalverarbeitung Arbeitsgruppe Digitale Signalverarbeitung Ruhr-Universität Bochum 1. Oktober 2007 Aufgabe 1: Transformationen 25 Pkt. Gegeben war das reellwertige kontinuierliche
Zeitdiskrete Signalverarbeitung
Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht
Fouriertransformationen DSP 1
Fouriertransformationen DSP Fourierreihe periodisch kontinuierlich (t), diskret (ω) jk t jkt xt () Xke Xk xt () e dt T T k k " Anhalten",, T T Periodendauer DSP Fouriertransformation aperiodisch kontinuierlich
Seminar Digitale Signalverarbeitung Thema: Digitale Filter
Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind
4.2 Abtastung und Rekonstruktion zeitkontinuierlicher
7 4 Fouriertransformation für zeitdiskrete Signale und Systeme nicht auf [, ] zeitbegrenzt ist. Es kommt daher zu einer Überlappung der periodischen Fortsetzungen. Für die Herleitung der Poissonschen Summenformel
Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:
ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Zeitdiskrete Signalverarbeitung
Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario
Zusammenfassung der 1. Vorlesung
Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem
