Signale und Systeme I

Größe: px
Ab Seite anzeigen:

Download "Signale und Systeme I"

Transkript

1 TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische Funktionen Integrations- und Differentiatiosregeln Unbestimmte Integrale Rechnen mit komplexen Exponentialfunktionen Summen und Reihen Verschiedenes Fourier-Reihe 4. Fourier Sinus-/Cosinus-Reihe Trigonometrische Fourier-Reihe) Fourier-Transformation 5. Eigenschaften Gebräuchliche Korrespondenzen Diskrete Fourier-Transformation DFT) 7 4. Eigenschaften Zeitdiskrete Fourier-Transformation DTFT) 8 5. Eigenschaften Gebräuchliche Korrespondenzen Laplace-Transformation 0 6. Eigenschaften Gebräuchliche Korrespondenzen Z-Transformation 7. Eigenschaften Gebräuchliche Korrespondenzen Digitale Signalverarbeitung und Systemtheorie, Prof. Dr.-Ing. Gerhard Schmidt, Formelsammlung Signale und Systeme I v.5

2 Mathematische Formeln Mathematische Formeln. Trigonometrische Funktionen x sinx) 0 cosx) 0 6 π 4 π π π π 4 π 5 6 π π 7 6 π 5 4 π 4 π π 5 π 7 4 π 6 π π tanx) 0 ± cotx) ± ± 0 0 ± 0 0 ± sinx) siny) = [cosx y) cosx + y)] sinx) cosy) = [sinx y) + sinx + y)] cosx) cosy) = [cosx y) + cosx + y)] ) ) x + y x y sinx) + siny) = sin cos ) ) x + y x y cosx) + cosy) = cos cos ) ) x + y x y cosx) cosy) = sin sin tanx) = sinx) cosx) = cos x) + sin x) cos x) = [ + cosx)] sin x) = [ cosx)] ) π cosx) = sin ± x ) π sinx) = cos x. Integrations- und Differentiatiosregeln Produktregel u v) = u v + u v Quotientenregel u ) v = u v u v v Kettenregel y xt) )) = dy dt = dy dx dx dt = y xt)) x t) Partielle Integration u v dx = u v u v dx. Unbestimmte Integrale Hinweis: Die Integrationskonstante C für die Stammfunktionen auf der rechten Seite des Gleichheitszeichens wurde weggelassen. x e αx dx = eαx αx ) α x x e αx dx = e αx α x α + ) α x cosωx) dx = cosωx) ω x sinωx) dx = sinωx) ω + x sinωx) ω x cosωx) ω Formelsammlung Signale und Systeme I v.5

3 Mathematische Formeln x cosωx) dx = x x ω cosωx) + ω ) ω sinωx) x sinωx) dx = x x ω sinωx) + ω ) ω cosωx) e ax cosbx) dx = eax [ ] a + b a cosbx) + b sinbx) e ax sinbx) dx = eax [ ] a + b a sinbx) b cosbx).4 Rechnen mit komplexen Exponentialfunktionen Eulersche Formel Halbes Argument ausklammern e jx = cosx) + j sinx) cosx) = e jx + e jx) sinx) = j e jx e jx) e jx = e jx/ e jx/ e jx/) = j e jx/ sinx/).5 Summen und Reihen Geometrische Reihe Endliche geometrische Reihe Gaußsche Summenformel n=0 N n=0 N n= q n = q, für q < q n = qn+ q, für q n = N N + ).6 Verschiedenes Binomialkoeffizient n ) k = n! k!n k)!, für n k 0 Quadratische Gleichung x + px + q = 0 x, = p ± p ) q Umrechnen von Logarithmen log b x) = log a x) log a b) Formelsammlung Signale und Systeme I v.5

4 Fourier-Reihe Fourier-Reihe Das Signal vt) = vt + λt) sei periodisch mit Periodendauer T R und λ Z. vt) c µ t µ vt) = µ= π jµ c µ e T t c µ = T t0 +T t 0 vt) e jµ π T t dt. Fourier Sinus-/Cosinus-Reihe Trigonometrische Fourier-Reihe) vt) = c 0 + Berechung der Koeffizienten µ= a µ cos µ π ) T t + µ= b µ sin µ π ) T t c 0 = a 0 = T t0 +T t 0 a µ = Re {c µ } = T b µ = Im {c µ } = T Beziehung zur komplexen Fourier-Reihe vt) dt t0 +T t 0 t0 +T t 0 vt) cos µ π vt) sin ) T t dt µ π ) T t dt c µ = a µ jb µ ), c µ = c µ für µ {,..., } c 0 = a 0 Formelsammlung Signale und Systeme I v.5 4

5 Fourier-Transformation Fourier-Transformation vt) V jω) t ω vt) = F {V jω)} = V jω) e jωt dω π V jω) = F {vt)} = vt) e jωt dt. Eigenschaften Linearität a v t) + a v t) a V jω) + a V jω) Zeitverschiebung vt t 0 ) V jω)e jωt 0 Modulation vt)e jω 0t V jω ω 0 ) ) Zeitskalierung vat) a V jω a Zeitumkehr v t) V jω) Symmetrie Xjt) πv ω) Ableitung im Zeitbereich d n dt n vt) ) jω) n V jω) Ableitung im Frequenzbereich jt) n vt) d n dω V jω) n Integration t vτ)dτ jω V jω) + πv 0)δ 0ω) Multiplikation v t) v t) π V jω) V jω) Faltung v t) v t) V jω) V jω) Es gilt für die Faltungsoperation v t) v t) = τ= v τ)v t τ) dτ Formelsammlung Signale und Systeme I v.5 5

6 Fourier-Transformation. Gebräuchliche Korrespondenzen δ 0 t) δ t) jω + πδ 0ω) e at δ t) a+jω a > 0 e at δ t) a jω a > 0 t n e at δ t) n! a+jω) n+ a > 0 e at cosω 0 t)δ t) a+jω a+jω) +ω 0 e at sinω 0 t)δ t) ω 0 a+jω) +ω0 δ 0 t nt) π ) T δ 0 ω π T n n= n= cosω 0 t) π [δ 0 ω + ω 0 ) + δ 0 ω ω 0 )] sinω 0 t) jπ [δ 0 ω + ω 0 ) δ 0 ω ω 0 )] cosω 0 t)δ t) sinω 0 t)δ t) a > 0 a > 0 π [δ 0ω + ω 0 ) + δ 0 ω ω 0 )] + jω ω0 ω jπ [δ 0ω + ω 0 ) δ 0 ω ω 0 )] + ω 0 ω0 ω t ω e jω 0t πδ 0 ω ω 0 ) e t σ σ πe σ ω r T t) ω sinωt) = TsiωT) d T t) ) Tsi T ω signt) jω Definition einiger verwendeter Funktionen: r T t) d T t) signt) T T t T T t t Formelsammlung Signale und Systeme I v.5 6

7 4 Diskrete Fourier-Transformation DFT) 4 Diskrete Fourier-Transformation DFT) vn) V M µ) M M n M M µ vn) = IDFT M {V M µ)} = M M µ=0 V M µ) e jµ π M n V M µ) = DFT M {vn)} = M n=0 vn) e jµ π M n 4. Eigenschaften Linearität a v n) + a v n) a V M µ) + a V M µ) Zeitverschiebung vn n 0 ) V M µ)e jµ π M n 0 Modulation vn)e jµ 0 π M n V µ µ 0 ) Differenz im Zeitbereich vn) vn ) V M µ) e jµ π M ) Multiplikation v n) v n) M V Mµ) V M µ) Zyklische Faltung v n) v n) V M µ) V M µ) Es gilt v n) v n) = V M µ) V M µ) = M κ=0 M ν=0 v κ)v n κ) mod M V M ν)v M µ ν) mod M Formelsammlung Signale und Systeme I v.5 7

8 5 Zeitdiskrete Fourier-Transformation DTFT) 5 Zeitdiskrete Fourier-Transformation DTFT) vn) V e jω ) n π π π π Ω { } vn) = F V e jω ) = π π π V e jω ) e jωn dω V e jω ) = F {vn)} = vn) e jωn n= 5. Eigenschaften Periodizität V e jω ) = V e jω+πk) ) k Z Linearität a v n) + a v n) a V e jω ) + a V e jω ) Zeitverschiebung vn n 0 ) V e jω )e jωn 0 Modulation vn)e jω 0n V e jω Ω 0) ) Zeitskalierung v m) n) V e jωm ) m Z + Zeitumkehr v n) V e jω ) Konjugation v n) V e jω ) Ableitung im Frequenzbereich nvn) j d dω V ejω ) Multiplikation v n) v n) π V e jω ) V e jω ) Faltung v n) v n) V e jω ) V e jω ) Es gilt { vn/m), n/m Z v m) n) = 0, sonst v n) v n) = v κ)v n κ) V e jω ) V e jω ) = κ= π V e jω )V e jω θ) )dθ Formelsammlung Signale und Systeme I v.5 8

9 5 Zeitdiskrete Fourier-Transformation DTFT) 5. Gebräuchliche Korrespondenzen γ 0 n) π λ= δ 0 Ω πλ) γ n) + jπ δ e jω 0 Ω πλ) λ= e jω 0n π λ= δ 0 Ω Ω 0 πλ) cosω 0 n) π λ= [δ 0 Ω + Ω 0 πλ) + δ 0 Ω Ω 0 πλ)] sinω 0 n) jπ λ= [δ 0 Ω + Ω 0 πλ) δ 0 Ω Ω 0 πλ)] a n γ n) ae jω a < n + )a n γ n) a < { ae jω ) ), n N sin ΩN + ) sinω/) 0, n > N γ 0 n λm) π δ 0 Ω µ π M ) λ= µ= Formelsammlung Signale und Systeme I v.5 9

10 6 Laplace-Transformation 6 Laplace-Transformation vt) = L {V s)} = πj s=σ+jω ω= V s)e st ds V s) = L {vt)} = vt)e st dt 6. Eigenschaften Linearität a v t) + a v t) a V s) + a V s) Zeitverschiebung vt t 0 ) e st 0 V s) Modulation vt)e s 0t V s s 0 ) Ableitung im Zeitbereich d dt vt) sv s) Ableitung im Bildbereich t)vt) d ds V s) Integration t vτ) dτ s V s) Multiplikation v t) v t) πj V s) V s) Faltung v t) v t) V s) V s) Es gilt V s) V s) = V x)v s x) dx v t) v t) = x=σ+jη η= v τ)v t τ) dτ Formelsammlung Signale und Systeme I v.5 0

11 6 Laplace-Transformation 6. Gebräuchliche Korrespondenzen δ 0 t) s δ t) s Re{s} > 0 t k δ t) k! s k+ Re{s} > 0, k N 0 δ t) s Re{s} < 0 e s t δ t) s s Re{s} > Re{s } te s t δ t) s s ) Re{s} > Re{s } t k e s t δ t) k! s s ) k+ Re{s} > Re{s }, k N 0 e s t [ + s t]δ t) s s s ) Re{s} > Re{s } cosω 0 t ϕ)δ t) s cosϕ)+ω 0 sinϕ) s +ω0 Re{s} > 0 cosω 0 t)δ t) s s +ω0 Re{s} > 0 sinω 0 t)δ t) ω 0 s +ω 0 Gebrochen-rationale Funktionen B 0 + k 0 k ν ν= κ= B ν,κ { } Für Re{s} > max Re{s,ν }. s s,ν ) κ B 0 δ 0 t) + B 0 δ 0 t) + k 0 k ν ν= κ= k 0 k ν ν= κ= Re{s} > 0 B ν,κ e s,νt δ κ t) t κ B ν,κ e s,νt κ )! δ t) Formelsammlung Signale und Systeme I v.5

12 7 Z-Transformation 7 Z-Transformation vn) = Z {V z)} = πj Geschl. Weg um 0 V z)z n dz V z) = Z {vn)} = vn)z n n= 7. Eigenschaften Linearität a v n) + a v n) a V z) + a V z) Zeitverschiebung vn n 0 ) z n 0 V z) ) Modulation vn)z0 n V z z0 Differenz im Zeitbereich vn) vn ) V z)[ z ] Ableitung im Bildbereich n)vn) z d dz V z) n Summation vκ) V z) z κ= Multiplikation v t) v t) πj V η)v z η η Faltung v n) v n) V z) V z) ) dη η Es gilt v n) v n) = v κ)v n κ) κ= 7. Gebräuchliche Korrespondenzen γ 0 n) z γ n) z z z > γ n ) z z z < a n γ n) z z a a n γ n ) z z a na n γ n) za z a) n a n γ n) zaz+a) z a) n+λ ) κ a n+λ κ γ n + λ κ ) z λ z a) κ+ cosω 0 n ϕ) γ n) z > a z < a z > a z > a z > a z[z cosϕ) cosω 0 +ϕ)] z z cosω 0 )+ z > cosω 0 n) γ n) z[z cosω 0 )] z z cosω 0 )+ z > sinω 0 n) γ n) z sinω 0 ) z z cosω 0 )+ z > Formelsammlung Signale und Systeme I v.5

13 7 Z-Transformation Gebrochen-rationale Funktionen B 0 + k 0 k ν B ν,κ ν= κ= Für z > max { z,ν }. z z z,ν ) κ B 0 γ 0 t) + k 0 k ν ν= κ= B ν,κ z n κ+,ν ) n γ n κ + ) κ Formelsammlung Signale und Systeme I v.5

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur WS 017/018 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

Partielle Integration

Partielle Integration Partielle Integration Aus der Produktregel (fg) = f g + fg ergibt sich eine analoge Formel für unbestimmte Integrale: f (x)g(x)dx = f (x)g(x) f (x)g (x) dx. Partielle Integration 1-1 Partielle Integration

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 2017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Diskontinuierliche Signale und Systeme

Diskontinuierliche Signale und Systeme Diskontinuierliche Signale und Systeme Fourier-Transformation für diskontinuierliche Funktionen Eigenschaften und Sätze, Fourier-Paare Diskrete Fourier-Transformation (DFT) Zeitdiskrete LTI-Systeme, Faltung

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Modulklausur SoSe 07 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:

Mehr

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation 23. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 10.1 und 11, Kammeyer & Kroschel (7.1-7.3) eues Thema in

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

L [u(at)] (s) = 1 ( s a. u(at)e st dt r=at = u(r)e s a r dr = 1 ( s a. u(t) = ah(t) sin(kω 0 t)

L [u(at)] (s) = 1 ( s a. u(at)e st dt r=at = u(r)e s a r dr = 1 ( s a. u(t) = ah(t) sin(kω 0 t) Übung 9 /Grundgebiete der Elektrotechnik 3 WS7/8 Laplace-Transformation Dr. Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Im Folgenden wird die

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Lösung zur Modulklausur SS 201 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt

Mehr

Lineare Differenzen- und Differenzialgleichungen

Lineare Differenzen- und Differenzialgleichungen Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen

Mehr

Kleine Formelsammlung zu Signale und Systeme 2

Kleine Formelsammlung zu Signale und Systeme 2 Kleine Formelsammlung zu Signale und Systeme 2 Florian Franzmann 6. März 2006 Inhaltsverzeichnis Elementare Grundlagen 3. Lösungsformel für quadratische Gleichungen................. 3.2 Definition einiger

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 10: Gewöhnliche Differentialgleichungen Prof. Dr. Erich Walter Farkas Mathematik I+II, 10. Diff. Gl. 1 / 59 1 Differentialgleichungen

Mehr

Fourier- und Laplace-Transformation. Material zur Vorlesung Grundgebiete der Elektrotechnik 3

Fourier- und Laplace-Transformation. Material zur Vorlesung Grundgebiete der Elektrotechnik 3 Fourier- und Laplace-Transformation Material zur Vorlesung Grundgebiete der Elektrotechnik 3 Dr. Alexander Schaum Vertretungsprofessur für vernetzte elektronische Systeme Christian-Albrechts-Universität

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 31. Oktober 2016 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

Integralrechnung. integral12.pdf, Seite 1

Integralrechnung. integral12.pdf, Seite 1 Integralrechnung Beispiel Zusammenhang WegGeschwindigkeit: Ist F (t) der zur Zeit t zurückgelegte Weg und v(t) die Geschwindigkeit, so ist v(t) = F (t) Geometrisch: Steigung der Tangente an der Kurve y

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Formelsammlung Elektrotechnik von Sascha Spors V1.3 /

Formelsammlung Elektrotechnik von Sascha Spors V1.3 / Formelsammlung Elektrotechnik von Sascha Spors V.3 /..96 Mathematische Formeln : arctan( b a Z a + jb Y arg(z ; arctan( b a arctan( b < a für a >, b +π für a π für a

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Musterlösung Serie 2

Musterlösung Serie 2 D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen

Mehr

Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung

Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung Grundlagen der Nachrichtentechnik I. Kontinuierliche Signale u. Systeme. Fouriertransformation. Tiefpass-Darstellung v. Bandpass-Signalen 3. Eigenschaften v. Übertragungskanälen III. Diskretisierung v.

Mehr

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 0./.08.008 Kurseinheit 5: Die Wärmeleitungsgleichung Aufgabe : Gegeben ist das Anfangswertproblem

Mehr

Datenanalyse in der Physik. Übung 1. Übungen zu C und MAPLE

Datenanalyse in der Physik. Übung 1. Übungen zu C und MAPLE Datenanalyse in der Physik Übung 1 Übungen zu C und MAPLE Prof. J. Mnich joachim.mnich@desy.de DESY und Universität Hamburg Datenanalyse in der Physik Übung 1 p. 1 Bemerkungen zu den Übungen Schulungsaccounts

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Fouriertransformation und Unschärfeprinzip

Fouriertransformation und Unschärfeprinzip Information, Codierung, Komplexität 2 SS 2007 24. April 2007 Das berühmte von Heisenberg in der Quantentheorie beruht, rein mathematisch betrachtet, auf einer grundlegenden Eigenschaft der der Dichtefunktionen

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

Vorlesung Mathematik 1 für Ingenieure (A)

Vorlesung Mathematik 1 für Ingenieure (A) 1 Vorlesung Mathematik 1 für Ingenieure (A) Wintersemester 2016/17 Kapitel 1: Zahlen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg http://fma2.math.uni-magdeburg.de:8001

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

13. WEITERE INTEGRATIONSMETHODEN

13. WEITERE INTEGRATIONSMETHODEN 06 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

TET - Formelsammlung

TET - Formelsammlung TET - Formelsammlung Matthias Jung 30. August 2008 1 Dierentialgleichungen Characterisierung von DGLn: Linear: y(t) sowie ẏ(t), ÿ(t)... kommen nur in der 1. Potenz vor Gewöhnlich: y(t) hängt nur von einer

Mehr

A Mathematischer Anhang

A Mathematischer Anhang A Mathematischer Anhang A. Spezielle Funktionen In diesem Abschnitt des Anhanges sollen die speziellen Funktionen, vorwiegend ihr funktionaler Verlauf und ihre Eigenschaften zusammengestellt werden, die

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Herbst Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom. Prof. Dr. Erich Walter Farkas

Herbst Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom. Prof. Dr. Erich Walter Farkas Herbst 213 Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom 5.3 Lösung von Prof. Dr. Erich Walter Farkas ETH Zürich Kapitel 5. Partielle Differentialgleichungen

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

3.1 Rationale Funktionen

3.1 Rationale Funktionen 3.1 Rationale Funktionen EineFunktionf : R R der Formx P(x) Q(x) mit Polynomen P(x), Q(x) heißt rationale Funktion. Der maximale Definitionsbereich von f = P(x) Q(x) Sei x 0 R mit Q(x 0 ) = 0. Ferner sei

Mehr

Dezimalzahlen. Analysis 1

Dezimalzahlen. Analysis 1 Dezimalzahlen Definition. Eine endliche Dezimalzahl besteht aus - einem Vorzeichen +,, oder 0 - einer natürlichen Zahl d 0 - einer endlichen Folge von Ziffern d 1,...,d l von 0 bis 9. Die Länge l kann

Mehr

3. LTI-Systeme im Zeitbereich

3. LTI-Systeme im Zeitbereich SigSys I Zusammenfassung Andreas Biri, D-IE 12.01.14 1. Einteilung der Signale Zeit kontinuierlich diskret Amplitude Kontinuier lich diskret Zeit- & amplitudendiskret -> digital 2. Systemeigenschaften

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2

Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Leibniz Universität Hannover Institut für Kommunikationstechnik Prof. Dr. J. Peissig Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Universität Hannover, Institut für Kommunikationstechnik,

Mehr

Differenzialgleichungen

Differenzialgleichungen Differenzialgleichungen Fakultät Grundlagen Februar 2016 Fakultät Grundlagen Differenzialgleichungen Übersicht Definitionen, Beispiele 1 Definitionen, Beispiele 2 Geometrische Deutung Numerik Einfache

Mehr

Vorkurs Physik Prof. Dr. G. Münster Westfälische Wilhelms-Universität Münster Fachbereich Physik. 1 Trigonometrie 3. 2 Vektoren in der Physik 4

Vorkurs Physik Prof. Dr. G. Münster Westfälische Wilhelms-Universität Münster Fachbereich Physik. 1 Trigonometrie 3. 2 Vektoren in der Physik 4 Vorkurs Physik 2009 Prof. Dr. G. Münster Westfälische Wilhelms-Universität Münster Fachbereich Physik Inhaltsverzeichnis 1 Trigonometrie 3 2 Vektoren in der Physik 4 2.1 Grundlagen...................................

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=

BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1= BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen

Mehr

Approximation von Funktionen

Approximation von Funktionen von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

3.2 Die Fouriertransformierte

3.2 Die Fouriertransformierte 5 3.2 Die Fouriertransformierte Eine Funktion f : R C heißt absolut integrabel, falls sie stückweise stetig und fx dx < ist. Definition: Sei f : R C absolut integrabel. Dann bezeichnen wir die durch fω

Mehr

Block I: Integration und Taylorentwicklung in 1D

Block I: Integration und Taylorentwicklung in 1D Wiederholungsübungen zur Ingenieur-Mathematik III WS 5/6 Blatt 3..6 Block I: Integration und Taylorentwicklung in D Aufgabe : Berechnen Sie die Integrale: a) π sin x cos x dx b) ( x) +x dx c) x e x dx

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Mathematische Grundlagen für das Physik-Praktikum:

Mathematische Grundlagen für das Physik-Praktikum: Mathematische Grundlagen für das Physik-Praktikum: Grundwissen: Bruchrechnung Potenzen Logarithmen Funktionen und ihre Darstellungen: Lineare Funktionen Proportionen Exponentialfunktion Potenzfunktionen

Mehr

2.3 Elementare Funktionen

2.3 Elementare Funktionen .3 Elementare Funktionen Trigonometrische Funktionen (Winkelfunktionen) Vorbemerkung. Wir definieren die Winkelfunktionen bezogen auf die Bogenlänge x auf dem Einheitskreis, d.h. für x [0,π]. Alternativ

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Wintersemester 204/205 Signale und Systeme II Übungsaufgaben Übung Datum Themen Aufgaben

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Modulklausur WS 2016/2017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Blatt 11.4: Deltafunktion und Fourierreihen

Blatt 11.4: Deltafunktion und Fourierreihen Faultät für Physi R: Rechenmethoden für Physier, WiSe 215/16 Dozent: Jan von Delft Übungen: Benedit Bruognolo, Dennis Schimmel, Fraue Schwarz, uas Weidinger http://homepages.physi.uni-muenchen.de/~vondelft/ehre/15r/

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

1 Funktionen und ihre Ableitungen

1 Funktionen und ihre Ableitungen 1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

Korrespondenzen der FOURIER - Transformation I

Korrespondenzen der FOURIER - Transformation I Korresodee der FOURIER - rsormio I A: HEOREME s() S() F-rsormio s () jπ S( ) = s e d Iverse F- jπ rsormio s () = S e d S( ) 3 Zerlegug reeller Zeiukioe mi s () = s() + s() S( ) = Re{ S( )} + jim{ S( )}

Mehr

Alexander Riegel.

Alexander Riegel. Alexander Riegel riegel@uni-bonn.de 2 9 10 Ordinatenachse ( y-achse ) f x Gerade Ordinatenabschnitt f x = 0 Ursprungsgerade Nullstelle f x = x 0 = 0 0 Ursprung (0 0) Abszissenachse ( x-achse ) x f(x 1

Mehr

11 Fourier-Analysis Grundlegende Begriffe

11 Fourier-Analysis Grundlegende Begriffe 11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung

Mehr

1 Fourier-Reihen und Fourier-Transformation

1 Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011 Zufällige stabile Prozesse und stabile stochastische Integrale Stochastikseminar, Dezember 2011 2 Stabile Prozesse Dezember 2011 Stabile stochastische Prozesse - Definition Stabile Integrale α-stabile

Mehr