Signale und Systeme I
|
|
|
- Daniela Meyer
- vor 8 Jahren
- Abrufe
Transkript
1 TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 2017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum: Name: Matrikelnummer: Erklärung der Kandidatin/des Kandidaten vor Beginn der Prüfung Hiermit bestätige ich, dass ich zur Prüfung angemeldet und zugelassen bin und dass ich prüfungsfähig bin. Ich nehme zur Kenntnis, dass der Termin für die Klausureinsicht vom Prüfungsamt ET&IT bekannt gegeben wird, sobald mein vorläufiges Prüfungsergebnis im QIS-Portal veröffentlicht wurde. Nach dem Einsichtnahmetermin kann ich meine endgültige Note im QIS-Portal abfragen. Bis zum Ende der Widerspruchsfrist des zweiten Prüfungszeitraums der CAU kann ich beim Prüfungsausschuss Widerspruch gegen dieses Prüfungsverfahren einlegen. Danach wird meine Note rechtskräftig. Korrektur Unterschrift: Aufgabe Punkte /34 /34 /32 Summe der Punkte: /100 Einsicht/Rückgabe Hiermit bestätige ich, dass ich die Korrektur der Klausur eingesehen habe und mit der auf diesem Deckblatt vermerkten Bewertung einverstanden bin. Die Klausurunterlagen verbleiben bei mir. Ein späterer Einspruch gegen die Korrektur und Benotung ist nicht mehr möglich. Kiel, den Unterschrift: Digitale Signalverarbeitung und Systemtheorie, Prof. Dr.-Ing. Gerhard Schmidt, Signale und Systeme I
2 Signale und Systeme I Modulklausur SS 2017 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum: Zeit: 9:00 h 10:30 h (90 Minuten) Ort: CAP2 - Frederik-Paulsen-Hörsaal + H Hinweise Schreiben Sie auf jedes abzugebende Blatt deutlich Ihren Namen und Ihre Matrikelnummer. Legen Sie Ihren Studentenausweis und Personalausweis zur Überprüfung bereit. Die Aufgaben dürfen erst bearbeitet werden, wenn alle Teilnehmer die Aufgabenstellungen erhalten haben. Während der Klausur werden nur Fragen zur Aufgabenstellung beantwortet. Verwenden Sie bitte für jede Aufgabe einen neuen mit Namen und Matrikelnummer versehenen Papierbogen. Zusätzliches Papier erhalten Sie auf Anfrage. Lösungswege müssen zur Vergabe der vollen Punktzahl immer nachvollziehbar und mit Begründung versehen sein. Sind Funktionen zu skizzieren, müssen grundsätzlich alle Achsen beschriftet werden. Verwenden Sie zum Schreiben weder Bleistift noch Rotstift. Beachten Sie, dass die Punkteverteilung in den Teilaufgaben nur vorläufig ist! Fünf Minuten und eine Minute vor Klausurende werden Ankündigungen gemacht. Wird das Ende der Bearbeitungszeit angesagt, darf nicht mehr geschrieben werden. Legen Sie am Ende der Klausur alle Lösungsbögen ineinander (so, wie sie ausgeteilt wurden) und geben Sie auch die Aufgabenblätter mit ab. Bevor alle Klausuren eingesammelt sind, darf weder der Sitzplatz verlassen noch geredet werden. Alle Hilfsmittel außer die Kommunikation mit anderen Personen sind erlaubt. Mobiltelefone sind auszuschalten. Laptops, Tablets und ähnliche Geräte sind nicht erlaubt, da sie als Kommunikationsmittel tauglich sind. Die Aufgaben und eine Lösung werden auf der Homepage der Vorlesung veröffentlicht. Dort werden ebenso Termin und Ort der Klausureinsicht bekanntgegeben. Signale und Systeme I II
3 Aufgabe 1 (34 Punkte) Aufgabe 1 (34 Punkte) Gegeben ist das zeitkontinuierliche, periodische Signal v 1 (t) = v 1 (t + λ T 1 ), λ Z durch: ( ) 1 v 1 (t) = sin 3 4 ω 0t, ω 0 R, T 0 = 2π. ω 0 (a) Welche Aussagen können Sie über das Spektrum V 1 (jω) = F{v 1 (t)} bezüglich Sym- (4 P) metrien von Real- und Imaginärteil machen? Begründen Sie Ihre Antwort kurz (keine Rechnung erforderlich). (b) Bestimmen Sie das Spektrum V 1 (jω) und skizzieren Sie V 1 (jω) mit allen Achsen- (6 P) beschriftungen. (c) Bestimmen Sie die minimale Periodendauer T 1 von v 1 (t). (6 P) Das Signal v 1 (t) wird nun mit der Abtastfrequenz f A = 1 T A mit T A = T 1 α abgetastet, sodass gilt v(n) = v 1 (n T A ). (d) Geben Sie die Definition des Abtasttheorems an. (3 P) (e) Bestimmen Sie den Wertebereich für α, für den das Abtasttheorem erfüllt ist. (6 P) (f) Bestimmen Sie für alle α die Zeitdiskrete Fourier-Transformation V (α) (e jω) des Si- (4 P) gnals v(n) = v 1 (n T A ). (g) Skizzieren Sie V (α) (e jω) für α = 8 und α = 4 im Intervall Ω [ 2π, 2π]. Was fällt (5 P) Ihnen dabei auf? Welches aus der Signalverarbeitung bekannte Phänomen können Sie beobachten? Hinweis: sin 3 (x) = 1 ( ) 3 sin(x) sin(3x) 4 Signale und Systeme I 1
4 Aufgabe 2 (34 Punkte) Aufgabe 2 (34 Punkte) Gegeben sind zwei Folgen 1, n = 0 2, n = 1 v 1 (n) = 3, n = 2, 1, n = 3 0, sonst 1, n = 0 2, n = 1 v 2 (n) =. 1, n = 2 0, sonst (a) Skizzieren Sie die Folgen v 1 (n) und v 2 (n) mit allen Achsenbeschriftungen für (2 P) n {0, 1,..., 4}. (b) Berechnen Sie die lineare Faltung v a (n) = v 1 (n) v 2 (n) der Folgen v 1 (n) und v 2 (n) (4 P) für n {0, 1,..., 5}. (c) Berechnen Sie die zyklische Faltung v b (n) = v 1 (n) v 2 (n) der Länge 4 der Folgen (4 P) v 1 (n) und v 2 (n) für n {0, 1,..., 3}. (d) Berechnen Sie die diskrete Fourier-Transformation V 1,M (µ) der Folge v 1 (n) für (6 P) M = 4 und µ {0, 1,..., 3}. (e) Berechnen Sie die diskrete Fourier-Transformation V 2,M (µ) der Folge v 2 (n) für (6 P) M = 4 und µ {0, 1,..., 3}. (f) Berechnen Sie die diskrete Fourier-Transformation V b,m (µ) der Folge v b (n) für (6 P) M = 4 und µ {0, 1,..., 3}. (g) Berechnen Sie das Produkt V 4 (µ) = V 1,4 (µ) V 2,4 (µ). Was fällt Ihnen im Zusammen- (2 P) hang mit v b (n) auf? Welche Beziehung lässt sich daraus ableiten? (h) Zeigen Sie, dass die nachfolgende Beziehung für λ Z richtig ist: (4 P) V M (µ + λm) = V M (µ). Signale und Systeme I 2
5 Aufgabe 3 (32 Punkte) Aufgabe 3 (32 Punkte) Teil 1 Dieser Aufgabenteil kann unabhängig von Teil 2 gelöst werden. Gegeben sei nachfolgendes Pol-Nullstellen-Diagramm der Übertragungsfunktion H 1 (s) 1 jω s,0 s 0,3 0, 5 s,1 s 0,0 s 0,1 s 0,2 1 0, 5 0, 5 1 σ 0, 5 s,2 1 Abbildung 1: Pol-Nullstellen-Diagramm (a) Ergänzen Sie eine minimale Anzahl von zusätzlichen Pol- und Nullstellen, damit (4 P) das System H 1 (s) reelwertig wird. (b) Geben Sie die Übertragungsfunktion H 1 (s) inkl. der zusätzlichen Pol- und Nullstel- (3 P) len an. (c) Welche Bedingungen müssen erfüllt sein, damit ein kontinuierliches System stabil ist? (2 P) (d) Das System H 1 (s) soll nun mit einem zweitem System H 2 (s) zusammengeschaltet (7 P) werden, sodass gilt H(s) = H 1 (s) H 2 (s). Entwerfen Sie ein System H 2 (s), sodass H(s) alle Kriterien für Stabilität erfüllt. Hinweis: Es existieren mehrere korrekte Lösungen. Es ist ausreichend, wenn Sie eine angeben. Signale und Systeme I 3
6 Aufgabe 3 (32 Punkte) Teil 2 Dieser Aufgabenteil kann unabhängig von Teil 1 gelöst werden. Nun werde ein diskretes System H d (z) betrachtet. H d (z) = z3 z 2 0, 25z + 0, 25 z 2 (e) Zeichen Sie das zugehörige Pol- Nullstellen-Diagramm für H d (z). (5 P) (f) Geben sie die Differenzengleichung des Systems H d (z) an. (5 P) (g) Ist das System kausal? Begründen Sie Ihre Antwort! (2 P) (h) Wie hätten Sie die vorherige Frage bereits bei der Betrachtung der Übertragungs- (2 P) funktion H d (z) beantworten können? (i) Ist das System rekursiv? Begründen Sie Ihre Antwort! (2 P) Signale und Systeme I 4
Signale und Systeme I
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Modulklausur SS 07 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:
Signale und Systeme II
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Modulklausur SS 2016 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt Datum:
Signale und Systeme I
FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard
Deckblatt zu einer Klausur am Institut für Elektrotechnik und Informationstechnik
Deckblatt zu einer Klausur am Institut für Elektrotechnik und Informationstechnik Modulprüfung Modulname Grundgebiete der Elektrotechnik I Datum 26.02.2019 Prüfpersonen 1. Prüfperson Prof. Dr. Martina
Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:
Deckblatt zu einer Klausur am Institut für Elektrotechnik und Informationstechnik
Deckblatt zu einer Klausur am Institut für Elektrotechnik und Informationstechnik Modulprüfung Modulname Grundgebiete der Elektrotechnik I Datum 29.02.2016 Prüfpersonen 1. Prüfperson Prof. Dr. Martina
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00
Prüfungsklausur Digitale Signalverarbeitung Ergebnis der Klausur
Fakultät für Mathematik und Informatik Elektronische Schaltungen 58084 Hagen 02331 987 1166 Prüfungsklausur Digitale Signalverarbeitung 21411 Datum: 19. März 2011 (Bearbeitungszeit 120 Minuten, 6 Blätter)
Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora -
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister... Matr.Nr:.......................... Erasmus
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00
Klausur zu Signal- und Systemtheorie I 20. Januar 2015
Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Klausur zu Signal- und Systemtheorie I 20. Januar 2015 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel
Klausur zur Vorlesung Signale u. Systeme I
Name: 8. Februar 2001, 11.30-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 90 min, 1.5 Zeitstunden Skript, Vorlesungsmitschrift, Formelsammlung Schreiben Sie bitte auf dieses
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications
MusterModulprüfung. Anteil Transformationen
MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation
Was sie für die Klausur brauchen: nicht radierbarer Stift, z.b. Kugelschreiber amtlicher Ausweis mit Lichtbild, Studierendenausweis
Die Aufgaben der folgenden Probeklausur sind auf den Inhalt der Vorlesung bis zum 16. 1. 2015 beschränkt. Die Aufgaben der Klausuren werden den Inhalt der gesamten Vorlesung abdecken. Was sie für die Klausur
Klausur zur Linearen Algebra I
Technische Universität Dortmund Wintersemester 2011/2012 Fakultät für Mathematik 23.03.2012 Klausur zur Linearen Algebra I Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen: Prüfen Sie
Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil
Prof. Dr. Guido Schneider Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen el, kyb, mecha, phys, tpel Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer
Klausur zum Fach Höhere Mathematik 2 für Informatik Teil 1
(Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 16.03.2016 Klausur zum Fach Höhere Mathematik 2 für Informatik Teil 1 Bearbeitungszeit: 90 Minuten
Klausur zu Signal- und Systemtheorie I 26. Januar 2016
Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Klausur zu Signal- und Systemtheorie I 26. Januar 2016 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel
Signale und Systeme I
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische
für Studierende der Fachrichtungen el, kyb, phys, mech
Fachbereich Mathematik Universität Stuttgart Prof. Dr. M. Griesemer Höhere Mathematik III 07.09.200 Prüfung (Nachtermin) für Studierende der Fachrichtungen el, kyb, phys, mech Vorname: Matrikelnummer:
Klausur zur Vorlesung Höhere Mathematik I
Name: 30. Januar 200,.00-3.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 20 min, 2 Zeitstunden Skript, Vorlesungsmitschrift Schreiben Sie bitte auf dieses Deckblatt oben rechts
Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:
Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET
Signale und Systeme II
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Lösung zur Modulklausur SS 201 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt
Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker
Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und
Klausur zu Signal- und Systemtheorie I 5. August 2015
Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Klausur zu Signal- und Systemtheorie I 5. August 2015 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel
Aufgabe: Summe Punkte (max.): Punkte:
ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications
Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008
Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)
Musterklausur 2 zu Signal- und Systemtheorie I 5. Januar 2013
Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Musterklausur 2 zu Signal- und Systemtheorie I 5. Januar 2013 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel
Grundlagen der Statistischen Nachrichtentheorie
- Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der Veröffentlichung des Klausurergebnisses unter meiner
Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium
Technische Universität Dortmund Sommersemester 2012 Fakultät für Mathematik 23.07.2012 Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:
Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.
442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name
Modulklausur Konstruktion und Analyse ökonomischer Modelle
Konstruktion und Analyse ökonomischer Modelle, 31.03.2017 Aufgabenheft Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 31.03.2017 Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau
Klausur zur Vorlesung Höhere Mathematik II
Name: 9. Juli 2001, 11.00-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift(en), Formelsammlung Schreiben Sie bitte auf dieses Deckblatt
Grundlagen der Statistischen Nachrichtentheorie
- Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der Veröffentlichung des Klausurergebnisses unter meiner
Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016
4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Standardregelkreis
Höhere Mathematik I. Variante A
Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite
Technische Universität Clausthal
Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.
Nachklausur Analysis I
SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung
Übungen zu Signal- und Systemtheorie
Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.
Aufgabe 1: Kontinuierliche und diskrete Signale
ufgabe (5 Punkte) ufgabe : Kontinuierliche und diskrete Signale. Zeichnen Sie jeweils den geraden und den ungeraden nteil des Signals in bb..!. Sind Sie folgenden Signale periodisch? Falls ja, bestimmen
Klausur zum Fach Mathematik 1 Teil 1
(Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 4.09.205 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)
Diskrete Strukturen Abschlussklausur
Modul BSInf-132/10 RWTH Aachen, WS 2015/16 26.02.2016 Diskrete Strukturen Abschlussklausur Name: Matrikelnummer: Bitte beachten Sie die auf der Rückseite dieses Blattes angegebenen Regeln und Hinweise.
Grundlagen der Statistischen Nachrichtentheorie
Grundlagen der Statistischen Nachrichtentheorie - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der
Klausur Elektronische Schaltungen I/II
"!$#%&!'(%&!*)*+-,/.102'34&. Elektronische Schaltungen Univ.Prof. Dr. Ing. H. Wupper Klausur Elektronische Schaltungen I/II Datum: 15. März 1997 Hinweise zur Klausur 1. Für die Bearbeitung der Aufgaben
Modulklausur Konstruktion und Analyse ökonomischer Modelle
Konstruktion und Analyse ökonomischer Modelle, 02.09.2015 Aufgabenheft Modulklausur Konstruktion und Analyse ökonomischer Modelle Termin: 02.09.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser
Klausur»Elektronische Schaltungen I/II« Ergebnis der Klausur
Univ. Prof. Dr. Ing. H. Wupper Prüfungs Nr. 2063, 2151 Klausur»Elektronische Schaltungen I/II«Datum: 2011 Name........................................... Vorname...........................................
Lehrstuhl II für Mathematik
Matrikelnummer: RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin:
Klausur zur Vorlesung Informationstheorie
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 0167 Hannover Klausur zur Vorlesung Informationstheorie Datum:.02.2006 Uhrzeit: 9:00 Uhr Zeitdauer: 2 Stunden Hilfsmittel: ausgeteilte
Mathematische Grundlagen II (CES) WS 2015/2016 Klausur am Informationen zur Klausur
Prof. Dr. Mike Espig Prof. Dr. Manuel Torrilhon Klausur: Bearbeitungszeit: Erlaubte Hilfsmittel: Mathematische Grundlagen II (CES) WS 2015/2016 Klausur am 18.03.2016 Informationen zur Klausur 18.03.2016,
Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen I (CES) WS 2017 Klausur
Professor Dr. Benjamin Berkels Professurvertreter Dr. Jan Giesselmann Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen I (CES) WS 2017 Klausur 15.03.2018
Prüfungsklausur. Grundlagen der Regelungstechnik I, II (PNR 2155) am von 10:00 12:00 Uhr
Prüfungsklausur Grundlagen der Regelungstechnik I, II am 02.09.2017 von 10:00 12:00 Uhr Aufgabe 1 2 3 4 Summe Erreichbare Punkte 30 30 30 10 100 Erreichte Punktzahl Wichtig: Bitte beachten Sie! 1. Bitte
Technische Universität Clausthal
Technische Universität Clausthal Klausur im Sommersemester 2012 Grundlagen der Elektrotechnik I Datum: 17. September 2012 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.
Klausur zum Fach Mathematik 1 Teil 1
(Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 06.07.202 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)
Erste Teilklausur :00 bis 11:30
FU Berlin: WiSe 16/17 (Mathematik II, Weber) Erste Teilklausur 28.03.2017 10:00 bis 11:30 Allgemeine Hinweise zur Klausur: 1. Die Bearbeitungszeit beträgt 90 Minuten. 2. Bitte trennen Sie die Lösungsblätter
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)
................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik
Grundlagen der Nachrichtentechnik
Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.
Klausur zur Vorlesung Informationstheorie
INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 07 Hannover Klausur zur Vorlesung Informationstheorie Datum: 0.0.00 Uhrzeit: 09:00 Uhr Zeitdauer:
Regelungstechnik I (WS 12/13) Klausur ( )
Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den
6. Sie haben die Klausur bestanden, wenn Sie mindestens 30 Punkte erreicht haben. Aufgabe bearbeitet:(bitte ankreuzen)
Matrikelnummer (unbedingt eintragen) FAKULTÄT für Mathematik und Informatik Postanschrift: FernUniversität in Hagen, 58084 Hagen NAME: Vorname: Straße, Nr.: Klausurort:... bitte eintragen PLZ, Wohnort:
Fachprüfung. Signal- und Systemtheorie
Fachprüfung Signal- und Systemtheorie 15. September 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Formelblatt (2 DIN A4-Seiten) Name: Vorname: Matr.-Nr.: Unterschrift:
Klausur zum Fach Mathematik 1 Teil 1
(Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 4.03.206 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)
Viel Erfolg! Prof. Große, Dr. Jüngel BA WS 15/16 Mathe+Statistik Klausur Jena, den Matrikelnummer. Name (lesbar!
Prof. Große, Dr. Jüngel BA WS 15/16 Mathe+Statistik Klausur Jena, den 12.2.2016 Matrikelnummer Name lesbar! Unterschrift Hinweise Jedes abgegebene Blatt ist lesbar mit dem Namen und der Matrikelnummer
Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover
Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 205 (Sommersemester) Allgemeine Informationen: Der deutschsprachige
