Runde 9, Beispiel 57
|
|
|
- Katrin Kästner
- vor 7 Jahren
- Abrufe
Transkript
1 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische Fortsetzung des Vektors x C N sowie ω = e πi/n. Zeigen Sie, daß die sogenannte periodische Faltung gilt: y z := ( N Lösung des Beispiels t= DFT {}}{ y z k ) k (c k d k ) k Gegeben seien die periodischen Folgen x [n] und x [n] mit der Periodendauen N. Ihre diskreten Fouriertransformierten (DFT) sind gegeben durch: X (k) = N X (k) = N m= r= x [m]w mk N x [r]w rk N Wir definieren eine neue Folge x 3 [n], die sich wie folgt bildet: x 3 [n] ergibt sich durch die IDFT X 3 (k) = X (k) X (k) x 3 [n] = IDFT{ X 3 (k)} x 3 [... X (k) X (k)w nk N Durch Einsetzen der ersten beiden Gleichungen und Umordnen der Summen ergibt sich: x 3 [n] = N m= x [m] r= x [r] W (n m r)k N Der letzte Term läßt sich wie folgt auswerten: { e jπk(n m r)/n N, r = m m + p N, p Z =, sonst
2 Mit p als ganzer Zahl vereinfacht sich Gleichung 8. zu: x 3 [n] = = m= m= x [m] x [n m + p N] x [m] x [n m] Dieser Ausdruck ergibt sich durch die Periodizität von x [n]. Bis auf die Summationsgrenzen, die hier nur über eine Periode laufen, ist er identisch mit der Faltungssumme. x 3 [n] ist selber auch periodisch. Gleichung 8. wird daher als periodische Faltung bezeichnet.
3 Runde 9, Beispiel 58 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, TU Wien, 8..7 Angabe Man berechne die Spektralkoeffzienten des N-periodischen diskreten Rechteckimpulses (x k ) k mit > x = x = und x j = für j =,,..., N. Theoretische Grundlagen: Spektraldarstellung der Fourier-Reihe f(x) = s(x) = a d k sin(k x + ϕ k ) k= a k d k k b k mit der gemeinsamen Fourier-Amplitude d k = a k + b k, ϕ k = arctan a k b k > b k Die komplexe Form der Fourier-Reihe lautet: f(x) = s(x) = c k e j k x, k= T = π Mit dem Spektrum der Funktion f(x) (komplexe Fourier-Koeffizienten bzw. Spektralkoeffizienten c k ) Beziehungen: c k = π π f(x) e j k x dx = a, wenn k = (a k j b k ), wenn k > (a k + j b k ), wenn k < a k = c k + c k, b k = k (c k c k )
4 Zeitfunktion (Elektrotechnik): x := ω t Bezugs- (Grund-) Kreisfrequenz: ω = π T Kreisfrequenz: ω k = k ω Periodemdauer: T (Linien-) Spektrum von f(x): π c k bzw. T c k Frequenzabstand zweier Spektrallinien: ω = π T mit den Fourier-Koeffizienten f(t) = s(t) = c k e i k ω t c k = T 3 Lösung des Beispiels T k= f(t) r j k ω t d t x k =. c k = N y j ω k j π N j= c = N y j ω = N j= wegen c = N y j ω j = N ( + ω () ) j= c = N y j ω j = N ( + ω () ) j=. c k = N y j ω k j = N ( + ω k () ) j=
5 Runde 9, Beispiel 59 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, TU Wien, 8..7 Angabe Man zeige, daß für die Fouriermatrix F N, gegeben durch ω ω ω F N := ω ω 4 ω () ω ω () ω () mit ω = e πi/n gilt: F N F N = N E N Dabei bezeichnet F N die konjugierte Matrix und E N die N N-Einheitsmatrix. Dabei bezeichnet F N die konjugierte Matrix und E N die N-te Einheitsmatrix. Anmerkung: Das Element in der r-ten Zeile und s-ten Spalte der Matrix F N F N berechnet sich durch Man unterscheide zwischen r = s und r s. ω k(r ) ω k(s ) Theoretische Grundlagen: Fourier-Matrix Durch Bilden von Potenzen der Einheitswurzel erhält man die Fourier-Matrix. 3 Lösung des Beispiels 3. r = s ω n = e π i n ω k (r ) ω k (r ) = ω k (r ) (r ) = ω = N
6 3. r s ω k (r ) ω k (s ) = ω k (r ) (s ) = ω k r k k s+k = ω k (r s) Dabei gilt: ω r s := z, wobei z eine von verschiedene N-te Einheitswurzel ist (z N = ). z + z N + + z + = zn z = Beweis für z N = (Moivre-Formeln,n-ten Wurzeln in C): z N = ω N (r s) = e π i N N (r s) = e π i (r s) = cos( π (r s)) + i sin( π (r s)) =
7 Runde 9, Beispiel 6 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, [email protected], TU Wien, 8..7 Angabe Berechnen Sie die Spektralfunktion von f(t) = {, < t <, sonst. Theoretische Grundlagen: Diskrete Fourier-Transformation. Die Fourier-Transformation ist eine Integraltransformation, die einer Funktion eine andere Funktion (ihre Fouriertransformierte) zuordnet. Sie ist eng mit der Laplace- Transformation verbunden. In vielen Einsatzgebieten wird sie dazu verwendet, um für zeitliche Signale (z. B. ein Sprachsignal oder einen Spannungsverlauf) das Frequenzspektrum zu berechnen (vgl. Fourieranalyse). Allgemein umfasst der Begriff Fourier-Transformation eine Reihe sehr ähnlicher Transformationen, welche Funktionen (auch endliche und unendliche Folgen sind Funktionen) in Frequenzkomponenten oder Elementarschwingungen zerlegen. Die Diskrete Fourier-Transformation oder DFT ist die Fourier-Transformation eines zeitdiskreten endlichen oder periodischen Signals und somit ein Spezialfall der Z- Transformation mit Werten auf dem Einheitskreis für z. Die DFT ist das wichtigste Werkzeug in der Praxis der digitalen Signalverarbeitung, da es schnelle Algorithmen zum Durchführen der Transformation gibt. Am bekanntesten ist die FFT (Fast Fourier Transformation), die schnelle Fourier-Transformation. Die diskrete Fourier-Transformierte â = (â,...,â ) C N eines komplexen Vektors a = (a,..., a ) C N hat die Koeffizienten â k = j= e πi jk N aj, k =,...,N. Dabei nennt man die â k auch Fourierkoeffizienten oder Fourierkomponenten. Die inverse DFT (idft) a von â C N hat die Koeffizienten a k = N j= e πi jk N âj, k =,...,N. F(ω) = + f(x)ė i ω t d t
8 3 Lösung des Beispiels Für ω gilt: F(ω) = e i ω t f(t)dt = ω i e i ω t = i ω F(ω) = i ω (e i ω Für ω = gilt: F(ω) =.
9 Runde 9, Beispiel 6 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, [email protected], TU Wien, 8..7 Angabe Berechnen Sie die Spektralfunktion von { t, < t < f(t) =, sonst. Theoretische Grundlagen: Diskrete Fourier-Transformation. Die Fourier-Transformation ist eine Integraltransformation, die einer Funktion eine andere Funktion (ihre Fouriertransformierte) zuordnet. Sie ist eng mit der Laplace- Transformation verbunden. In vielen Einsatzgebieten wird sie dazu verwendet, um für zeitliche Signale (z. B. ein Sprachsignal oder einen Spannungsverlauf) das Frequenzspektrum zu berechnen (vgl. Fourieranalyse). Allgemein umfasst der Begriff Fourier-Transformation eine Reihe sehr ähnlicher Transformationen, welche Funktionen (auch endliche und unendliche Folgen sind Funktionen) in Frequenzkomponenten oder Elementarschwingungen zerlegen. Die Diskrete Fourier-Transformation oder DFT ist die Fourier-Transformation eines zeitdiskreten endlichen oder periodischen Signals und somit ein Spezialfall der Z- Transformation mit Werten auf dem Einheitskreis für z. Die DFT ist das wichtigste Werkzeug in der Praxis der digitalen Signalverarbeitung, da es schnelle Algorithmen zum Durchführen der Transformation gibt. Am bekanntesten ist die FFT (Fast Fourier Transformation), die schnelle Fourier-Transformation. Die diskrete Fourier-Transformierte â = (â,...,â ) C N eines komplexen Vektors a = (a,..., a ) C N hat die Koeffizienten â k = j= e πi jk N aj, k =,...,N. Dabei nennt man die â k auch Fourierkoeffizienten oder Fourierkomponenten. Die inverse DFT (idft) a von â C N hat die Koeffizienten a k = N j= e πi jk N âj, k =,...,N. F(ω) = + f(x)ė i ω t d t
10 3 Lösung des Beispiels F(ω) = e i ω t t f(t)dt =... = ω 3 (e i ω (i ω + ω i) + i) zweimal partiell integrieren Für ω : F(ω) = ω 3 (e i ω (i ω + ω i) + i) Für ω = : F(ω) = 3.
11 Runde 9, Beispiel 6 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, [email protected], TU Wien, 3..7 Angabe Man zeige unter Verwendung von Bsp. 59, dass zwischen den Funktionswerten y j, j =,...,N und den Spektralkoeffzienten c k, k =,...,N folgende Beziehung gilt, die sogenannte Parsevalsche-Gleichung: Lösung des Beispiels c k = N y k ist komplex und der Betrag liefert die Länge des Vektors a+b i mit a + b. a b i ist die kojugiert Komplexe von a + b i. y i Einsetzen von y = F n c: N y k = n y k y k T N (F n c) (F n c) T = N c F n F n T }{{} N E n c T = c c T = c
12 Runde 9, Beispiel 63 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, TU Wien, 3..7 Angabe Zeigen Sie: Falls f(t) eine gerade Funktion ist, dann kann de Fouriertransformierte F(ω) von f(t) durch berechnet werden. F(ω) = f(t)cos(ωt)dt Lösung des Beispiels Wir verwenden die Defintion des Cosinus: F(ω) e iωt f(t)dt + f(t) (e iωt + e iωt )dt = cos(ωt) = e iωt + e iωt e iωt f(t)dt =... = f(t) (e iωt + e iωt )dt = f(t) (e iωt + e iωt )dt = f(t) cos(ωt)dt
Stoß Stoß elastischen Stoß plastischen Stoß
Stoß Ein Stoß in der Physik ist eine sehr kurze Wechselwirkung zwischen zwei Teilchen, Körpern oder eine Kombination daraus. Durch den Stoß ändern sich im Allgemeinen Geschwindigkeiten, Impulse und Energien
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
Diskrete und Schnelle Fourier Transformation. Patrick Arenz
Diskrete und Schnelle Fourier Transformation Patrick Arenz 7. Januar 005 1 Diskrete Fourier Transformation Dieses Kapitel erläutert einige Merkmale der Diskreten Fourier Transformation DFT), der Schnellen
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:
/5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=
f(t) = a 2 + darstellen lasst Periodische Funktionen.
7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen
Technik der Fourier-Transformation
Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +
Numerische Methoden und Algorithmen in der Physik
Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation
3.3 Das Abtasttheorem
17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann
Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004
4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge
Fourier-Reihen: Definitionen und Beispiele
Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik
Signale und Systeme Ergänzungen zu den Spektraltransformationen
Signale und Systeme Ergänzungen zu den Spektraltransformationen Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute of Electrical
Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3
Technische Beschreibung der akustischen Signalkette
Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information
Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.
Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung
Fouriertransformation
Fouriertransformation Radix2 fast fourier transform nach Cooley/Tukey 1 Inhaltsübersicht Mathematische Grundlagen: Komplexe Zahlen und Einheitswurzeln Die diskrete Fouriertransformation Der Radix2-Algorithmus
Bildverarbeitung Herbstsemester 2012. Fourier-Transformation
Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie
Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?
Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen
Komplexe Zahlen. Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge:
Komplexe Zahlen Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge: R = R R = {(a, b) a, b R} heißen komplexe Zahlen wenn für die Verknüpfung
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung
34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle
Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung
28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen
(Fast) Fourier Transformation und ihre Anwendungen
(Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation
4. Übung für Übungsgruppen Musterlösung
Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, FB Informatik der Universität Hamburg). Übung für Übungsgruppen Musterlösung (N. Stein, Institut für Angewandte Physik,
8 Laplace-Transformation
8 Laplace-Transformation Ausgangspunkt: Die Heaviside-Funktion für t < u(t) = 1 für t besitzt keine Fourier-Transformation. Denn: Formal bekommt man das unbestimmte Integral ^u(ω) = e iωτ dτ = 1 iω das
Grundlagen der Physik 2 Schwingungen und Wärmelehre
(c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel
April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil
April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten
Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)
Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag
Zusammenfassung der 1. Vorlesung
Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem
Signale und Systeme I
FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard
Fourier-Reihe und -Spektrum
SiSy, Fourier-Reihen / Fourier-Reihe und -Spektrum Fourier-Darstellung periodischer Funktionen. Einleitung In vielen technischen Anwendungen sind die zeitlichen Verläufe von Signalen wie z.b. Spannung
Argumente für die diskrete Realisierung der Fourierintegrale
Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich
Vom Zeit- zum Spektralbereich: Fourier-Analyse
Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden
1. Fourierreihe und Fouriertransformation
. Fourierreihe und Fouriertransformation. Motivation Die Fourieranalyse hat in der Quantenmechanik mehrere wichtige Anwendungen. a Basistransformation: Durch Fouriertransformation kann man zwischen Ortsraum
Allgemeine Beschreibung (1)
Allgemeine Beschreibung (1) Jede periodische Funktion x(t) kann in allen Bereichen, in denen sie stetig ist oder nur endlich viele Sprungstellen aufweist, in eine trigonometrische Reihe entwickelt werden,
Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16
Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).
Formelanhang Mathematik II
Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)
Diskrete Fourier-Transformation
Universität Koblenz-Landau Institut für integrierte Naturwissenschaften Abteilung Physik Dozent: Dr. Merten Joost Seminar Digitale Signalverarbeitumg im Sommersemester 2005 Diskrete Fourier-Transformation
Die Taylorreihe einer Funktion
Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist
Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)
Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...
Einführung in die Signalverarbeitung
Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung
Lösungsvorschläge zum 14. Übungsblatt.
Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine
Signale und Systeme. A1 A2 A3 Summe
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?
Aufgaben zu Kapitel 5
Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5
2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte
Hochschule Merseburg (FH) FB INW Praktikum Virtuelle Instrumentierung 2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte National Instruments DAQ-Karte National
Laplace-Transformation
Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:
Fourier- und Laplace- Transformation
Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)
Longitudinale und transversale Relaxationszeit
Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T
Fourier-Zerlegung, Fourier-Synthese
Fourier-Zerlegung, Fourier-Synthese Periodische Funktionen wiederholen sich nach einer Zeit T, der Periode. Eine periodische Funktion f(t) mit der Periode T genügt der Beziehung: f( t+ n T) = f( t) für
Signale und ihre Spektren
Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden
3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten
Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C
Computergrafik 2: Fourier-Transformation
Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz [email protected] MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen
Anharmonische Schwingungen / Gekoppelte Pendel
Anharmonische Schwingungen / Gekoppelte Pendel Die Charakterisierung periodischer Vorgänge mit Hilfe der Fourieranalyse wird am Beispiel eines physikalischen Pendels, zweier gekoppelten Pendel sowie elektrischer
Seminar Digitale Signalverarbeitung
Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer
Biosignalverarbeitung (Schuster)
Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,
Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):
Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe
Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder
Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass
Laplacetransformation
Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele
Mathematik II für Inf und WInf
Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell
SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.
SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E3 WS 0/ Übunen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzi, Dr. Volker Körstens, David Maerl, Markus Schindler, Moritz v. Sivers Vorlesun 0..0, Übunswoche
Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung
Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust
Elektrotechnik-Grundlagen Teil 2 Messtechnik
Version 1.0 2005 Christoph Neuß Inhalt 1. ZIEL DER VORLESUNG...3 2. ALLGEMEINE HINWEISE ZU MESSAUFBAUTEN...3 3. MESSUNG ELEMENTARER GRÖßEN...3 3.1 GLEICHSTROMMESSUNG...3 3.2 WECHSELSTROMMESSUNG...4 4.
Aufgaben zu Kapitel 30
Aufgaben zu Kapitel 3 1 Aufgaben zu Kapitel 3 Verständnisfragen Aufgabe 3.1 Gegeben ist die Funktion { x,
Modulformen, Teil 1. 1 Schwach modulare Funktionen
Vortrag zum Seminar zur Funktionentheorie, 3.3.2 Robin Blöhm Dieser Vortrag führt uns zur Definition von Modulformen. Gemeinsam mit einem ersten Beispiel, den bereits bekannten Eisenstein-Reihen, ist sie
6 Komplexe Integration
6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise
Die Fourier-Transformation
1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden
Numerisches Programmieren, Übungen
Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus
Trignonometrische Funktionen 6a
Schuljahr 2015/16 [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )
Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.
Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ
Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten
Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische
1 Fouriersynthese und Fourieranalyse
Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der
Filtern, JPEG, MP3. Fourier-Analyse JPEG MP3. Filtern - Wavelet
Filtern, JPEG, MP3 Fourier-Analyse JPEG MP3 Filtern - Waelet Filtern Ausgangspunkt: Gegebenes Signal soll -erändert werden (Hifi, Weichzeichner, ) -analysiert werden (EKG Herztöne, ) -komprimiert werden
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-
Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist
cos(kx) sin(nx)dx =?
3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung
Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen
4.4. Rang und Inversion einer Matrix
44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert
Fourier-Spektroskopie. Vortrag am 22.07.03 Elektrische und optische Sensoren
Fourier-Spektroskopie Vortrag am 22.07.03 Elektrische und optische Sensoren Inhaltsverzeichnis 1. Einführung 2. Benötigte Grundlagen der Optik 3. Das Michelson-Interferometer 4. Probleme der Realisierung
STETIGE VERTEILUNGEN
STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung
Grundlagen der Schwingungslehre
Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen
Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.
Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Lösungsblatt 2 Signalverarbeitung und Klassifikation
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber ([email protected]) S. Nguyen ([email protected]) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung
konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in
C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich
Kapitel 6. Exponentialfunktion
Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.
Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.
Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu
7 Fourier-Transformation
7 Fourier-Transformation Ausgangspunkt: Die bereits bekannte Fourier-Reihenentwicklung einer T-periodischen, stückweise stetig differenzierbaren Funktion f T : R R, f T (t) = k= γ k e ikωt mit Frequenz
WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B
Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und
Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 +
Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 4 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 2 Punkte Sebastian Zanker, Daniel Mendler
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
Systemtheorie Teil B
d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...
