Biosignalverarbeitung (Schuster)

Größe: px
Ab Seite anzeigen:

Download "Biosignalverarbeitung (Schuster)"

Transkript

1 Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT, CFT): kontinuierlich -> kontinuierlich Fourier-Reihe (FR): kontinuierlich -> diskret Diskrete Fourier-Transformation (DFT): diskret -> diskret 1.) Laplace-Transformation: - Großteils nur mathematisch interessant, praktisch eher Fourier-Transformation wichtig. - Wenn α = 0, dann entspricht sie der Fourier-Transformation. - Die Laplace-Transformation wird bei der Übertragungsfunktion verwendet. 2.) (stetige) Fourier-Transformation FT: Bedingung: (wird diese Bedingung nicht erfüllt, führt das zur Laplace-Transf.) Das Fourierintegral konvergiert, wenn der Betrag der Fläche unter der zu transformierenden Signalkurve endlich ist. Dann ist eine Fourier-Transformation möglich. Eigenschaften der (stetigen) Fourier-Transformation: 1) Anordnungssatz (gerade, ungerade, reell, imaginär) 2) Maßstabsänderung 3) Verschiebung (Verschiebung im Zeitbereich -> Phasenverschiebung im Frequenzbereich; Verschiebung im Frequenzbereich -> Zeitfunktion wird auf jeden Fall imaginär) 4) Ableitung 5) Vertauschungssatz 6) Mehrfachanwendung der Fourier-Transformation (sie ist zyklisch vom Grad 4, d.h. nach 4-maliger Anwendung ist man wieder bei der Ausgangsfunktion)

2 7) Faltung: Um ein Signal x(t) mit einem anderen Signal y(t) zu modulieren, benutzt man die Faltung. Wobei x(t) das zu analysierende Biosignal ist und y(t) eine "kurze" Faltungsmaske. Wie? Die Maske y(t) wird am Nullpunkt gespiegelt und wie bei der Korrelation über das Signal x(t) geschoben. Faltungssatz: Der Faltung zweier Signale im Zeitbereich entspricht die Multiplikation ihrer Fourier-Transformierten im Frequenzbereich. Eine Faltung im Zeitbereich kann über den Umweg dreier Fourier-Transformationen (FT, FT, IFT) und einer komponentenweisen komplexen Multiplikation zweier Fourier-Transformierter berechnet werden. Faltungstheoreme sagen aus, dass eine Faltung im Zeitbereich einer Multiplikation im Frequenzbereich und eine Multiplikation im Zeitbereich einer Faltung im Frequenzbereich entspricht. Das Faltungstheorem zeigt einen auf den ersten Blick aufwendigen Weg zur Berechnung der Faltung: Fourier-Transformation der Signale - Produktbildung - Rücktransformation. Bei digitalen Signalen ist dieser schnelle Faltung genannte Umweg oft vorteilhaft, da mit der schnellen Fourier-Transformation (FFT, Fast Fourier Transformation) die Hin- und Rücktransformation sehr effizient und damit schnell vollzogen werden können. Anwendung: bei großen Filtermasken Entwurf von Filtern mit bestimmten Eigenschaften 8) Korrelation (Wiener Theorem): Faltung und Korrelation ineinander überführbar! Unter der Korrelation zweier Signale versteht man die Integraloperation: wobei x(t) und y(t) zwei deterministische, reelle Energiesignale sind. Die Korrelation führt zu einer Funktion, welche die Übereinstimmung bzw. Ähnlichkeit eines Signals x(t) zu einem zeitverschobenen Signal in Abhängigkeit der zeitlichen Verschiebung _ beschreibt. ist die Zeit, mit der das zweite Signal gegenüber dem ersten nach links verschoben wird, bevor das Produkt der beiden Signale integriert wird. Je höher der Wert dieses Integrals ausfällt, desto ähnlicher oder deckungsgleicher sind die beiden Signale. Die Amplitude jedes Samples im Korrelationssignal ist ein Maß dafür, wie sehr sich die beiden Signale an diesem Punkt ähneln. Das bedeutet, dass für jede

3 Übereinstimmung der beiden Signale ein Maximum im Korrelationssignal auftaucht. Die Verschiebung dieses Maximums zum Ursprung zeigt, wie weit die Signale phasenverschoben sind. Die Fläche unterhalb der Kurve ergibt den Wert der Korrelationsfunktion zum Zeitpunkt Null. Ist ein Signal gegenüber dem anderen verschoben, stimmt die Phase nicht mehr überein. Dadurch decken sich die Peaks nicht mehr, das Produkt kann negative Teile enthalten. Die Fläche unter der Kurve gibt den Wert der Korrelationsfunktion zum Wert der Verschiebung an. Da die eventuell vorhandenen negativen Anteile die positiven ausgleichen, ist das Ergebnis der Funktion kleiner. Der größte Wert der Korrelationsfunktion zeigt, wann die zwei Signale sich in ihrer Form ähneln und nicht gegeneinander verschoben sind. Die Breite der Korrelationsfunktion zeigt, wie lange die beiden Signale sich ähneln. Die Korrelationsfunktion zeigt also, wie ähnlich zwei Signale sind und wie lange sie ähnlich bleiben, wenn man sie gegeneinander verschiebt. Man unterscheidet zwei Arten der Korrelation: die Autokorrelation (AKF) und die Kreuzkorrelation (KKF). Zusammenhang Korrelation und Faltung: Wie man auf den ersten Blick erkennt, ist die Korrelation eng mit der Faltung verwandt. Die beiden unterscheiden sich lediglich durch die Integrationsvariable und ein Vorzeichen. Durch das positive Vorzeichen entfällt bei der Korrelation die Spiegelung der zweiten Funktion an

4 der y-achse, die für die Faltung charakteristisch ist. Ist ein Signal symmetrisch, wird es durch die Spiegelung nicht verändert. Somit unterscheiden sich Faltung und Korrelation in diesem Fall nicht. Die Korrelationsfunktion zweier Signale erhält man also, indem man das erste Signal spiegelt, danach mit dem zweiten Signal faltet und anschließend die Zeitvariable t durch die Zeitverschiebungsvariable substituiert. 9) Multiplikation: eine Begrenzung des Zeitbereichs (z.b.: Fensterung -> Fensterfunktion w(t)) bewirkt durch die Faltung eine Banderweiterung im Frequenzbereich 10) Parseval'sche Gleichung 11) Schwarz'sche Ungleichung Fourier-Transformierte wichtiger Funktionen: 1) Delta-Funktion (Ausblendeigenschaft) 2) Exponentialfunktion 3) Cos-Funktion (-> zeitlich begrenzte cos-funktion) Inverse Fourier-Transformation IFT: Definition: Die zur stetigen Fouriertransformation inverse Operation heißt inverse stetige Fouriertransformation. Eigenschaften der inversen Fourier-Transformation: 1) Gibbs'sches Phänomen: Die Rück-Transformation von X (f) (d.h. IFT) approximiert x(t) nicht in allen Punkten, sondern im quadratischen Mittel, d.h.die Rücktransformation ist nicht punktweise eindeutig, sondern nur fast überall 2) Sprungstellen: Die Inverse Fourier-Transformation nimmt an Sprungstellen von x(t) den arithmetischen Mittelwert an. Fourier-Reihe FR: kein Sonderfall der stetigen Fouriertransformation!!! Denn: wenn x(t) periodisch mit Periode T ist, dann lässt sich ihr Verhalten im Frequenzbereich durch eine diskrete (!) Reihe ausdrücken. (FR: stetig (zeit) --> diskret (frequenz))

5 2 Formen: 1) Trigonometrische Form 2) Exponentielle Form Der auffälligste Unterschied zwischen der stetigen Fouriertransformation (FT) und der Fourierreihe (FR) ist die Auflösung. Die stetige Fouriertransformation X(f) ist ein stetiges Abbild in den Frequenzbereich und zwar von - bis. Das Spektrum der Fourierreihe ck ist ein diskretes Abbild in den Frequenzbereich. Diskrete Fourier-Transformation DFT: (diskret (zeit) --> diskret (frequenz)) Im Konzept ist die diskrete Fouriertransformation (DFT) sowohl der stetigen Fouriertransformation (FT) ähnlich als auch der Fourierreihe (FR): Sie ist formal wie die stetige Fouriertransformation, nur das Integral ist durch die Summation ersetzt. Sie ist funktional wie die Fourierreihe, da sie eine Abbildung in den diskreten Frequenzbereich ist. Sie unterscheidet sich aber von der CFT und der FR dadurch, dass sie eine diskrete Funktion (d.h. eine Zahlenfolge) in den Frequenzbereich abbildet. 1/Δt legt die maximale Frequenz fest. (= Abtastzeit) N legt die Anzahl der Frequenzen (die Feinheit der spektralen Auflösung) fest. (= Anzahl der Abtastwerte) => Fundamentalfrequenz: Eigenschaften der DFT: 1) Periodizität: Abtastwerte und Fourier-Koeffizienten sind periodisch. 2) Symmetrie: Wenn xn eine Folge reeller Werte ist, dann gibt es in Xk (d.h. im Frequenzbereich) eine Symmetrie an der so genannten Faltungsfrequenz (Nyquistfrequenz), sodass - alle reellen Teile von Xk, d.h. Re{Xk}, gerade symmetrisch bezüglich ff sind - alle imaginären Teile von Xk, d.h. Im{Xk}, ungerade symmetrisch bezüglich ff sind aus Periodizität und Symmetrie => Xk und X-k sind konjugiert komplex!

6 Fehlerquellen der DFT: 1) Aliasing: Wie der Name ( alias ) impliziert, kann ein Frequenzanteil eines Signals fälschlich einem anderen Frequenzanteil zugerechnet werden. Beispiel: Die Abtastzeit Δt ist zu gering, um das Eingangssignal korrekt wiederzugeben. Als Folge tritt anstelle der hohen Frequenz eine falsche niedrige Frequenz auf. Abhilfe (Nyquist-Bedingung): Abtasten mindestens doppelt so schnell wie die höchste im Signal vorkommende Frequenz. (besser 5-10 Mal so schnell!) 2) Leakage (Durchsickern): Durch die zeitliche Begrenzung kann das Signal abgeschnitten werden. Ist es periodisch fortsetzbar (also ist die Abtastzeit ein vielfaches Ganzes der Fundamentalperiode), so ist dies kein Problem, ist dies aber nicht der Fall, so enthält es Frequenzen, die nicht zu den von der DFT berechneten diskreten Frequenzen gehören. Die DFT nähert diese Frequenzen an die Nachbarfrequenzen an. Vermeiden kann man dies, indem man den Beobachtungszeitraum T relativ zur Fundamentalperiode T0 des Signals groß wählt. Abhilfe: Das Leakage-Problem kann gemildert werden, indem der Beobachtungszeitraum T des (Bio)signals relativ zur Fundamentalperiode T0 des zu analysierenden Signals groß gewählt wird. Filter, die eine Periodizität des Signals im Beobachtungszeitraum erzwingen, d.h. nach Anwendung solcher Filter schaut das Signal fast periodisch aus. z.b.: Hanning-Filter: Der betrachtete Zeitausschnitt wird dazu mit einer Funktion w(n) multipliziert, die das Signal an den Rändern des Zeitausschnitts auf Null zwingt. (Hanning-Fenster w(n))

7 3) Picket-Fence-Wirkung: Als Folge von schmalen Bandpass-Filtern entsteht ein "Lattenzaun"-artiges Erscheinungsbild des Signals. Frequenzanteile eines Signals x(t), die ganzzahlige Vielfache der Fundamentalfrequenz k 1/T = k.f0 k = 0,1,2,3,...,N-1 sind, werden unverzerrt (d.h. in ihrer wahren Größe) keine ganzzahlig Vielfachen der Fundamentalfrequenz sind, werden verzerrt (d.h. verkleinert) abgebildet. Abhilfe: Mittelung über mehrere Aufnahmen desselben Signals.

Faltung und Korrelation kontinuierlicher Signale

Faltung und Korrelation kontinuierlicher Signale Universität Koblenz Institut für integrierte Naturwissenschaften Abteilung Physik Faltung und Korrelation kontinuierlicher Signale Seminar Digitale Signalverarbeitung Dr. Merten Joost von Kristina Weyerhäuser

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach

Statistische Kennwerte und -funktionen. Dr.-Ing. habil. H. Nobach Statistische Kennwerte und -funktionen Dr.-Ing. habil. H. Nobach 1. Einführung Statistische Kennwerte und -funktionen, wie Mittelwert Varianz Wahrscheinlichkeitsdichte Autokorrelation spektrale Leistungsdichte

Mehr

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 20: Eigenschaften der Fourier-Transformation. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 2: Eigenschaften der Fourier-Transformation Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Fourier-Transformation Eigenschaften der Fourier-Transformation Definitionsgleichungen

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 8: Leakage und Zero-Padding Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Betrag / db Einführung Ein über die DFT berechnetes Spektrum T A X n ist

Mehr

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches

Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Zufallssignal Stationär (z.b. gleichverteiltes Rauschen) Nicht-stationär (z.b. normalverteiltes Rauschen mit wechselnder Streuung) Deterministisches Signal Periodisch harmonische Schwingung Summe harmonischer

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

2 Periodische, nicht harmonische Signale

2 Periodische, nicht harmonische Signale Hochfrequenztechnik I Signaldarstellung im Zeit- und Frequenzbereich S/ Harmonische Signale Zeitabhängige Gröÿen, wie z. B. Spannung, Strom oder Feld, sind häug harmonische Gröÿen. Solche sinus- oder kosinusförmigen

Mehr

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

Biosignal Processing II

Biosignal Processing II Biosignal Processing II LEARNING OBJECTIVES Describe the main purposes and uses of the Fouriertransforms. Describe the basic properties of a linear system. Describe the concepts of signal filtering. FOURIERREIHE

Mehr

Zusammenfassung : Fourier-Reihen

Zusammenfassung : Fourier-Reihen Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen C6.3 Fourier-Transformation Entspricht Fourier-Reihe für 'Fourier-Integral' Für endliches L: (C6.1b.3) Für stellt eine kontinuierliche Funktion dar: und Fourier-Summe wird ein Integral: 'Fourier-Transformation'

Mehr

Inhalt. Vorwort Einführung 15

Inhalt. Vorwort Einführung 15 FFT- Anwendungen von E. Oran Brigham übersetzt von Seyed Ali Azizi Mit 207 Bildern, 6 Tabellen, 41 Beispielen und 188 Aufgaben sowie Programmen in BASIC R. Oldenbourg Verlag München Wien 1997 Vorwort 11

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 Inhalt Fourier reihen Fourier Transformation Laplace Transforamation

Mehr

Biosignalverarbeitung

Biosignalverarbeitung Peter Husar Biosignalverarbeitung Springer Inhaltsverzeichnis 1 Entstehung bioelektrischer Signale 9 1.1 Das Neuron 9 1.2 Elektrische Erregungsleitung und Projektion 15 2 Verstärkung und analoge Filterung

Mehr

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell:

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell: Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: (kühnes Vertauschen von Integral und Summe!) Parseval-Identität Speziell: Anmerkung: beide Seiten kann man als Skalarprodukt

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB Signale und Systeme Grundlagen und Anwendungen mit MATLAB Von Professor Dr.-Ing. Dr. h. c. Norbert Fliege und Dr.-Ing. Markus Gaida Universität Mannheim Mit 374 Bildern, 8 Tabellen und 38 MATLAB-Projekten

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Zusammenfassung der 2. Vorlesung

Zusammenfassung der 2. Vorlesung Zusammenfassung der 2. Vorlesung Fourier-Transformation versus Laplace-Transformation Spektrum kontinuierlicher Signale Das Spektrum gibt an, welche Frequenzen in einem Signal vorkommen und welches Gewicht

Mehr

Die Wärmeleitungsgleichung

Die Wärmeleitungsgleichung Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v. Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

3. Diskrete Fourier-Transformation

3. Diskrete Fourier-Transformation Vorüberlegung: Die Gleichung λ =0 hat die N verschiedenen Lösungen λ k =e 2 π i k / N,,, Aus λ = (λ λ k ) k =0 folgt durch Koeffizientenvergleich e 2 π i k/ N = λ k =0 Für jede ganze Zahl m gilt m d. h.

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Amplitudenunabhängige. Impulslängenbestimmung. mit Hilfe der. Cepstrum-Analyse

Amplitudenunabhängige. Impulslängenbestimmung. mit Hilfe der. Cepstrum-Analyse Amplitudenunabhängige Impulslängenbestimmung mit Hilfe der Cepstrum-Analyse Dipl.-Ing. Leo Baumann Datum 15.03.1999 Inhalt 1.0 Kontinuierliche Berechnung 2.0 Diskrete Berechnung 3.0 Einige Beispiele 4.0

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

Lösungsblatt 2 Signalverarbeitung

Lösungsblatt 2 Signalverarbeitung Fakultät für nformatik Übung zu Kognitive Systeme Sommersemester 208 S. Constantin (stefan.constantin@kit.edu) T. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 2 Signalverarbeitung Aufgabe : Faltung Abbildung

Mehr

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3)

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3) Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 3) Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen.

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Anwendung v. Faltungstheorem: Tiefpassfilter Wähle so, dass Dann: Somit: Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Zusammenfassung habe Periode, mit stückweise stetig und

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Diskrete Fourier Transformation (DFT): Zeitfenster, Frequenzauflösung, Fensterfunktionen

Diskrete Fourier Transformation (DFT): Zeitfenster, Frequenzauflösung, Fensterfunktionen Diskrete Fourier Transformation (DFT): Zeitfenster, Frequenzauflösung, Fensterfunktionen Fourier-Analyse Zeitfenster DFT Zeit [s] 2 Frequenz [Hz] Fourier-Analyse Abtastintervall TT aa : Zeit zwischen zwei

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

Signalanalyse. Übersicht. Training Frequenzanalyse 6. Signalanalyse. Systembeschreibung Auto-/ Kreuzkorrelation Auto-/ Kreuzspektrum

Signalanalyse. Übersicht. Training Frequenzanalyse 6. Signalanalyse. Systembeschreibung Auto-/ Kreuzkorrelation Auto-/ Kreuzspektrum Übersicht Systembeschreibung Auto-/ Kreuzkorrelation Auto-/ Kreuzspektrum Signalanalyse Systembeschreibung Übersicht Systembeschreibung Auto-/ Kreuzkorrelation Auto-/ Kreuzspektrum Signalanalyse Systembeschreibung

Mehr

Globale Operationen. Prof. Dr. Aris Christidis WS 2018 / 19

Globale Operationen. Prof. Dr. Aris Christidis WS 2018 / 19 Globale Operationen Operationen / Funktionen, die alle Pixel des Eingabebildes benötigen, bevor sie ein Pixel oder eine Aussage für das Ergebnisbild ermitteln, nennt man global. (Beispiel: Erkennung /

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Signalverarbeitung SS 2012

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Signalverarbeitung SS 2012 Name, Vorname: Matr.-Nr.: Wichtige Hinweise: Ausführungen, Notizen und Lösungen auf den Aufgabenblättern werden nicht gewertet. Vor der entsprechenden Lösung ist deutlich die dazugehörige Nummer der Aufgabe

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 6Si 6. Signal-und Bildfilterung sowie Korrelation H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I Bildfilterung und Korrelation Die lineare Bildfilterung wird zur Rauschunterdrückung

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation 23. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 10.1 und 11, Kammeyer & Kroschel (7.1-7.3) eues Thema in

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck

Als Summendarstellung der komplexen Zahl bezeichnen wir den bekannten Ausdruck A.1 MATHEMATISCHE GRUNDLAGEN In diesem Abschnitt werden die mathematischen Grundlagen zusammengestellt, die für die Behandlung von Übertragungssystemen erforderlich sind. Unter anderem sind dies die komplexen

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Einführung in die Systemtheorie Von Professor Dr.-Ing. Bernd Girod Priv.-Doz. Dr.-Ing. habil. Rudolf Rabenstein und Dipl.-Ing. Alexander Stenger Universität Erlangen-Nürnberg Mit 259 Bildern B.G. Teubner

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 2., korrigierte und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Fourier-Transformation und Saitenschwingung

Fourier-Transformation und Saitenschwingung F-Praktikum Versuch 1.1 Diego Semmler, Nils Höres Seite 1/13 Fortgeschrittenen-Praktikum Fourier-Transformation und Saitenschwingung Diego Semmler, Nils Höres diego@messenger.dsemmler.de nils@hoeres.de

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.0 B Signale und Systeme 2 Institute of Telecommunications

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Relevante Frequenztransformationen

Relevante Frequenztransformationen Relevante Frequenztransformationen Medientechnologie IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Sommersemester 206 Andreas Unterweger (FH Salzburg) Relevante Frequenztransformationen

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion 1. Übliche Formen 1) Allgemeine Form: y = f(x) = a x 2 + b x + c a, b, c Konstanten Grundlegender Fall a = 1, b = 0, c = 0, also y = x 2 : "Normalparabel" Vorteil: Keine Brüche für

Mehr

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 1)

Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 1) Signale und Systeme Spektraldarstellungen determinierter Signale (Teil 1) Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( )

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( ) 23 4 Abbildungen von Funktionsgraphen Der Graph zu einer gegebenen Funktion f ist die Menge aller ( ) sind. Für einen einzelnen Punkte, deren Koordinaten ; f () Punkt des Graphen gibt man einen Wert aus

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Digitale Verarbeitung analoger Signale

Digitale Verarbeitung analoger Signale Digitale Verarbeitung analoger Signale Digital Signal Analysis von Samuel D. Stearns und Don R. Hush 7., durchgesehene Auflage mit 317 Bildern, 16 Tabellen, 373 Übungen mit ausgewählten Lösungen sowie

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Fouriertransformation, z-transformation, Differenzenglei- chung

Fouriertransformation, z-transformation, Differenzenglei- chung Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Versuchsprotokoll: Modellierung molekularer Schwingungen

Versuchsprotokoll: Modellierung molekularer Schwingungen Versuchsprotokoll: Modellierung molekularer Schwingungen Teammitglieder: Nicole Schai und Cristina Mercandetti Datum: 11.12.12 Versuchsleiter: Claude Ederer 1. Einleitung Dieser Versuch befasste sich mit

Mehr