Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation

Größe: px
Ab Seite anzeigen:

Download "Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation"

Transkript

1 Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation 23. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 10.1 und 11, Kammeyer & Kroschel ( )

2 eues Thema in der DSV Signalverarbeitung im Frequenzbereich. eue Möglichkeiten: Schnelle, adaptive Algorithmen Effiziente Implementierung auf DSPs und PCs Methoden basieren auf diskreter Fouriertransformation (DFT).

3 Anwendungen der diskreten Fouriertransformation Test von analogen und Implementierung von digitalen Kommunikationssystemen (z.b. OFDM - u.a. in DAB/DVBT) Analyse von MRT-, MEG- und EEG-Signalen Komprimierung von Audio- und Musiksignalen (z.b. mp3) und Verarbeitung (z.b. Equalizer) Entwurf von modellbasierten Regelungen Maschinelle Mustererkennung

4 Verhältnis zu anderen Fourier-Transformationen Digitale Signalverarbeitung, Figure Vorlesung : Vier 10 - Diskrete Klassen Fouriertransformation der Fourier-Transformation [3]

5 Gründe für diskrete Fouriertransformation Diskret im Zeit- und Frequenzbereich Endliche Datenmenge durch Diskretisierung Effiziente Algorithmen zur Berechnung und Invertierung Geeignet für Kurzzeitanalyse (Berechnung von Spektrogrammen )

6 DFT als abgetastetes Spektrum Die Signalfolge besteht aus Werten n {0, 1,..., 1}. Das Linienspektrum soll jetzt auch genau an äquidistanten Stützstellen berechnet werden, die dann die Abstände f = f A = 1 T besitzen. Dann ergeben sich folgende Frequenzstützstellen: (1) Ω n = 2π n f = 2π n, n = 0, 1,..., 1. (2) f A

7 DFT als abgetastetes Spektrum Einsetzen in V Ω n = 2π n, n = 0, 1,..., 1. (3) ( e jω) = DTFT {v(k)} = v(k)e jkω (4) k=0 ergibt zusammen mit der endlichen Signallänge : V (e jωn ) := V (n) = k=0 2πn jk v(k)e. (5)

8 DFT als abgetastetes Spektrum V (n) = k=0 2πn jk v(k)e (6) kann mit der Abkürzung W = e j 2π ergibt das DFT-Transformationspaar: geschrieben werden. Das Definition DFT V (n) = DFT {v(k)} = v(k) = IDFT {V (n)} = 1 k=0 n=0 v(k)w kn, (7) V (n)w kn. (8)

9 DFT als abgetastetes Spektrum Zum Beweis der Beziehung für die IDFT wird (7) in (8) eingesetzt: v(k) = 1 n=0 [ l=0 v(l)w ln ] W kn = v(l) 1 l=0 n=0 Hierfür wurde die Summenorthogonalität der komplexen Drehoperatoren W benutzt: 1 n=0 W n(l k) = 1 n=0 e j 2π n(l k) = δ(l k). W n(l k) = v(k).

10 Matrixdarstellung der DFT Matrixdarstellung der DFT Aus den drei Definitionen Spalten-Vektor der DFT-Spektralwerte V = [V (0),..., V (n),..., V ( 1)] T Spalten-Vektor der Signalfolge v = [v(0),..., v(k),..., v( 1)] T DFT-Matrix [W ]: [W ] lm = W lm ; l, m = 0, 1, 2,..., 1. (l ist die Zeilennummer, m die Spaltennummer) folgt: V = W v (9)

11 Matrixdarstellung der DFT DFT-Spektralanalyse: Vorgehensweise

12 Matrixdarstellung der DFT Matrixdarstellung der DFT Definitionsgemäß ([W ] lm = W lm ) ist W symmetrisch, so dass für die transjugierte 1 DFT-Matrix gilt: W = W T = W. (10) 1 konjugiert komplexe, transponierte

13 Matrixdarstellung der DFT Matrixdarstellung der DFT Für die DFT-Matrix gilt: mit I als x Einheitsmatrix. Für die Inverse folgt W W = I (11) W 1 = 1 W = 1 W. (12)

14 Matrixdarstellung der DFT Matrixdarstellung der DFT Damit ergibt sich die IDFT aus (9): v = W 1 V = 1 W V. (13) Aus dem Vergleich des DFT-Transformationspaares in Matrixdarstellung (9) und (13) wird klar, dass sich Hin- und Rücktransformation im Wesentlichen mit demselben Verfahren berechnen lassen, was nützlich ist.

15 Periodizität des Zeitsignals Die DFT V (n) = k=0 entspricht einer Abtastung der DTFT V ( e jω) = v(k)e j 2π kn (14) v(k)e jkω, (15) k=0 im Frequenzbereich. Aus der Abtastung im Frequenzbereich mit dem Deltakamm δ 2π wird wegen IDTFT(X (e jω ) Y (e jω )) = x(k) y(k) (16) eine Faltung von v(k) mit dem Deltakamm δ im Zeitbereich.

16 Periodizität des Zeitsignals Also wird das Signal v(k), k = 0, 1,..., 1, zu einer Periode des zeitlich unbegrenzten, nichtkausalen, periodischen Signals v p (k) = v((k) ), k =... 1, 0, 1,... (17) Diese kurze Schreibweise benutzt die Modulo-Arithmetik: (k) = k mod {0, 1,..., 1} k Z. (18)

17 Periodizität des Zeitsignals Die Zusammenhänge sind hier für = 5 gezeigt [2]: Figure : Periodizität von diskretem Signal v(k) und zugehörigem DFT-Spektrum V (n). Hieraus wird klar, dass das Spektrum einer langen Folge mit M > nur dann mit der DFT der Länge korrekt berechnet wird, wenn es -periodisch ist.

18 Faltung Bisher wurde die lineare (aperiodische) Faltung behandelt: y lin (k) = v 1 (k) v 2 (k) = ν=0 v 1 (ν)v 2 (k ν) zt V 1 (z) V 2 (z), wobei sich die Länge des Faltungsprodukts = M 1 + M 2 1 aus den Längen M i der Einzelsignale v i (k) ergibt.

19 Faltung Ähnlich gilt für die DFT mit der zyklischen bzw. periodischen Faltung (Faltung periodischer Signale gleicher Periode, wobei das Ergebnis wieder -periodisch ist [1]): Faltungssatz der DFT y ((k) ) = v 1 (k) v 2 (k) = ν=0 v 1 (ν)v 2 ((k ν) ) DFT V 1 (n) V 2 (n) (19) So wie die lineare Faltung ist die zyklische Faltung eine lineare Operation, sie ist kommutativ und assoziativ.

20 Faltung Zyklische und lineare Faltung sind hier gegenübergestellt. ur die grau hinterlegten Werte der beiden Ergebnisse der Faltungsoperationen sind identisch: Figure : Vergleich von linearer und zyklischer Faltung: M 1 = M 2 = 4 [2]

21 Faltung (a) linear (b) zyklisch Figure : Lineare und zyklische Faltung: M 1 = M 2 = 4 [2]

22 Faltung Wie kann die zyklische Faltung zur Berechnung der bei LTI-Systemen interessierenden linearen Faltung verwendet werden? Dazu setzt man zwei Signale (bzw. Signal und Impulsantwort) endlicher Länge M 1 und M 2 voraus. Das Ergebnis der linearen Faltung hat die Länge = M 1 + M 2 1. Also müssen beide Signale durch Anfügen von ullen auf die gemeinsame Länge verlängert werden. Das Ergebnis der zyklischen Faltung der Länge mit diesen so modifizierten Signalen ist identisch mit dem der linearen Faltung: Abb. 6.

23 Faltung Figure : Zyklische und lineare Faltung von zwei Folgen der Länge M 1 = 33, M 2 = 24, v i (k): v i (k) mit Zero-Padding [4]

24 Faltung Zur Herleitung der zyklischen Faltungsbeziehung (19) wird die IDFT verwendet: IDFT {V 1 (n) V 2 (n)} = 1 = 1 v 1 (p)w pn = n=0 p=0 q=0 p=0 v 1 (p)v 2 (q) 1 n=0 n=0 q=0 V 1 (n)v 2 (n)w kn v 2 (q)w qn W (k p q)n. W kn

25 Faltung Weil wegen der Summenorthogonalität der Drehfaktoren (11) für i Z { 1 für k = i + p + q, 1 n=0 W (k p q)n = δ((k p q) ) = 0 für k i + p + q, gilt, kann in (20) p = (k q) oder q = (k p) eingesetzt und eine der Summationen eliminiert werden. Daraus folgt: V 1 (n) V 2 (n) DFT p=0 v 1 (p)v 2 ((k p) ) = q=0 v 1 ((k q) )v 2 (q).

26 Multiplikation, Linearität, Verschiebung, Energieerhaltung Multiplikationssatz Die Herleitung des Multiplikationssatzes entspricht der der zyklischen Faltung, man muss nur Frequenz- und Zeitbereich vertauschen. Ergebnis: Multiplikationssatz der DFT v 1 (k) v 2 (k) DFT 1 = 1 p=0 V 1 (p)v 2 ((n p) ) q=0 V 1 ((n q) )V 2 (q) = 1 V 1(n) V 2 (n)

27 Multiplikation, Linearität, Verschiebung, Energieerhaltung Eigenschaften Linearität Entsprechend der Definition als Matrixmultiplikation ist die DFT linear. Zyklische Verschiebung Verschiebt man ein Signal v(k) der Länge, um lt nach rechts (Verzögerung l < 0) oder nach links (l > 0), dann entspricht dies wegen (17) und (18) einer zyklischen Verschiebung.

28 Multiplikation, Linearität, Verschiebung, Energieerhaltung Zyklische Verschiebung Man kann schreiben v ((k + l) ) = v p (k + l). Weil v p (k + l) eine zweiseitige (nichtkausale) Folge repräsentiert, gilt der Verschiebungssatz der zt für zweiseitige Signale: Verschiebung um l Samples entspricht Multiplikation mit z l. Aus z l = e jlωn = e j 2π nl = W nl folgt Verschiebungssatz der DFT DFT {v ((k + l) )} = V (n)w nl

29 Multiplikation, Linearität, Verschiebung, Energieerhaltung Parsevalsche Beziehung der DFT Die Herleitung der Parsevalschen Beziehung geht am einfachsten mit der Matrixdarstellung der DFT. Es gilt mit (9) und (11): V 2 2 = V V = v W W v = v v = v 2 2. (20) Damit ergibt sich die Parsevalsche Beziehung in der üblichen Form: v 2 2 = k=0 v(k) 2 = 1 n=0 V (n) 2 = 1 V 2 2. (21) So kann die Energie bzw. Leistung über die l 2 -orm im Zeitbereich oder im Frequenzbereich berechnet werden.

30 Multiplikation, Linearität, Verschiebung, Energieerhaltung Lernziele Sie sollten die DFT und die inverse DFT von Signalen bestimmen können. Sie sollten den Multiplikationssatz und den Verschiebungssatz der DFT kennen, wissen, wie die zyklische Faltung von zwei Signalen berechnet wird, und wie man durch zero padding aus der zyklischen Faltung eine lineare Faltung machen kann. Sie sollten aus der Signalenergie im DFT-Bereich die Signalenergie im Zeitbereich berechnen können.

31 Multiplikation, Linearität, Verschiebung, Energieerhaltung Heinz Günther Göckler. Signale und Systeme. Skript zur Vorlesung Signale und Systeme, Ruhr-Universität Bochum, Karl Dirk Kammeyer and Kristian Kroschel. Digitale Signalverarbeitung. 5. Auflage, Stuttgart: Teubner, R. A. Roberts and C. T. Mullis. Digital Signal Processing. Reading/MA: Addison Wesley Publ. Co., Hans Wilhelm Schüßler. Digitale Signalverarbeitung, volume Auflage, Berlin: Springer, 1994.

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Signale und Systeme Ergänzungen zu den Spektraltransformationen

Signale und Systeme Ergänzungen zu den Spektraltransformationen Signale und Systeme Ergänzungen zu den Spektraltransformationen Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute of Electrical

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Diskrete Fourier-Transformation

Diskrete Fourier-Transformation Universität Koblenz-Landau Institut für integrierte Naturwissenschaften Abteilung Physik Dozent: Dr. Merten Joost Seminar Digitale Signalverarbeitumg im Sommersemester 2005 Diskrete Fourier-Transformation

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Diskrete und Schnelle Fourier Transformation. Patrick Arenz

Diskrete und Schnelle Fourier Transformation. Patrick Arenz Diskrete und Schnelle Fourier Transformation Patrick Arenz 7. Januar 005 1 Diskrete Fourier Transformation Dieses Kapitel erläutert einige Merkmale der Diskreten Fourier Transformation DFT), der Schnellen

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Seminar Digitale Signalverarbeitung

Seminar Digitale Signalverarbeitung Universität Koblenz-Landau Institut für integrierte aturwissenschaften Abteilung Physik Dr. Merten Joost Seminar Digitale Signalverarbeitung Thema: Fast Fourier Transformation Praktische Durchführung einer

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Lab3 - Fourieranalyse von Signalen

Lab3 - Fourieranalyse von Signalen 1 Einleitung Lab3 - Fourieranalyse von Signalen M. Brandner, C. Wallinger Die spektrale Analyse deterministischer und zufälliger Signale ist von zentraler Bedeutung in der Messtechnik, da sehr viele interessante

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Die Diskrete Fouriertransformation (DFT)

Die Diskrete Fouriertransformation (DFT) Kapitel Die Diskrete Fouriertransformation (DFT). Einleitung Zerlegt man Signale in sinusoidale (oder komplex exponentielle) Komponenten, dann spricht man von der Darstellung der Signale im Frequenzbereich.

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Elektrotechnik-Grundlagen Teil 2 Messtechnik

Elektrotechnik-Grundlagen Teil 2 Messtechnik Version 1.0 2005 Christoph Neuß Inhalt 1. ZIEL DER VORLESUNG...3 2. ALLGEMEINE HINWEISE ZU MESSAUFBAUTEN...3 3. MESSUNG ELEMENTARER GRÖßEN...3 3.1 GLEICHSTROMMESSUNG...3 3.2 WECHSELSTROMMESSUNG...4 4.

Mehr

Merkmale von Bildregionen, Einführung in Spektraltechniken

Merkmale von Bildregionen, Einführung in Spektraltechniken Merkmale von Bildregionen, Einführung in Spektraltechniken Industrielle Bildverarbeitung, Vorlesung No. 10 1 M. O. Franz 12.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt im Juni 2016 Themen: Digitale Bilder, Eigenschaften

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Signalübertragung und -verarbeitung

Signalübertragung und -verarbeitung ILehrstuhl für Informationsübertragung Schriftliche Prüfung im Fach Signalübertragung und -verarbeitung 6. Oktober 008 5Aufgaben 90 Punkte Hinweise: Beachten Sie die Hinweise zu den einzelnen Teilaufgaben.

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

OFDM mittels diskreter Fouriertransformation

OFDM mittels diskreter Fouriertransformation OFDM mittels diskreter Fouriertransformation Betrachten wir nun erneut die sich zeitlich nicht überlappenden Sendesignalrahmen wobei k die Rahmennummer angibt. Diese besitzen zu den Abtastzeiten k T R

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Faltung, Korrelation, Filtern

Faltung, Korrelation, Filtern Faltung, Korrelation, Filtern Wie beschreibe ich lineare Systeme (z.b. Seismometer) -> Faltung, Konvolution, Dekonvolution? Wie quantifiziere ich die Ähnlichkeit von Zeitreihen (-> Korrelation) Wie quantifiziere

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Kybernetik Laplace Transformation

Kybernetik Laplace Transformation Kybernetik Laplace Transformation Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 08. 05. 202 Laplace Transformation Was ist eine Transformation? Was ist

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Signale und Systeme II

Signale und Systeme II TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme II Lösung zur Modulklausur SS 201 Prüfer: Prof. Dr.-Ing. Gerhard Schmidt

Mehr

Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt

Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt TU Bergakademie Freiberg Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt Filter in der Bildverarbeitung. Einleitung Digitale Filter gehören zu den wirkungsvollsten Methoden der Bildverarbeitung. Wir können

Mehr

Inhaltsverzeichnis. vii

Inhaltsverzeichnis. vii 1 Einführung... 1 1.1 Signale im Kommunikationsprozess... 1 1.2 Signalverarbeitung als Disziplin... 2 1.3 Elementare Beschreibung von Signalen... 4 1.3.1 Klassen von Signalen... 4 1.3.2 Notation... 6 1.3.3

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Fouriertransformation

Fouriertransformation Fouriertransformation Radix2 fast fourier transform nach Cooley/Tukey 1 Inhaltsübersicht Mathematische Grundlagen: Komplexe Zahlen und Einheitswurzeln Die diskrete Fouriertransformation Der Radix2-Algorithmus

Mehr

Grundlagen der Schwingungslehre

Grundlagen der Schwingungslehre Grundlagen der Schwingungslehre Einührung. Vorgänge, bei denen eine physikalische Größe in estem zeitlichen Abstand ein und denselben Werteverlau auweist, werden als periodisch bezeichnet. Den zeitlichen

Mehr

Hauptkomponentenanalyse. Principal Component Analysis (PCA)

Hauptkomponentenanalyse. Principal Component Analysis (PCA) Hauptkomponentenanalyse Principal Component Analysis (PCA) Principal Component Analysis (PCA) Welche Ziele verfolgt man bei der Verwendung einer PCA? Repräsentation multidimensionaler Daten mit einer geringeren

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Computergrafik 2: Fourier-Transformation

Computergrafik 2: Fourier-Transformation Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation

Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation . Inhaltsverzeichnis.............. Spezialgebiet Mathematik(Christian Behon ) 1 Matrizen Kapitel 1 Definitionen und Herleitung von Matrizen 1.1 Was sind Matrizen 1.2 Arten von Matrizen Kapitel 2 Matrizenoperation

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Ausarbeitung zum Thema Signalverarbeitung und Signalanalyse in der Spracherkennung

Ausarbeitung zum Thema Signalverarbeitung und Signalanalyse in der Spracherkennung Ausarbeitung zum Thema Signalverarbeitung und Signalanalyse in der Spracherkennung Michael Munz Fakultät für Informatik Universität Ulm 23. November 2004 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Motivation

Mehr

Prof. Dr. Stefan Weinzierl 10.02.2015

Prof. Dr. Stefan Weinzierl 10.02.2015 Einführung in die digitale Signalverarbeitung: 15. Tutorium Prof. Dr. Stefan Weinzierl 10.02.2015 Zusammenfassung Im Folgenden findet sich eine kleine Zusammenfassung der Konzepte, die wir in diesem Semester

Mehr

AES und Public-Key-Kryptographie

AES und Public-Key-Kryptographie Jens Kubieziel jens@kubieziel.de Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 22. Juni 2009 Beschreibung des Algorithmus Angriffe gegen AES Wichtige Algorithmen im 20. Jahrhundert

Mehr

Vom Zeit- zum Spektralbereich: Fourier-Analyse

Vom Zeit- zum Spektralbereich: Fourier-Analyse Vom Zeit- zum Spektralbereich: Fourier-Analyse Ergebnis der Analyse Zerlegung eines beliebigen periodischen Signals in einem festen Zeitfenster in eine Summe von Sinoidalschwingungen Ermittlung der Amplituden

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Arbeit zum Seminar Digitale Signalverarbeitung Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Thomas Wilbert thowil@uni-koblenz.de 29.06.2005 Zusammenfassung Dieses Dokument befasst sich mit der

Mehr

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135 Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2

Mehr

Signale und Systeme Signale

Signale und Systeme Signale Signale und Systeme Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Fakultät Elektrotechnik und Informationstechnik Digitale Signalverarbeitung und Systemtheorie Inhalt der Vorlesung

Mehr

Faltung und Korrelation kontinuierlicher Signale

Faltung und Korrelation kontinuierlicher Signale Universität Koblenz Institut für integrierte Naturwissenschaften Abteilung Physik Faltung und Korrelation kontinuierlicher Signale Seminar Digitale Signalverarbeitung Dr. Merten Joost von Kristina Weyerhäuser

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Übung 2: Spektrum periodischer Signale

Übung 2: Spektrum periodischer Signale ZHAW, SiSy, Rumc, Übung : Spektrum periodischer Signale Augabe Verschiedene Darstellungen der Fourierreihe. Betrachten Sie das periodische Signal s(t) = + sin(π t). a) Bestimmen Sie die A k - und B k -Koeizienten

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Titel: Fouriertransformation. Titel-Kürzel: FT. Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.0: 31.

Titel: Fouriertransformation. Titel-Kürzel: FT. Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.0: 31. Titel: Titel-Kürzel: FT Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.: 3. Oktober 25 Lernziele: Sie wissen, warum bei aperiodischen Signalen nicht mehr mit der Fourierreihe,

Mehr

Wiederholung. Symmetrische Verschlüsselung klassische Verfahren: moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung einer Kombination aus

Wiederholung. Symmetrische Verschlüsselung klassische Verfahren: moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung einer Kombination aus Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr