5. Beispiele - Filter Seite 15
|
|
|
- Christina Glöckner
- vor 9 Jahren
- Abrufe
Transkript
1 5. Beispiele - Filter Seite Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel dienen. Eingangsgröße wird ein Rechtecksignal sein, welches von der im DSP integrierten PWM-Einheit oder einem externen Funktionsgenerator erzeugt wird. Die Implementierung wird so ausgelegt, dass das Variieren von Filtertyp und Koeffizienten ohne Probleme möglich ist. Die Aufnahme des Signals erfolgt durch den AD-Wandler. Nach der Verarbeitung wird das gefilterte Signal über den externen DA-Wandler ausgegeben. 1. Filterentwurf: Ein für den Filterentwurf sehr geeignetes Hilfsmittel ist Matlab. Mit dessen Hilfe sind ein einfacher Filterentwurf sowie dessen Simulation möglich. Bei digitalen Filtern kann grob zwischen FIR und IIR-Filtern unterschieden werden. IIR Filter zeichnen sich durch eine zusätzliche Rückkopplung des Ausgangs auf den Eingang aus. FIR-Filter: Als Basis für das zu entwerfende Filter wird das Hamming-Fenster dienen. Aufgrund der folgenden Funktion gestaltet sich der Entwurf einfach: b = fir1 (n, Wn); b = fir1 (15,1/5); Hierbei ist n die Ordnung des Filters und Wn die normierte Schnittfrequenz. Man erhält die folgenden Werte für die b i :
2 5. Beispiele - Filter Seite 16 Die Simulation erfolgt nun mit einem 1kHz Rechtecksignal. Theoretisch sollte der Filter sämtliche Oberwellen genügend stark dämpfen, so dass nur noch die Hauptschwingung erhalten bleibt. Die Abtastfrequenz (=Ausgabefrequenz) wird mit 1kHz festgesetzt, so dass eine genügend genaue Nachbildung des erwartetem Sinus am Ausgang erfolgen kann. Zunächst soll der Frequenzgang dargestellt werden. hd = dfilt.dffir(b); freqz(hd); Magnitude (db) and Phase Responses Magnitude (db) Phase (degrees) Normalized Frequency ( π rad/sample) -7 Es ist ersichtlich, dass Frequenzen größer 1kHz zunehmend stärker gedämpft werden. Die Flankensteilheit ist sicherlich nicht perfekt, soll aber für diesen Fall genügen. Besser Charakteristiken lassen sich mittels IIR-Filtern erzeugen, wie später gezeigt wird. Eine Simulation mit Simulink liefert für das Ausgabesignal das folgende Verhalten:
3 5. Beispiele - Filter Seite Antwort des Filters auf Rechtecksignal Der Filter verrichtet also seine Arbeit wie gedacht, die Phasenverschiebung ist prinzipbedingt. Der Matlab-Code hat die folgende Form: ts =.5; % Länge der Sequenz fs = 1; % Abtastrate fr = 1; % Rechtecksignalfrequenz p1 = 1/fr/2; % Pulsweite 5% ts = :1/fs:ts; d = :1/fr:1; yr = pulstran (ts, d, 'rectpuls', p1); y = filter (b, 1, yr); figure; hold on; stairs (yr, 'b');
4 3. Der ADSP im Detail Seite 18 stairs (y, 'r'); title ('Antwort des Filters auf Rechtecksignal'); hold off; Der Beweis kann auch im Frequenzbereich geführt werden gefiltertes Signal Rechtecksignal
5 5. Beispiele - Filter Seite 19 IIR-Filter: Die Wahl ist hier auf einen Butterworth-Tiefpass gefallen. Dieser zeigt im Durchlassbereich einen flachen Amplitudengang. Die Sprungantwort schwingt jedoch vergleichsweise stark über. [b, a] = butter (n, Wn); [b, a] = butter (3, 1/5); Für die Koeffizienten ergibt sich: a i : b i : Eine Simulation des Frequenzganges ergibt das folgende Verhalten: hd = dfilt.df1 (b, a); freqz (hd); 5 Magnitude (db) and Phase Responses -2-6 Magnitude (db) Phase (degrees) Normalized Frequency ( π rad/sample) -3
6 5. Beispiele - Filter Seite 2 Man sieht, dass sich das gewünschte Verhalten eingestellt hat. Generell lässt sich bei IIR-Filtern mit geringerem Aufwand (weniger Koeffizienten) normalerweise ein besseres Ergebnis als mit FIR-Filtern erzielen. Erkaufen tut man sich das Ganze mit möglichen Unstabilitäten bedingt durch die Rückkopplung sowie einem nichtlinearen Phasenverlauf. In der Praxis geht der Trend zum Einsatz von FIR-Filtern. Dem erhöhten Rechenaufwand wird durch die Struktur der Arithmetikeinheiten der DSPs Rechnung getragen, welche Multiply&Accumulate Operationen in einem Zyklus absolvieren können. Zu guter letzt soll der Filter noch seine Fähigkeiten beim simulierten Filtern zeigen. ts =.1; % Länge der Sequenz fs = 1; % Abtastrate fr = 1; % Rechtecksignalfrequenz p1 = 1/fr/2; % Pulsweite 5% ts = :1/fs:ts; d = :1/fr:1; yr = pulstran (ts, d, 'rectpuls', p1); y = filter (b, a, yr); figure; hold on; stairs (yr, 'b'); stairs (y, 'r'); title ('Antwort des Filters auf Rechtecksignal'); hold off;
7 3. Der ADSP im Detail Seite 21 Antwort des Filters auf Rechtecksignal Sample Wie ersichtlich ist zeigt sich das gewünschte Verhalten. Es soll abschließend zur Simulation noch gesagt werden, dass Matlab eine weitere Funktion zur Verfügung stellt, mit der sich diverse Filtereigenschaften auf einmal überblicken lassen. Hierzu zählen Betrag, Phase, Sprungantwort, Impulsantwort, usw. Die Syntax hat die folgende Form: fvtool (b, a); % Filter Visualization Tool Das mächtigste Filterentwurfswerkzeug innerhalb Matlabs stellt das fdatool dar. Es fasst alle Entwurfsverfahren und Einstellungen unter einer grafischen Oberfläche zusammen. Gestartet wird es über einen einfachen Kommandozeilenaufruf. fdatool; % Filter Design & Analysis Tool
SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort
SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,
Digitale Signalverarbeitungssysteme II: Praktikum 1
Digitale Signalverarbeitungssysteme II: Praktikum 1 Emil Matus 18. November 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:
Vorteile digitaler Filter
Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)
Zeitdiskrete Signalverarbeitung
Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht
Versuch 5: Filterentwurf
Ziele In diesem Versuch lernen Sie den Entwurf digitaler Filter, ausgehend von der Festlegung eines Toleranzschemas für den Verlauf der spektralen Charakteristik des Filters, kennen. Es können Filtercharakteristiken
Übungseinheit 3. FIR und IIR Filter
Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter
Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11
Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /
ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.
ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale
3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:
Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung
Seminar Digitale Signalverarbeitung Thema: Digitale Filter
Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind
Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse
Erweiterung einer digitalen mit Einplatinencomputern Alexander Frömming Mario Becker p.1 Inhalt 1 Ausgangssituation 2 Zielsetzung 3 Theoretische Grundlagen 4 Umsetzung - Hardware 5 Umsetzung - Software
Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB
Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz
Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner
Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen
Digitale Signalverarbeitung mit MATLAB
Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 4., durchgesehene und ergänzte Auflage Mit 180 Abbildungen und 76 Tabellen STUDIUM VIEWEG+ TEUBNER 1 Erste
Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale
Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)
Grundlagen der Signalverarbeitung
Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:
Filterentwurf. Aufgabe
Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich
Puls-Weiten-Modulation. Version: Datum: Autor: Werner Dichler
Puls-Weiten-Modulation Version: 0.0.2 Datum: 31.12.2015 Autor: Werner Dichler Inhalt Inhalt... 2 Grundlagen... 3 Methoden der Digital-Analog-Umsetzung... 3 Puls-Weiten-Modulation... 4 PWM-Filterung...
filter Filter Ziele Parameter Entwurf
1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse
FH-Pforzheim Studiengang Elektrotechnik. Labor Schaltungstechnik. Laborübung 3: Oszillatoren Sven Bangha Martin Steppuhn
FH-Pforzheim Studiengang Elektrotechnik Labor Schaltungstechnik Laborübung 3: Oszillatoren 04.12.2000 Sven Bangha Martin Steppuhn 3. Durchführung der Versuche 3.1 Linearer Oszillator mit passivem Rückkopplungsnetzwerk
0 bis. 62,5MHz 1. NQZ 2. NQZ 3. NQZ
Red Pitaya als SHF Nachsetzer oder als m Transceiver Bedingt durch die Abtastfrequenz des RP vonn 5MHz ergeben sich folgende f Nyquistzonen:. NQZ. NQZ. NQZ bis 6,5MHz 6,5 bis 5MHzz 5 bis 87,5MHz Der Frequenzbereich
PRAKTIKUMSVERSUCH M/S 2
Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme PRAKTIKUMSVERSUCH M/S 2 Betreuer: Dipl.-Ing. Burkhard Hensel Dr.-Ing. Alexander Dementjev ALLGEMEINE BEMERKUNGEN
Einführung in die digitale Signalverarbeitung WS11/12
Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100
Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen
Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen 21. November 2016 Siehe Skript, Kapitel 8 Kammeyer & Kroschel, Abschnitt 4.1 1 Einführung Filterstrukturen: FIR vs. IIR 2 Motivation: Grundlage
filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015
1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response
Der Tiefpass Betreuer: Daniel Triebs
Der Tiefpass Betreuer: Daniel Triebs 1 Gliederung Definiton: Filter Ideale Tiefpass Tiefpass 1.Ordnung Frequenzgänge Grundarten des Filters Filterentwurf Tiefpass 2.Ordnung 2 Definition: Filter 3 Filter
Übung 6: Analyse LTD-Systeme
ZHAW, DSV, FS2009, Übung 6: Analyse LTD-Systeme Aufgabe : Pol-Nullstellendarstellung, UTF und Differenzengleichung. Die folgenden Pol-Nullstellen-Darstellungen charakterisieren verschiedene LTD- Systeme,
Übung 3: Fouriertransformation
ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie
SV1: Aktive RC-Filter
Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung. September 6 Fachpraktikum Signalverarbeitung SV: Aktive RC-Filter Einführung In diesem Versuch wird ein aktives
Systemtheorie Teil B
d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...
1. Differentialgleichung der Filter zweiter Ordnung
Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und
Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung. Dr.
Funktion von Delta-Sigma-Wandlern zur Digitaliserung eines analogen Sensorsignals mit einer praktischen Anwendung Dr. Thomas Komarek 1 Übersicht Praktische Anwendung: Super Audio Compact Disc (SACD) Grundlagen
Grundlagen der Informationstechnik
Martin Meyer Grundlagen der Informationstechnik Signale, Systeme und Filter Mit 250 Abbildungen und 33 Tabellen Herausgegeben von Otto Mildenberger Vieweg Praxiswissen Vieweg VII 1 Einführung 1 1.1 Das
SV2: Digitale Filter und Konvertierung der Abtastrate
Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung 9. Februar 2017 Fachpraktikum Signalverarbeitung SV2: Digitale Filter und Konvertierung der Abtastrate 1 Einführung
Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology
Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens 15.06.2015 per Email an [email protected]. Verwenden Sie MatrikelNummer1
Elektronik Prof. Dr.-Ing. Heinz Schmidt-Walter
6. Aktive Filter Filterschaltungen sind Schaltungen mit einer frequenzabhängigen Übertragungsfunktion. Man unterscheidet zwischen Tief, Hoch und Bandpässen sowie Sperrfiltern. Diesen Filtern ist gemeinsam,
Verzerrungsfreies System
Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem
Digitale Filter. Martin Schlup. 8. Mai 2012
Digitale Filter Martin Schlup 8. Mai 2012 1. Filterstrukturen Dieser Beitrag ist eine kurz gehaltene Einführung in die Darstellung zeitdiskreter Systeme und soll einige elementare Hinweise geben, wie digitale
Experiment 4.1: Übertragungsfunktion eines Bandpasses
Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal
Simulink: Einführende Beispiele
Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play
Software GSV8term Konfigurationssoftware für GSV-8
Software GSV8term Konfigurationssoftware für GSV-8 Bedienungsanleitung Stand: 04.08.2016 Version Bearbeiter kb-gsv8term_ver1 Sebastian Wetz 16761 Hennigsdorf Fax: +49 3302 78620 69 Web: www.me-systeme.de
Labor Grundlagen Elektrotechnik
Fakultät für Technik Bereich Informationstechnik ersuch 5 Elektrische Filter und Schwgkreise SS 2008 Name: Gruppe: Datum: ersion: 1 2 3 Alte ersionen sd mit abzugeben! Bei ersion 2 ist ersion 1 mit abzugeben.
Einführung in die digitale Signalverarbeitung WS11/12
Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl usterlösung 1. Aufgabenblatt 1. Digitale Filter 1.1 Was ist ein digitales Filter und zu welchen Zwecken wird die Filterung
Prof.Dr. R. Kessler, C:\ro\Si05\Andy\tephys\Bahm2\PWM-Modul_Demodul2.doc, S. 1/7
Prof.Dr. R. Kessler, C:\ro\Si05\Andy\tephys\Bahm2\PWM-Modul_Demodul2.doc, S. 1/7 Homepage: http://www.home.hs-karlsruhe.de/~kero0001/ Pulsweiten- Modulation am Beispiel Handy Demodulation mittiefpass und
Anti-Aliasing-Filter Aktive Filter mit der Software AktivFilter 3 entwerfen ein Beispiel
Anti-Aliasing-Filter Aktive Filter mit der Software AktivFilter 3 entwerfen ein Beispiel SoftwareDidaktik 2009, www.softwaredidaktik.de 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis...2 2 Aufgabe...3 3 Spezifikation...3
Praktikum: Digitale Signalverarbeitung (ET215) Test 1
PROFESSOR DR.-ING. MARTIN WERNER M.W. Fachbereich Elektrotechnik und Informationstechnik Hochschule Fulda Praktikum: Digitale Signalverarbeitung (ET215) Test 1 Erklärung Mit meiner Unterschrift erkläre
Analoge und digitale Filter
Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Matlab-Praktika zur Vorlesung Analoge und digitale Filter 1. Betrachtet wird ein Tiefpass. Ordnung mit
Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:
ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750
Allgemeine Einführung in Filter
Allgemeine Einführung in Filter Konstantin Koslowski TU-Berlin 3. November 2009 Konstantin Koslowski (TU-Berlin) Allgemeine Einführung in Filter 3. November 2009 1 / 22 Inhalt 1 Einführung Was sind Filter
3. Quantisierte IIR-Filter R
. Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben
Warum z-transformation?
-Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von
Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Filter
Filter Filter! Hochpassfilter! Tiefpassfilter! Bandpassfilter (Bandsperrfilter)! FIRFilter! Oktav/Terz... nteloktavfilter wird Titel 2 Hochpassfilter LowCutFilter HighPassFilter Trittschallfilter BassCutFilter
Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern
Praktische MLS Messung mit typischen Fehlerbildern In diesem praktischen Beispiel möchten wir Ihnen zeigen, wie Sie mit MLS den Frequenzgang einer Soundkarte messen können. MLS ist ein sehr leistungsfähiges
Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.
442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name
Entwurf von FIR-Filtern
Kapitel Entwurf von FIR-Filtern. Einleitung.. Darstellung von FIR-Filtern im Zeitbereich y[n] = b x[n] + b x[n ] + b 2 x[n 2] +... + b L x[n (L )] = L b k x[n k] k= = b T x b = [b, b,..., b L ] x = {x[n],
Übungsaufgaben Signalverarbeitung (SV)
Übungsaufgaben Signalverarbeitung (SV) Prof. Dr.-Ing. O. Nelles Institut für Mechanik und Regelungstechnik Universität Siegen 3. Mai 27 Einführung Keine Aufgaben. 2 Zeitdiskrete Signale und Systeme Aufgabe
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle
Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN
Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr. Ing. H. D. Ribbecke
Rumpelfilter Aktive Filter mit der Software AktivFilter 3 entwerfen ein Beispiel
Rumpelfilter Aktive Filter mit der Software AktivFilter 3 entwerfen ein Beispiel SoftwareDidaktik 2005-2009, www.softwaredidaktik.de 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis...2 2 Aufgabe...3 3 Spezifikation...3
Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten
Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter
EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13
FB ET/IT Filterentwurf WS 2/3 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung ein mathematisches Formelwerk Wichtige Hinweise: Ausführungen,
A-102 A Einführung. doepfer System A VCF 9 A-102 VCF 6 A-103
doepfer System A - 100 VCF 9 A-102 VCF 6 A-103 1. Einführung Level Audio Out A-102 A-103 Frequency Resonance Die Module A-102 (VCF 9) und A-103 (VCF 6) sind spannungsgesteuerte Tiefpaßfilter, die aus einem
MATLAB Signal Processing Toolbox Inhaltsverzeichnis
Inhaltsverzeichnis Signal Processing Toolbox 1 Was ist Digitale Signalverarbeitung? 2 Inhalt 3 Aufbereitung der Messdaten 4 Interpolation 6 Approximation 7 Interpolation und Approximation 8 Anpassung der
Entwurf zeitdiskreter Systeme. Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 2012/13
Entwurf zeitdiskreter Systeme Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 0/3 Inhalt Einführung Entwurf auf der Basis zeitkontinuierlicher Systeme Impulsinvarianz Bilinear-Transformation
B Anhang B: Enhanced Resolution
B Anhang B: Enhanced Resolution Digitales Filtern (Enhanced Resolution) Vorteile Realisierung Die verfügbare Abtastrate der LeCroy-Oszilloskope ist oft höher, als für die Bandbreite des zu analysierenden
Kontinuierliche und diskrete Systeme
Kontinuierliche und diskrete Systeme Analoge Signale existieren zu jedem Zeitpunkt. Um ein analoges (kontinuierliches) Signal zu erzeugen, verwendet man entweder eine rein kontinuierliche Quelle ( Signal
KW Tiefpassfilter für 50 Watt MOSFET PA
KW Tiefpassfilter für 50 Watt MOSFET PA Prinzip Das vorgestellte LC Tiefpassfilter arbeitet im Frequenzbereich von 0 30MHz und dient der Unterdrückung von Oberwellen (Harmonischen) der Leistungsendstufe
Methodenseminar. Messtechnik und Biosignalerfassung / Übungen. Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak
Methodenseminar Messtechnik und Biosignalerfassung / Übungen Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak Dieses Skriptum ist ausschließlich als Lernbehelf im Rahmen der Lehrveranstaltung LV 809.045 Messtechnik
Filterentwurf. Patrick Seiler. Präsentation im Rahmen des Projektlabors der TU Berlin im Sommersemester 2009
Filterentwurf Patrick Seiler Präsentation im Rahmen des Projektlabors der TU Berlin im Sommersemester 2009 7. Mai 2009 1 Gliederung 1. Was sind Filter? 2. Grundlagen: Charakteristika/Kenngrößen 3. Filterentwurf
Übungen in Gruppen (max. 3 Personen) gemeinschaftlich durchgeführt Pro Gruppe ein Protokoll Übungsprotokolle:
Assoc.-Prof. DI Dr. Michael Seger Institute of Electrical, Electronic and Bioengineering / UMIT Institute of Automation and Control Engineering / UMIT Eduard-Wallnöfer-Zentrum 1, 6060 Hall i. Tirol 2.
A-104 Level. 1. Einführung. doepfer System A Trautonium Formant Filter A-104
doepfer System A - 100 Trautonium Formant Filter A-104 1. Einführung Input Level Audio In VCF 1 Audio Out A-104 Level Frequency Resonance Mode VCF 2 VCF 4 Das Modul A-104 (Trautonium Formant Filter) besteht
Fourierreihen und Spektrenanalyse Protokoll 11
Fourierreihen und Spektrenanalyse Protokoll 11 Messtechnik II für KEB, TFH Berlin, Gruppe D 17. Januar 27 Torben Zech 738845 Martin Henning 73615 Abdurrahman Namdar 73968 Inhaltsverzeichnis 1 Grundgedanke
Frequenzselektion durch Zwei- und Vierpole
Frequenzselektion durch wei- und Vierpole i u i 1 u 1 Vierpol u 2 i 2 Reihenschwingkreis L R C Reihenschwingkreis Admitanzverlauf des Reihenschwingkreises: Die Höhe ist durch R die Breite durch Q R bestimmt.
Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich
Regelsysteme 6. Übung: Reglerentwurf nach Spezifikation im Zeitbereich Damian Frick Institut für Automatik ETH Zürich Herbstsemester 205 Damian Frick Regelsysteme Herbstsemester 205 6. Übung: Reglerentwurf
Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)
Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...
Aktiver Tiefpass mit Operationsverstärker
Aktiver Tiefpass mit Operationsverstärker Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 17.3.2003 Samuel Benz Inhaltsverzeichnis
Eingangssignale von Verstärkern sind häufig mit hochfrequenten Störsignalen behaftet, die mit Tiefpaßfiltern unterdrückt werden können.
4. Versuch Aktives Tiefpaßfilter. und. Ordnung Durchführung Seite H - 9 ) Filter. Ordnung Eingangssignale von Verstärkern sind häufig mit hochfrequenten Störsignalen behaftet, die mit Tiefpaßfiltern unterdrückt
Physikalische Messtechnik und Elektronik
Physikalische Messtechnik und Elektronik Othmar Marti Experimentelle Physik Universität Ulm [email protected] 16. November 23 Universität Ulm, Experimentelle Physik Vierpole Abbildung 1: Anschlüsse,
Simulation einer Mikrostreifenleitung mit Tiefpasscharakteristik. Khaoula Guennoun Torsten Finger Jan-Frederic Overbeck
Fachhochschule Aachen Master Telekommunikationstechnik Elektrotechnik und Informationstechnik Lehrgebiet: Hoch- und Höchstfrequenztechnik Prof. Dr. Ing. H. Heuermann Simulation einer Mikrostreifenleitung
Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse
Entwicklung einer digitalen mit Einplatinencomputern zur Signalanalyse Philipp Urban Jacobs p.1 Inhalt 1 Motivation 2 Grundlagen 3 Umsetzung 4 Verifizierung 5 Fazit p.2 Motivation Signalgenerator ADC Gertboard
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:
Signale und Systeme. Martin Werner
Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,
A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196
doepfer System A - 100 PLL A-196 1. Einführung A-196 PLL VCO CV In Offset Das Modul A-196 enthält eine sogenannte Phase Locked Loop (PLL) - im deutschen mit Nachlaufsynchronisation bezeichnet, die aus
Kontrollfragen zum Skript Teil 1 beantwortet
Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten
Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf
Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf 5. Dezember 2016 Siehe begleitend: Kammeyer / Kroschel, Digitale Signalverarbeitung, 7. Auflage, Kapitel 4.2 1 Filterentwurfsstrategien 2 Diskretisierung
7.1 Aktive Filterung von elektronischem Rauschen (*,2P)
Fakultät für Physik Prof. Dr. M. Weber, Dr. K. abbertz B. Siebenborn, P. Jung, P. Skwierawski,. Thiele 17. Dezember 01 Übung Nr. 7 Inhaltsverzeichnis 7.1 Aktive Filterung von elektronischem auschen (*,P)....................
Digitale Signalverarbeitungssysteme II: Praktikum 2
Digitale Signalverarbeitungssysteme II: Praktikum 2 Emil Matus 10. Dezember 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:
Schnelle Fouriertransformation (FFT)
Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung
Frequenzselektive Messungen
Mathias Arbeiter 31. Mai 2006 Betreuer: Herr Bojarski Frequenzselektive Messungen Aktive Filter und PEG Inhaltsverzeichnis 1 Aktive Filter 3 1.1 Tiefpass.............................................. 3
Operationsverstärker. Sascha Reinhardt. 17. Juli 2001
Operationsverstärker Sascha Reinhardt 17. Juli 2001 1 1 Einführung Es gibt zwei gundlegende Operationsverstärkerschaltungen. Einmal den invertierenden Verstärker und einmal den nichtinvertierenden Verstärker.
NANO III. Digital-Analog-Wandler. Analog-Digital-Wandler Abtastung. Datenakquisition:
NANO III Digital-Analog-Wandler Datenakquisition: Analog-Digital-Wandler Abtastung Prinzip des DAC (DAC = Digital - Analog - Converter) 2 0 R 1 4Bit DAC 1 12/16 2 1 R 1 / 2 8/16 2 2 R 1 / 4 4/16 2 3 R
Kapitel 5: FIR- und IIR-Filterentwurf
ZHW, DSV 1, 2005/01, Rur 5-1 Kapitel 5: FIR- und IIR-Filterentwurf Inhaltsverzeichnis 5.1. EINLEITUNG...2 5.2. FREQUENZGANG...3 5.3. FILTERSPEZIFIKATION...5 5.4. FIR-FILTER...6 5.4.1. TYPISIERUNG...6 5.4.2.
Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM1
Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM Einführung in die Digitale Verarbeitung von Analogen Signalen ( DSP- Grundlage mit dem Microcontroller. Das vollständige
Übung Grundlagen der Elektrotechnik B
Übung Grundlagen der Elektrotechnik B 1 Übertragungsfunktion, Filter Gegeben sei die folgende Schaltung: R U 2 1. Berechnen Sie die Übertragungsfunktion H( jω)= U 2. 2. Bestimmen Sie die Zeitkonstante.
Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert
Die Eigenschaften von Systemen Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert S gesendet IDEALER WANDLER S gesendet Reales System (realer Wandler): Es entstehen Verzerrungen
Digitale Signalverarbeitung für Mikrofone (Digital signal processing for microphones)
Digitale Signalverarbeitung für Mikrofone (Digital signal processing for microphones) Matthias Domke *, Hans-Peter Schade ** * Microtech Gefell GmbH, [email protected] ** Technische Universität
Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1
Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang
