) + d(v s0...s n ) 2. Bedingung B ist in der Anwendung mühsam zu verifizieren. Ist ' jedoch ein Diffeomorphismus, so genügt folgende Sektorbedingung.

Größe: px
Ab Seite anzeigen:

Download ") + d(v s0...s n ) 2. Bedingung B ist in der Anwendung mühsam zu verifizieren. Ist ' jedoch ein Diffeomorphismus, so genügt folgende Sektorbedingung."

Transkript

1 248 8 HomoklinePunkteundShiftabbildungen und daher mit Lemma 2 k qk 1 1 µ d(u 1... n ) + d(v... n ) 2 1 µ n. Alo it h tetig. Die Stetigkeit von h 1 folgt chließlich au der Eindeutigkeit der Zuordnung $ und der Komaktheit von. Sektorbedingung Bedingung B it in der Anwendung müham zu verifizieren. It ' jedoch ein Diffeomorhimu, o genügt folgende Sektorbedingung. Bedingung C E it ' : V! U ein Diffeomorhimu, und für ein <µ<1 it über V da intabile Sektorbündel S u : µ, 2 V invariant unter ' und wird getreckt: D' S u Su '(), 1 µ 1. Ebeno it über U da tabile Sektorbündel S : µ, 2 U invariant unter ' 1 und wird getreckt: D' 1 S '() S, µ 1 1. œ 2 Satz Erfüllt die Abbildung ' die Bedingungen A und C mit <µ<1/2, o erfüllt ie auch Bedingung B mit = µ 1 µ < 1. Folglich gilt für ' der Satz von Smale. Wir zeigen zuert, da µ-vertikale Kurven unter ' 1 wieder in µ- vertikale Kurven übergehen. Sei œ eine µ-vertikale Kurve in V und a = \ U a für beliebige a 2 A der Abchnitt von im horizontalen Streifen U a. Da die Randtreifen von U a in je genau einem Punkt chneidet, verbindet a den oberen und unteren Rand von U a. Wegen Bedingung A verbindet dann a = ' 1 ( a ) = ' 1 ( ) \ V a den oberen und unteren Rand von V a. 8/18 (c)-machob:

2 Die geometriche Hufeienabbildung Abb 7 Zum Bewei von Satz 2 U a a 1 a q q 1 V a V b Ṽ a V Wegen der µ-vertikalität von liegt jede Sekante von a alo Gerade durch zwei Punkte auf a in einem tabilen µ-sektor S an a. Aufgrund von Bedingung C bildet ' 1 diee in einen tabilen µ-sektor S ' 1 () an a ab. Darau folgt, da auch a eine µ-vertikale Kurve it. Damit it auch klar, da au jedem µ-vertikalen Streifen V V wieder µ-vertikale Streifen Ṽ a = ' 1 (V ) \ V a, a 2 A, enttehen. Bleibt noch deren Durchmeer abzuchätzen. Der Durchmeer von Ṽ a wird zwichen zwei Punkten q und q 1 auf derelben horizontalen Geraden angenommen: d(ṽ a ) =kq 1 q k. (6) Der Gechwindigkeitvektor der Verbindungtrecke q(t) = (1 t)q + tq 1, t 1, liegt omit in S u. Der Gechwindigkeitvektor der im vertikalen Streifen V liegenden Bildkurve (t) = '(q(t)) = (x(t), y(t)), t 1, liegt aufgrund von Bedingung C damit ebenfall in S u. Setzen wir diee Kurve auf beiden Seiten geradlinig bi zum Rand von Q fort, o erhalten wir alo eine µ-horizontale Kurve, die den Rand von V in den Punkten = '(q ) und 1 = '(q 1 ) chneidet. Aufgrund Lemma 2 gilt k 1 k 1 d(v ). (7) 1 µ (c)-machob: 8/19

3 25 8 HomoklinePunkteundShiftabbildungen Anderereit gilt wegen Bedingung C ẋ µ 1 k qk >. Die Ableitung ẋ wechelt alo ihr Vorzeichen nicht, o da kq 1 q k= k q(t)k dt µ ẋ(t) dt = µ x(1) x() µk 1 k. Zuammen mit (6) und (7) erhalten wir alo d(ṽ a ) µ d(v ). 1 µ Alo werden vertikale Streifen unter ' 1 um den Faktor = µ/(1 µ) kontrahiert. Entrechende gilt dann auch für horizontale Streifen. 8.4 Homokline Punkte und Hufeien Koordinaten In geeigneten Koordinaten (x, y) um den Fixunkt it W u loc ={x = }, W loc ={y = }. (8) Dort betrachten wir die Abbildung ' auf einem hinreichend kleinen oitiven Quadrat Q a = (, a) (, a). Ohne Bechränkung der Allgemeinheit können wir annehmen, da beide Eigenwerte im Fixunkt oitiv ind, und bezeichnen ie mit < <1 <. 21 Lemma 1 It a> hinreichend klein, o gilt innerhalb von Q a x 1 x, y 1 y für (x 1,y 1 ) = '(x, y). œ Wegen (8) it x 1 = f (x, y) mit f(, ) und f x (, ) =. Alo it 8/2 (c)-machob:

4 Homokline Punkte und Hufeien Abb 8 Sektorabbildung in Q a x 1 = x f x (tx, y) dt = x + x (f x (tx, y) f x (, )) dt f x (tx, y) f x (, ) dt. Da Integral wird kleiner al > auf jedem hinreichend kleinen Quadrat Q a, und e folgt x 1 x. Analog für die y-koordinate. Sektoren 22 Lemma 2 It Q a hinreichend klein, o ind die Sektoren S u x,y : y x, S x,y : x y, invariant unter D' reektive D' 1, und für ( k, k ) = D' k (, ) gilt xk y k, k, x y k olange deren Baiunkte (x k,y k ) = ' k (x, y) in Q a liegen. œ Führen wir in Q a Koordinaten (u, v) ein durch x = u 2, y = v 2, o erhält ' die Getalt '(u, v) = ( u, v)+ ˆ'(u, v) mit k ˆ'k C 1 (Q a)! für a!. In dieen Koordinaten it x = 2u u, y = 2v v, (c)-machob: 8/21

5 252 8 HomoklinePunkteundShiftabbildungen und die intabilen Sektoren y y/x x ind gegeben durch v u. Für da Bild eine olchen Sektor unter D' gilt dann mit k ˆ'k C 1 "hinreichend klein u 1 u " u " v ( 2") u u, und entrechend v 1 v +" u +" v ( + 2") v v. Alo folgt au v u auch v 1 u 1, und S u it invariant unter D'. Entlang einer Bahn in Q a gilt außerdem u k u 1 u, und die it gleichbedeutend mit x k =2u k u k 2u k u = u k u x = xk x x. Damit ind alle Behautungen für die intabilen Sektoren gezeigt. Entrechend verfährt man mit den tabilen Sektoren. Im Folgenen verwenden wir für Sektoren am Punkt r die Notation Sr u (µ) Õ { µ }, S r (µ) Õ { µ }. Vorbereitung der Hufeienabbildung Wir wählen nun da Quadrat Q a o, da (, a) und (a, )nicht zu gehören, Lemma 1 und 2 anwendbar ind, und für alle r 2 \ Q a T r W u Sr u (µ/2), T r W Sr (µ/2), (9) mit einem <µ<1/2 gilt. Die it icher möglich, da T r W u! S u () und T r W! S () für r!. Nun fixieren wir einen Punkt = (u, ) 2 mit <u<aund eine natürliche Zahl M o groß, da q Õ ' M () = (, v), < v < a. An legen wir ein Viereck A in den abgechloenen oitiven Quadranten, da oben und unten durch gerade Segmente und link und recht durch einen Abchnitt der tabilen Mannigfaltigkeit W durch und einer dazu arallelen Kurve begrenzt wird. Diee Rechteck können wir o an anlegen, da auch A Õ ' M (A) 8/22 (c)-machob:

6 Homokline Punkte und Hufeien Abb 9 Vorbereitung der Hufeienabbildung wieder im abgechloenen oitiven Quadranten liegt. Am Punkt q gilt aufgrund von 9 D' M : S q ()! S (µ/2). Somit gibt e Umgebungen U (q) und U () und ein <" µ, o da und In diee D' M : Sr (")! S ' M (r )(µ), r 2 U (q), (1) (D' M v) " v, v 2 Sr u (µ), r 2 U (). (11) noch o klein, da und -Umgebungen legen wir die Vierecke A und A. Dabei wählen wir w " µ w, w = min {u, v}, (12) (r ) 2 S r (µ), (r ) 2 S u r (µ) (13) (c)-machob: 8/23

7 254 8 HomoklinePunkteundShiftabbildungen für die vertikalen Randkurven von A reektive die horizontalen Randkurven von A gilt. Kontruktion der Hufeienabbildung Wir betrachten nun die Mengen n o V k Õ r 2 A : ' k (r ) 2 A, ' 1 (r ),..., ' k 1 (r ) 2 Q a. Wegen Lemma 1 ind die für alle hinreichend großen k dijunkte Mengen im Viereck A, die deen oberen und unteren Rand berühren, und deren Bilder U k Õ ' k (V k ) ind dijunkte Mengen im Viereck A, die deen linken und rechten Rand berühren. 23 Behautung Für hinreichend große K und N 2 ei V Õ V K+1 [ [V K+N, V k Õ ' M (V k ). Dann it die Tranveralabbildung ' : V! A, ' Vk = ' k ' M, eine Hufeienabbildung mit N vertikalen und horizontalen Streifen. œ Zum Bewei betrachten wir zuert die horizontalen Mengen U k = ' k (V k ) = '(V k). Aufgrund von (13) liegen die Steigungen der horizontalen Randkurve von A in Sektoren S u r (µ). Wegen (12) liegen die Steigungen der oberen und unteren Randkurve von V k alo in Sektoren Sx u y,y :. x Aufgrund von Lemma 2 und (12) liegen die Steigungen der Bildkurven in A dann in Sektoren S u x k,y k : yk x k µ. Alo ind die U k µ-horizontale Streifen. Nun zu den Mengen V k = ' 1 (U k ) = ' M (V k ). Aufgrund von (13) und (12) liegen die Steigungen der vertiaklen Randkurve von U k in Sektoren S x k,y k : µ xk y k. 8/24 (c)-machob:

8 Homokline Punkte und Hufeien Abb 1 Abbildung der intabilen Sektoren Unter D' k werden diee wegen (12) abgebildet in Sektoren Sx x,y : ". y Unter D' M werden diee wegen (1) wiederum in Sektoren Sr (µ) an den Randkurven von V k abgebildet. Alo ind die V k µ-vertikale Kurven. Betrachte nun einen Sektor S u r (µ) über V k. Ein olcher Sektor wird unter D' M abgebildet in den Sektor S u ' M (r ) (1/"), denn deen Komlement, der Sektor S M ' M (r )("), wird wegen (1) durch D' in den Sektor Sr (µ) abgebildet. Wegen (12) it 1 " y x, (x,y ) 2 A, und unter D' k wird Sx u,y (1/") abgebildet in einen Sektor yk µ. x k Zuammen genommen gilt daher D ' : S u r (µ)! S ũ '(r ) (µ). Für einen Vektor (, ) 2 S u r (µ) und deen Bild (, ) unter D' M gilt ferner wegen (11) ". (c)-machob: 8/25

9 256 8 HomoklinePunkteundShiftabbildungen Für deen Bild ( k, k ) unter D' k gilt dann aufgrund von Lemma 2 und (12) xk xk k " µ. x x Damit it alle für die intabilen Sektoren S u r (µ) über den Streifen V k gezeigt. Analog verfährt man mit den tabilen Sektoren S r (µ) über den Streifen U k. Ingeamt it damit die Behautung bewieen. 8/26 (c)-machob:

Ableitungsberechnung mit der Grenzwertmethode. Besonders wichtig ist der Zentraltext über Ableitungen Datei Stand 30.

Ableitungsberechnung mit der Grenzwertmethode. Besonders wichtig ist der Zentraltext über Ableitungen Datei Stand 30. Analyi Ableitungfunktionen Ableitungberechnung mit der Grenzwertmethode Beonder wichtig it der Zentraltet über Ableitungen 400 Datei 40 Stand 0. Dezember 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40 Ableitungfunktionen

Mehr

10. Äquivalenzen zur Riemannschen Vermutung

10. Äquivalenzen zur Riemannschen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung Satz. Sei θ 0, (ii θ( = + O( θ+ε für alle ε > 0,

Mehr

F Winkelsätze. 1 Nebenwinkel und Scheitelwinkel

F Winkelsätze. 1 Nebenwinkel und Scheitelwinkel F Winkelätze 1 Nebenwinkel und Scheitelwinkel Zwei nicht parallele Geraden bilden tet vier Schnittwinkel. Dabei untercheidet man zwichen Scheitel- und Nebenwinkeln. eipiel : γ δ Nebenwinkel Nebenwinkel

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 15. Übungsblatt Karlruher Intitut für Technologie (KIT) Intitut für Analyi Dr. A. Müller-Rettkowki Dipl.-Math. M. Uhl WS 9/ Höhere Mathematik I für die Fachrichtungen Elektroingenieurween, Phyik und Geodäie Löungvorchläge

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Markov-Paritionen und geometrische Modelle von Attraktoren

Markov-Paritionen und geometrische Modelle von Attraktoren Markov-Paritionen und geometrische Modelle von Attraktoren Jan Christoph Kinne 15. Februar 2003 1 Was sind Markov-Partitionen? Hat man ein diskretes dynamisches System f : M M gegeben, so will man M in

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse.

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse. .6. Klausur Kurs Ma Mathematik Lk Lösung Gegeben ist die Gleichung x y y x. [] Verschaffen Sie sich einen Überblick über den Kurvenverlauf, indem Sie die Kurve auf Asymptoten und waagrechte sowie senkrechte

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

8.6.5 Diffusion von Bromdampf ******

8.6.5 Diffusion von Bromdampf ****** 8.6.5 ****** Motivation Die Langamkeit der Diffuion wird mit Hilfe von Bromdampf veranchaulicht. Die quantitative Meung der Diffuion erlaubt die Betimmung der mittleren freien Weglänge und die Meung der

Mehr

Wilde hyperbolische Mengen

Wilde hyperbolische Mengen Wilde hyperbolische Mengen Frank Bruder 16. Juli 2006 Grundlegendes Es sei im Weiteren M immer eine zweidimensionale Mannigfaltigkeit. Definition 1. Für eine r mal stetig differenzierbare Abbildung f :

Mehr

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 206/207 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L { 2; ; 0; ;...}, denn b) L Z G, denn. Fall: 3 (x 7) (x 3)(x 7) x 7 oder 3 x 3 x 7 oder x 6 2. Fall: 3 (x 7) < (x

Mehr

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0

Verschiebungssatz: Ist F (s) die Laplace-Transformierte von f (t), dann gilt für t 0 > 0 3.6 Tranformationätze 853 3.6 Tranformationätze In dieem Abchnitt werden weitere Eigenchaften der Laplace-Tranformation vorgetellt, die in vielen technichen Bechreibungen ihre Anwendung finden. Oftmal

Mehr

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen

Mehr

12 Extremwerte und Monotonie

12 Extremwerte und Monotonie 5 II. Differentialrechnung 1 Extremwerte und Monotonie Lernziele: Resultate: Existenz von Maxima und Minima stetiger Funktionen auf kompakten Intervallen, Monotoniesatz Kompetenzen: Bestimmung lokaler

Mehr

Ketten. I n = [0,1] n, n 0, mit der Vereinbarung I 0 Õ{0}. Sei n 0. Der Standard-n-Würfel ist die Abbildung. Definition. I n : I n! R n, I n (x) = x.

Ketten. I n = [0,1] n, n 0, mit der Vereinbarung I 0 Õ{0}. Sei n 0. Der Standard-n-Würfel ist die Abbildung. Definition. I n : I n! R n, I n (x) = x. Ketten 22.3 623 22.3 Ketten Wir spezifizieren nun die geometrishen Objekte, über die wir Differenzialformen integrieren wollen. Die Begriffsbildung mag etwas umständlih ersheinen. Tatsählih handelt es

Mehr

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr.

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr. Zahlefolge Teil 3: Reihe Arithmetiche Reihe Geometriche Reihe Theorie ud Muterbeipiele E wird auch da Arbeite mit dem Summezeiche geübt! Datei Nr. 40050 Stad 7. September 06 Friedrich W. Buckel INTERNETBIBLIOTHEK

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anali III W / Löungvorchläge zum 9. Übungblatt. Wir zeigen zunächt, da die u.u. au Vorleung/Übung noch nicht bekannt it: It A BR p und B BR q, o it A B BR p+q. Die läßt ich z.b. wie in Aufgabe

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

3.1 Der Satz von Engel

3.1 Der Satz von Engel 3. Auflöbare und nilpotente Lie-Algebren 17 3.1 Der Satz von Engel Ein grundlegende Reultat über nilpotente Lie-Algebren it der Satz von Engel, der eine Verbindung zwichen nilpotenten Endomorphimen und

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Implizite Funktionen

Implizite Funktionen Implizite Funktionen Durch die Bedingung F (x, y) = C, C R wird eine bestimmte Teilmenge des R 2 festgelegt, zb durch die Bedingung x y = 4 Dabei können wir obda C = 0 annehmen, da wir stets zur Betrachtung

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Lösungen zu den Tutoriumsaufgaben

Lösungen zu den Tutoriumsaufgaben Mathematisches Institut der Universität München Prof. Dr. Georg Tamme, Thomas Beekenkamp SS 17 Blatt 5 Lösungen zu den Tutoriumsaufgaben T1. (a) Finden Sie eine Kurve α im R 2, deren Bahn K wie eine liegende

Mehr

Fenchels Theorem. Daniel Weber. Proseminar Kurven. Wintersemester 2012/13. Prof. Dr. Franz Pedit

Fenchels Theorem. Daniel Weber. Proseminar Kurven. Wintersemester 2012/13. Prof. Dr. Franz Pedit Proseminar Kurven Wintersemester 212/13 Prof. Dr. Franz Pedit Inhaltsverzeichnis 1 Einleitung 2 2 Prolog 3 2.1 (Hemi-)Sphären.................................... 3 2.2 Groß- und Kleinkreise................................

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Übungen mit dem Applet Kurven in Parameterform

Übungen mit dem Applet Kurven in Parameterform Kurven in Parameterform 1 Übungen mit dem Applet Kurven in Parameterform 1 Ziele des Applets... Wie entsteht eine Kurve in Parameterform?... 3 Kurvenverlauf für ausgewählte x(t) und y(t)... 3 3.1 x(t)

Mehr

1 Distributionen und der Satz von Frobenius

1 Distributionen und der Satz von Frobenius 1 Distributionen und der Satz von Frobenius 1.1 Vorbemerkungen Definition 1.1. Sei M eine d-dimensionale Mannigfaltigkeit, sei (U, ϕ) ein Koordinatensystem auf M mit Koordinatenfunktionen x 1,..., x d.

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

Übungsaufgaben zur Vorlesung. Lineare Algebra II. Komplex VI: Vektoren, Vektorräume und Lineare Unabhängigkeit

Übungsaufgaben zur Vorlesung. Lineare Algebra II. Komplex VI: Vektoren, Vektorräume und Lineare Unabhängigkeit Übungaufgaben zur Vorleung Lineare Algebra II Komplex VI: Vektoren, Vektorräume und Lineare Unabhängigkeit. Seien p = (, k) und q = (, ). Man betimme k o, daß p und q (a) parallel ind. (b) orthogonal ind.

Mehr

Zentrumsmannigfaltigkeiten. Eva Maria Bartram

Zentrumsmannigfaltigkeiten. Eva Maria Bartram Zentrumsmannigfaltigkeiten Eva Maria Bartram 09. Mai 2006 Gliederung 1. Einleitung 1.1 Hartmans Theorem 1.2 Stabile Mannigfaltigkeiten-Theorem für einen Fixpunkt 2. Zentrumsmannigfaltigkeits-Theorem für

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2 1994 Runde ufgabe 1 Zeige, da 1!! 3!... 1995! mindeten 1 Teiler hat. Hinwei: Unter n! verteht man da Produkt der erten n natürlichen Zahlen. eipiel: 5! = 1 3 4 5 = 10 Löung Die Summe S = 1!! 3!... 1995!

Mehr

Juni 2006 /Dezember 2009 Der Satz von Haga 1

Juni 2006 /Dezember 2009 Der Satz von Haga 1 www.mathegami.de Juni 006 /Dezember 009 Der Satz von Haga eine mögliche Ergänzung und eine Verallgemeinerung Michael Schmitz Meinem verehrten Lehrer, Herrn Prof. Dr. Werner Mögling zum 80. Geburttag gewidmet.

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

3. Mai Zusammenfassung. g x. x i (x).

3. Mai Zusammenfassung. g x. x i (x). 3. Mai 2013 Zusammenfassung 1 Hauptsatz Satz 1.1 Sei F C 1 (D) für eine offene Teilmenge D von R q+1 = R q R. Für (x 0, u 0 ) D gelte F (x 0, u 0 ) = 0, (x 0, u 0 ) 0. Dann gibt es eine Umgebung V von

Mehr

8 Martingaldarstellung und Doob-Meyer Zerlegung

8 Martingaldarstellung und Doob-Meyer Zerlegung 8 Martingaldartellung und Doob-Meyer Zerlegung 8.1 Der Martingaldartellungatz In Kapitel 3 haben wir gezeigt, da da Ito-Integral eine H -Integranden ein tetige Martingal it. Der Martingaldartellungatz

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Zusammenfassung. dp i

Zusammenfassung. dp i Zusammenfassung 1. Hamiltonsche Mechanik und die hamiltonschen Gleichungen d i dt = @H i, dq i dt = @H i, @H @t = @L @t.. Poisson-Klammern. Eigenschaften: NX ale @F @G @F @G {F, G} = i i i i i=1 {F 1,F

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom Übungsaufgaben 8. Übung SS 17: Woche vom 22.5. - 26. 5. 2017 Heft Ü 2: 24.15.f; 25.11.b, f; 26.1.a, b, c; + 1 Zusatzaufgabe zur Reduktion bei DGLn Krümmungsvektor, Krümmung im R 3 (R n ) Def. 5.17: Der

Mehr

5 Die Poisson-Approximation

5 Die Poisson-Approximation 5 Die Poion-Approximation Im vierten Kapitel hatten wir mit der Normalverteilung die icherlich wichtigte und meittudierte Verteilung der W.-Theorie kennengelernt und geehen, daß man diee al Lime eine geeignet

Mehr

Von Mitio NAGUMO. (Gelesenam 20. Juli, 1937.)

Von Mitio NAGUMO. (Gelesenam 20. Juli, 1937.) U ber die Differentialgleichung y"=f(x, y, y') Von Mitio NAGUMO. (Gelesenam 20. Juli, 1937.) Das Hauptziel vorliegender Arbeit ist eine hinreichende Bedingung zu geben, dass es in einem beschrankten Bereich

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) =

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) = Bemerkungen Die Erweiterung der Definition von partiellen Ableitungen 1. Ordnung für Funktionen u = f (x 1,..., x n ) mit n > 2 Veränderlichen ist offensichtlich: f xi (x 1,..., x n ) = f (x 1,..., x i

Mehr

Figurierte Zahlen, Urnen und Kugelfarben

Figurierte Zahlen, Urnen und Kugelfarben Figurierte Zahlen, Urnen und Kugelfarben KLAUS-ULRICH UDER, Lüneburg HANS HUMENBERER und BERTHOLD SCHUPPAR, Dortmund Zuammenfaung: Bei einem elementaren tochatichen Problem (Ziehung von zei Kugeln au einer

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9 Prof r Holger ette Muterlöung Statitik I Sommeremeter 009 r Melanie Birke Blatt 9 Aufgabe : 4 Punkte E eien X,, X n unabhängig identich N µ, -verteilt a Man berechne die Fiher-Information I µ für µ b E

Mehr

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB KLAUSUR ZUR ATHEATIK FÜR PHYSIKER ODUL ATHB In jeder Aufgabe können Punkte erreicht werden Es zählen die 9 bestbewerteten Aufgaben Die Klausur ist mit 45 Punkten bestanden Die Bearbeitungszeit beträgt

Mehr

2. Übungsblatt zur Differentialgeometrie

2. Übungsblatt zur Differentialgeometrie Institut für Mathematik Prof. Dr. Helge Glöckner Dipl. Math. Rafael Dahmen SoSe 11 15.04.2011 2. Übungsblatt zur Differentialgeometrie (Aufgaben und Lösungen) Gruppenübung Aufgabe G3 (Atlanten) (a) In

Mehr

Scheinklausur Analysis 2 Ss Juli 2008

Scheinklausur Analysis 2 Ss Juli 2008 Scheinklausur Analysis 2 Ss 2008 11. Juli 2008 Es gibt 10 Aufgaben. Die jeweilige Punktzahl steht am linken Rand. Die Gesamtpunktzahl ist 40 Punkte. Zum Bestehen der Klausur sind 16 Punkte erforderlich.

Mehr

26. Der Gaußsche Integralsatz

26. Der Gaußsche Integralsatz 6 26. Der Gaußsche Integralsatz Im Folgenden sei eine k-dimensionale Untermannigfaltigkeit des R n und a 2. 26.1. Tangentialvektoren. Ein Vektor v 2 R n heißt Tangentialvektor an in a, falls es eine stetig

Mehr

mit dem Betrag v 0 Die Anordnung befindet sich im Vakuum. Die auf die Ionen wirkenden Gravitationskräfte sind vernachlässigbar klein.

mit dem Betrag v 0 Die Anordnung befindet sich im Vakuum. Die auf die Ionen wirkenden Gravitationskräfte sind vernachlässigbar klein. athphy-online Abchluprüfung Berufliche Oberchule 00 Phyik Technik - Aufgabe II - Löung Teilaufgabe.0 Mit der unten dargetellten Anordnung kann die Mae von Protonen betit werden. Eine Waertoffionenquelle

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander.

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander. -MAVT/-MATL FS 8 r. Andreas Steiger Analysis IILösung - Serie9. ie Fläche S sei einerseits durch die Parameterdarstellung (u, v) r(u, v) und andererseits durch die Gleichung f(x, y, z) = gegeben. Wir betrachten

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundlagen der Mathematik (LPSI/LS-M1) Lösungen Blatt 10 WiSe 010/11 - Curilla/Koch/Ziegenhagen Präsenzaufgaben (P3) Wir wollen die Ungleichung

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

4. Fortsetzung auf R N.

4. Fortsetzung auf R N. 4. Fortsetzung auf R N. Frage: Wann kann man Funktionen u W (Ω) zu ũ W (RN ) fortsetzen? Hier wird i.a. eine Fortsetzung durch 0 in R N \ Ω nicht zum Erfolg führen, da man die schwachen Ableitungen über

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Der Kugelring. Verfasser: Praxelius. Beschreibung des Kugelrings und Herleitung der Formeln

Der Kugelring. Verfasser: Praxelius. Beschreibung des Kugelrings und Herleitung der Formeln Der Kugelring Verfaer: Praxeliu Bechreibung de Kugelring und Herleitung der Formeln PDF-Dokument: Kugelring.pdf Da Dokument it urheberrechtlich gechützt. Alle Rechte vorbehalten. KR-850-00 Dieen Beitrag

Mehr

Definition: Die Bewegung eines Körpers, die sich in festen Zeitabständen wiederholt und symmetrisch zu einer Ruhelage abläuft heißt Schwingung.

Definition: Die Bewegung eines Körpers, die sich in festen Zeitabständen wiederholt und symmetrisch zu einer Ruhelage abläuft heißt Schwingung. 9 Schwingungen 9.1 Beipiele und Grundlagen Ruhelage Ruhelage Fadenpendel Ruhelage Federpendel Federpendel Ruhelage orionpendel Charakteritika: Die Bewegung it periodich; d.h. die Bewegung wiederholt ich

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

a) b) Abb. 1: Abgeschrägtes Dodekaeder

a) b) Abb. 1: Abgeschrägtes Dodekaeder Han Waler, [018066] Abgechrägte Dodekaeder Idee und Anregung: Frank Heinrich, Braunchweig 1 Worum geht e? Da abgechrägte Dodekaeder (Abb. 1) it ein archimedicher Körer mit 1 regelmäßigen Fünfecken und

Mehr

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf d Gewöhnliche Differentialgleichungen Woche 6 Existenz nach Picard-Lindelöf 6.1 Vorbereitung für den Existenzsatz 6.1.1 Stetigkeit und Lipschitz-Stetigkeit Definition 6.1 Seien (V 1, 1 und (V 2, 2 zwei

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (. Juli 6) für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe 1: In der x-y-ebene seien die Mengen A {(x, y) : x } und

Mehr

Systeme gewöhnlicher Di erentialgleichungen. Ordnung

Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme. Ordnung De nition Für eine gegebene n n-matrix A(x) =(a ij (x)) n i,j=, deren Elemente Funktionen von x sind und einer gegebenen rechten Seite

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Randomisiert inkrementelle Konstruktion der Trapezzerlegung. Strecken in der Ebene

Randomisiert inkrementelle Konstruktion der Trapezzerlegung. Strecken in der Ebene Randomiiert inkrementelle Kontruktion der Trapezzerlegung einer Menge von Strecken in der Ebene (Literatur: deberg et al., Kapitel 6) Chritian Knauer 1 Problemtellung Gegeben: Eine Menge von n Strecken

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

Konvexe Funktionen und Legendre-Transformation

Konvexe Funktionen und Legendre-Transformation Konvexe Funktionen und Legendre-Transformation Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x, y auch stets deren Verbindungsstrecke xy = {x +t xy 0 t 1} = {(1 t)x +ty 0 t 1} enthält.

Mehr

Übungsblatt 03. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungblatt 3 PHYS11 Grundkur I Phyik, Wirtchaftphyik, Phyik Lehramt Othmar Marti, othmar.marti@uni-ulm.de 4. 11. 5 und 7. 11. 5 1 Aufgaben 1. Im erten Übungblatt wurde der Fahrplan eine BMW-Maenpunkte

Mehr

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke Konvexe Mengen Def. Eine Teilmenge A R n heißt onvex, wenn sie mit je zwei Punten x,y auch stets deren Verbindungsstrece xy = {x + t xy 0 t } = {( t)x + ty 0 t } enthält. onvex nicht onvex Lemma 2. Der

Mehr

Dierentialrechnung. 1. Tangente. Ableitung. Dierential. Dierentialrechnung. Tangente. Ableitung. Dierential

Dierentialrechnung. 1. Tangente. Ableitung. Dierential. Dierentialrechnung. Tangente. Ableitung. Dierential Dierentialrechnung. Tangente. Ableitung. Dierential Variablen und Funktionen Die Hauptguren dieser Notizen sind Variablen. Eine Variable ist ein oder mehrere Smbole, die nebeneinander stehen, zum Beispiel

Mehr

Elektrisches Feld P = IU= RI 2 = U2 R C = Q U

Elektrisches Feld P = IU= RI 2 = U2 R C = Q U Elektriche Feld Formeln E-Lehre I Stromtärke I Q t Ohmcher Widertand R U I Elektriche Leitung (inkl. ohmcher Widertand) E-Feld/Kondeator P IU RI 2 U2 R Elektriche Feldtärke Kapazität eine Kondenator ~E

Mehr

Seminarvortrag über die Euler-Charakteristik einer Fläche

Seminarvortrag über die Euler-Charakteristik einer Fläche Dies ist eine Ausarbeitung für einen Seminarvortrag, den ich im Sommersemester 2013/14 an der Humboldt-Universität im Proseminar Differentialgeometrie von Kurven und Flächen bei Christoph Stadtmüller gehalten

Mehr

Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom Claudia Würz

Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom Claudia Würz 1 Einleitung Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom 13.06.2006 Claudia Würz Im folgenden wollen wir uns mit Liegruppen und Liealgebren beschäftigen. Sie sind nicht nur für

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Kapitel L. Gewöhnliche Differentialgleichungen

Kapitel L. Gewöhnliche Differentialgleichungen Kapitel L Gewöhnliche Differentialgleichungen Inhalt dieses Kapitels L000 1 Erste Beispiele von Differentialgleichungen 2 Exakte Differentialgleichungen 3 Fazit: Existenz, Eindeutigkeit, Lösungsmethoden

Mehr

Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y.

Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y. D-MAVT/D-MATL Analysis II FS 018 Dr. Andreas Steiger Lösung - Serie 4 1. Welche der folgenden Differenzialgleichungen ist linear? (a) (y ) = y (b) y + y 1 x + y 1 + x = 1 x (c) y = xy x y (d) y + y + y

Mehr

Finaltopologien und Quotienten

Finaltopologien und Quotienten Abschnitt 7 Finaltopologien und Quotienten Finaltopologien Durch Umkehren der Pfeile erhalten wir dual zur Definition von Initialtopologien die Definition von Finaltopologien. Wir beginnen mit zwei Definitionen.

Mehr

Vortrag 11: Der Satz von Bézout. Friedrich Feuerstein, Christian Pehle 17. Juli 2009

Vortrag 11: Der Satz von Bézout. Friedrich Feuerstein, Christian Pehle 17. Juli 2009 Vortrag 11: Der Satz von Bézout Friedrich Feuerstein, Christian Pehle 17. Juli 2009 1 Einleitung Ziel dieses Vortrages ist es zu zeigen, dass zwei Kurven vom Grad s bzw. t in der Ebene genau st Schnittpunkte

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4

Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4 Prof. Roland Gunesch Sommersemester Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4 Analysieren Sie folgende mathematischen Modelle der Liebesbeziehung zwischen

Mehr