Das Baseler Problem =?
|
|
|
- Julia Kerner
- vor 6 Jahren
- Abrufe
Transkript
1 Das Baseler Problem =?
2 Das Baseler Problem Geschichte 644 durch den italienischen Mathematiker Pietro Mengoli formuliert Es versuchten sich diverse Mathematiker an dem Problem, vor allem von der Universität Basel 689 Jakob Bernoulli Johann Bernoulli 735 Lösung durch Leonard Euler = π 6
3 Das Baseler Problem numerische Lösung π 6, ,
4 Das Baseler Problem übliche Lösungen 4
5 Eine geometrische Lösung. Vorbereitung Eine Konstruktion an zwei Kreisen 5
6 Eine geometrische Lösung. Vorbereitung Eine Konstruktion an zwei Kreisen 6
7 Eine geometrische Lösung. Vorbereitung 7
8 Eine geometrische Lösung. Vorbereitung 8
9 Eine geometrische Lösung. Vorbereitung Die neuen Punkte Si auf Kreis haben folgende Eigenschaften:. Sie liegen ebenfalls äquidistant auf der Kreislinie.! S i S i+! P i P i+. Die Bogenlänge ist genau so lang wie die Bogenlänge. 9
10 Eine geometrische Lösung. Vorbereitung Der inverse Pythagoras a + b = h Beweis a + b = c c h = a b ( = Flächeninhalt ) a + b = a b c = a b h h : a b ( ) a + b = h 0
11 Eine geometrische Lösung 3. Vorbereitung Ein neuer Begriff Die Intensität eines Punktes A in Bezug auf einen Punkt B. I B ( A) = AB A B
12 Eine geometrische Lösung.und 3. Vorbereitung Der inverse Pythagoras a + b = h I c ( B)+ I c ( A) = I c ( F ) In Worten Die Intensität (in Bezug auf den Scheitelpunkt des rechten Winkels) des Höhenfußpunktes ist gleich der Summe der beiden Intensitäten der Endpunkte der Hypotenuse. Die Intensität des Höhenfußpunktes kann auf die Enden der Hypotenuse verteilt werden.
13 Der Konstruktionsprozess Wir starten mit einem Kreis um einen Punkt M0, der den Umfang hat. Auf dem Kreis liegt ein Punkt Z, ihm genau gegenüber der Punkt M. U = = πd d = π = M Z Alle nachfolgenden Intensitäten werden in Bezug auf den Punkt Z berechnet. Daher lassen wir Z im Index weg. I( M ) = = M Z d = = π 4 π 3
14 Der Konstruktionsprozess I( M ) = π 4 = I P, Wir zeichnen um M einen weiteren Kreis k mit dem Radius MZ. Durch M zeichnen wir die Senkrechte zu ZM. und erhalten die Punkte P, und P,. Das Dreieck P,P,Z ist rechtwinklig mit dem rechten Winkel bei Z. (Satz des Thales) M ist der Höhenfußpunkt in diesem Dreieck. Also kann die Intensität von M auf die beiden Punkte P, und P, verteilt werden. ( )+ I( P, ) 4
15 Der Konstruktionsprozess I( M ) = π 4 = I ( P, )+ I( P, ) Der Kreis k ist doppelt so groß wie k0, hat also den Umfang 4. Die Bögen zwischen den Punkten haben dann, wie angegeben, die Längen!!! ZP, = P, P, = P, Z = 5
16 Der Konstruktionsprozess Also kann die Intensität von P, auf die beiden Punkte P, und P,3 verteilt werden. I( P, ) = I( P, )+ I( P,3 ) Wir zeichnen um M einen weiteren Kreis k mit dem Radius MZ. Die Gerade MP, erzeugt auf k die Punkte P, und P,3 und die Gerade MP, die Punkte P, und P,4. Das Dreieck P,P,3Z ist rechtwinklig mit dem rechten Winkel bei Z. (Satz des Thales) P, ist der Höhenfußpunkt in diesem Dreieck. 6
17 Der Konstruktionsprozess Analog ist das Dreieck P,P,4Z rechtwinklig mit dem rechten Winkel bei Z. (Satz des Thales) P, ist der Höhenfußpunkt in diesem Dreieck. Also kann die Intensität von P, auf die beiden Punkte P, und P,4 verteilt werden. I( P, ) = I( P, )+ I( P,4 ) Also gilt insgesamt I( P, )+ I( P, ) = I( P, )+ I( P,3 )+ I( P, )+ I( P,4 ) = π 4 7
18 Der Konstruktionsprozess I( P, )+ I( P, ) = I( P, )+ I( P,3 )+ I( P, )+ I( P,4 ) = π 4 Der Kreis k ist doppelt so groß wie k, hat also den Umfang 8. Die Bögen zwischen den Punkten haben dann, wie angegeben, die Längen!!!!! ZP, = P, P, = P, P,3 = P,3 P,4 = P,4 Z = 8
19 Der Konstruktionsprozess Wir zeichnen um M3 einen weiteren Kreis k3 mit dem Radius M3Z. Wir ziehen die Geraden M3P,. Sie erzeugen auf k3 die Punkte P3,. Beispiel: Das Dreieck P3,P3,6Z ist rechtwinklig mit dem rechten Winkel bei Z. (Satz des Thales) Analoges gilt für jeden Punkt P, auf k. P, ist der Höhenfußpunkt in diesem Dreieck. Also kann die Intensität von P, auf die beiden Punkte P3, und P3,6 verteilt werden. 9
20 Der Konstruktionsprozess Also können die Intensitäten aller Punkte auf k auf die entsprechenden Punkte auf k3 verteilt werden. Es gibt zwei Konstanten in diesem schrittweisen Konstruktionsprozess: Die Summe aller Intensitäten aller Punkte auf einem Kreis π bleibt. 4 Entsprechend der Vorbereitung liegen die Punkte auf einem Kreis äquidistant und die Bögen haben konstant die Länge. 0
21 Der Grenzübergang r Im Grenzübergang erhält man einen unendlich großen Kreis durch Z, also eine Gerade durch Z. Wegen der konstanten Bogenlängen,,, liegen die Punkte auf der Geraden im Abstand, 3, 5, 7, zu beiden Seiten von Z. Die Summe aller Intensitäten aller Punkte ist weiterhin. 4 ( I( P )+ I( P )+ I( P 3 )+ I( P 4 )+...)+ I( P )+ I( P )+ I( P 3 )+ I( P 4 )+... π ( ) = π Wegen der Symmetrie gilt I( P )+ I( P )+ I( P 3 )+ I( P 4 )+... ( ) = π 4 8
22 Der Grenzübergang r I( P )+ I( P )+ I( P 3 )+ I( P 4 )+... ( ) = π Die Intensitäten können nun explizit bestimmt werden = π 8 = S u Nennen wir diese Summe Su Das Ziel unserer Betrachtung ist S =
23 Der Grenzübergang r S = S u = π 8 S = = S + S u g S g = = = 4 S Also S = S u + S g = π S 3 4 S = π 8 S = π S = π 6 3
Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem
Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler roblem von Reimund Albers, Bremen Im Baseler roblem geht es um die Summe der reziproken Quadrate, also + + 2 3 + 2 4 + +..., und ein exaktes
3. Stegreifaufgabe aus der Mathematik Lösungshinweise
(v0.1 16.1.09) Schuljahr 008/009. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Der Satz des Pythagoras lässt sich zum Beispiel so formulieren: In einem rechtwinkligen Dreieck
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Grundbegriffe Geraden Kreis Winkel Kreis. Rund um den Kreis. Dr. Elke Warmuth. Sommersemester / 20
Rund um den Kreis Dr. Elke Warmuth Sommersemester 2018 1 / 20 Grundbegriffe Geraden Kreis Winkel Kreis 2 / 20 Kreis Kreisfläche oder Kreislinie Definition Die Kreislinie um M mit dem Radius r ist die Menge
Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Blatt 7 1.06.017 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a) Um ein rechtwinkliges Dreieck in seiner
Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben.
Übungen A1 Konstruiere ein Dreieck ABC und dessen Umkreismittelpunkt aus den folgenden Angaben. a) A( 4 2), B(2 2), C(2 4) b) a = 5cm, b = 4cm und c = 8cm A2 Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt
Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse
4.15 Buch I der Elemente
4.15 Buch I der Elemente Das erste Buch der Elemente beginnt mit 23 Definitionen, 5 Postulate und einige Axiomen (von denen man in späteren Ausgaben bis zu 9 findet). Die ersten fünf Definitionen lauten
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
Abitur 2011 G8 Abitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen
Sicheres Wissen und Können zum Kreis 1
Sicheres Wissen und Können zum Kreis 1 Die Schüler können Figuren als Kreise erkennen und Kreise nach gegebenen Maßen mit dem Zirkel zeichnen. Die Schüler beherrschen folgende Bezeichnungen: Mittelpunkt
Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium
Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen
Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?
D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton
Polareuklidische Geometrie
Polareuklidische Geometrie Der duale Satz des Pythagoras und das Basler Problem Immo Diener Zusammenfassung des Vortrags im Kolloquium Mathematik und Geisteswissenschaft 20. Oktober 208 Der Satz des Pythagoras
Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018
Propädeutikum 018 1. September 018 Denition Trigonometrie Die Trigonometrie beschäftigt sich mit dem Messen (µɛτ ρoν) von dreiseitigen (τ ρίγωνo) Objekten. Zunächst gilt in Dreiecken: A = 1 g h Abbildung:
Didaktik der Elementargeometrie
Humboldt-Universität zu Berlin Sommersemester 2014. Institut für Mathematik A. Filler Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 2 Konstruieren im Geometrieunterricht Konstruieren
π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit).
Das geometrische π π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). nach Hans-Werner Meixner und Coautor Christian Meixner Als Basis für die Ausführungen zur geometrischen
Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA
Satz des Pythagoras Lösung von Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Länge x der Hypotenuse: Ansatz: x² = 8² + 15² x = 17 cm b ) Beispiel für den Nachweis der Rechtwinkligkeit:
Mathematik 1 Übungsserie 3+4 ( )
Technische Universität Ilmenau WS 2017/2018 Institut für Mathematik Thomas Böhme BT, EIT, II, MT, WSW Aufgabe 1 : Mathematik 1 Übungsserie 3+4 (23.10.2017-04.11.2017) Sei M eine Menge. Für eine Teilmenge
E r g ä n z u n g. zur Trigonometrie
E r g ä n z u n g zur Trigonometrie Klasse 10 b 2018 / 19 Deyke www.deyke.com Trigonometrie.pdf W I N K E L F U N K T I O N E N Die Strahlensätze und der Satz des Pythagoras sind bisher die einzigen Hilfsmittel
Kreissektoren - Bogenlänge und Sektorfläche
Kreissektoren - Bogenlänge und Sektorfläche 1 In folgender Tabelle ist r Radius, b Bogenlänge und φ Mittelpunktswinkel eines Kreissektors A s ist dessen Flächeninhalt Berechne die fehlenden Größen: r φ
Kreis Kreisabschnitt Kreissegment Kreisbogen
Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt)
Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).
Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Pythagoreische Tripel
Pythagoreische Tripel Ingolf Giese Mai 2018 Pythagoreische Tripel - oder Pythagoreische Zahlentripel - sind drei (positive) ganze Zahlen, bei denen die Summe der Quadrate der beiden kleineren Zahlen gleich
1 Pyramide, Kegel und Kugel
1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche
Drei Kreise im Dreieck
Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt
Trigonometrische Funktionen: Sinus und Cosinus. Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 2013
Trigonometrische Funktionen: Sinus und Cosinus Dieter Harig (Dipl. Math.) HD MINT-Projekt 5. Dezember 0 4 5 4 4 Grad- und Bogenmaß Wir betrachten den Einheitskreis (Radius r = ) und einen beliebigen Winkel
Mathematisches Hauptseminar bei Frau Dr. Warmuth WiSe 09/10. Belegarbeit. erstellt und eingereicht von:
Mathematisches Hauptseminar bei Frau Dr. Warmuth WiSe 09/10 Belegarbeit Thema 16: Konzept des geometrischen Orts und geometrisches Begründen und Beweisen erstellt und eingereicht von: Barbara Auel, 511679
Fräsen ohne Radiuskorrektur Mit Berechnung der Fräsermittelpunktsbahn
Fräsen ohne Radiuskorrektur Mit Berechnung der Fräsermittelpunktsbahn Wer mit einer Uralt-NC oder einer Eigenbausteuerung arbeitet, kann oft nicht auf die Fräserradiuskorrektur G41 / G42 zurück greifen
Kapitel 3 Mathematik. Kapitel 3.6 Geometrie Satz des Pythagoras
TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87
befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit
Planimetrie Lernziele befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Selbständiges Erarbeiten der Kurztheorie Kenntnis
Bogenmaß und trigonometrische Funktionen
Bogenmaß und trigonometrische Funktionen Was ist ein "Winkel"? Wir suchen eine tragfähige Definition. N Der "Winkel (zwischen von einem Punkt ausgehenden Halbgeraden)" beschreibt deren relative Lage zueinander
Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:
9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen
3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade
Die Eulergerade Begrie In einem Dreieck liegen der Schwerpunkt S, der Höhenschnittpunkt H und der Umkreismittelpunkt U auf einer gemeinsamen Geraden, der Euler-Geraden (Bezeichnung: e). Zur Erinnerung:
Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $
$Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich
MIT EINEM EINZIGEN SATZ SÄTZE DER GEOMETRIE LASSEN SICH ALLE. [Text eingeben]
MIT EINEM EINZIGEN SATZ LASSEN SICH ALLE SÄTZE DER GEOMETRIE [Text eingeben] DAS GITTER-DREIECKE Das kleinste rationale Dreieck aus Gitterpunkten ist rechtwinklig und hat die Katheten 3 und 4 und die Hypotenuse
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
Geometrie Satz des Pythagoras
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe:
Oberfläche von Körpern
Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h
master-module ARBEITSBLÄTTER ... mit uns können Sie rechnen!
master-module ARBEITSBLÄTTER... mit uns können Sie rechnen! Das Lernsoftware-Paket zu diesem Thema kannst du kostenlos herunterladen: https://www.elearning-soft.de/downloads/ Lernen ist mehr als Verstehen!
1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige
Grundlagen IV der Kathetensatz
Grundlagen IV der Kathetensatz Der Kathetensatz ergibt sich wie auch der Höhensatz aus dem Ähnlichkeitssatz: b a a c = p a a 2 = p c p q b c = q b b 2 = q c c Löse die folgenden Teilaufgaben mithilfe des
Zum Einstieg. Mittelsenkrechte
Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch
Geometrie der Polygone Konstruktionen Markus Wurster 1
Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius
Fachwörterliste Mathematik für Berufsintegrationsklassen
Fachwörterliste Mathematik für Berufsintegrationsklassen Lerngebiet 2.4: Grundkenntnisse der Geometrie München, Februar 2019 ISB Berufssprache Deutsch Erarbeitet im Auftrag des Bayerischen Staatsministeriums
Unterrichtsreihe zur Parabel
Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
Kreis, Zylinder, Kegel, Kugel
Kreis, Zylinder, Kegel, Kugel Kreis Ziele: Kenntnis der Begriffe: Radius, Umfang, Durchmesser, Sehne, Sekante, Tangente, Berührungsradius einfache Berechnungen durchführen können, Formeln für Umfang und
Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.
Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)
Die Oberfläche der Verpackung besteht aus sechs Teilen: 2 Trapeze (vorne und hinten), und 4 Rechtecke.
Aufgabe 1a) Schritt 1: Oberflächenformel aufstellen Gesucht ist die Oberfläche des Prismas. Das heißt, 2, mit G als Grundfläche und M als Mantel. Die Oberfläche der Verpackung besteht aus sechs Teilen:
Euklid ( v. Chr.) Markus Wurster
Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid
Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $
$Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten
1 Einleitung 1. 2 Notation 1
Inhaltsverzeichnis 1 Einleitung 1 2 Notation 1 3 Definitionen & Hilfssätze 1 3.1 Definition (Sehne)............................... 1 3.2 Satz (Peripheriewinkelsatz).......................... 2 3.3 Lemma.....................................
Das Prisma ==================================================================
Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der
Begründen in der Geometrie
Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten
Vorwort: Farbe statt Formeln 7
Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................
Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke
Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,
4.18 Buch IV der Elemente
4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =
Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot
athplan 8.4 Geometrie Kreis Kreisteile Flächenberechnung Name: Hilfsmittel : Geometrie 2 / AB 8 Zeitvorschlag: 3 Wochen von: Lernkontrolle am: bis Probe 8.4 Wichtige Punkte: Ich mache eine saubere, klare
A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 %
5 Prozentrechnen Übung 50 Der ganze Streifen entspricht 100 % = 1 000 = 1. Welche Prozent- und Promillesätze stellen die unterschiedlich getönten Flächen dar? Abb. 27 1. 2. 3. Übung 51 Der volle Winkel
1 Mengenlehre. Maturavorbereitung GF Mathematik. Aufgabe 1.1. Aufgabe 1.2. Bestimme A \ B. Aufgabe 1.3. Aufgabe 1.4. Bestimme B \ A. Aufgabe 1.
Maturavorbereitung GF Mathematik Kurzaufgaben 1 Mengenlehre Aufgabe 1.1 Gegeben sind die Mengen A = {1, 2, 3} und B = {2, 3, 6, 8}. Bestimme A B. Aufgabe 1.2 Gegeben sind die Mengen A = {1, 2, 3} und B
Die Quadratur des Kreises
Die Quadratur des Kreises Häufig hört man Leute sagen, vor allem wenn sie vor großen Schwierigkeiten stehen, so was wie hier wird die Quadratur des Kreises versucht. Was ist mit dieser Redewendung gemeint?
Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5
Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Planungsblatt Mathematik für die 3E
Planungsblatt Mathematik für die E Datum:.0-04.04 Stoff Wichtig!!! Nach dieser Woche verstehst du: (a) (rechtwinklige) Dreiecke; Flächeninhalt, Umfang und Pythagoras (b) Parallelogramme, Raute, Rhombus,
Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $
$Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis
Zykloide. Lars Ehrenborg. 15. Januar Definition/Erzeugungsweise 2. 2 Herleitung der Parameterdarstellung 2. 4 Fläche eines Zykloidenbogens 4
Zykloide Lars Ehrenborg 15. Januar 2017 Inhaltsverzeichnis 1 Definition/Erzeugungsweise 2 2 Herleitung der Parameterdarstellung 2 3 hübsche Eigenschaft 3 4 Fläche eines Zykloidenbogens 4 5 Normale und
Aufgabe 1: Berechne jeweils in dem Dreieck ABC fehlende Seitenlängen und Winkel und den Flächeninhalt.
Lösungsvorschläge zur Übungsarbeit Trigonometrie: Aufgabe 1: Berechne jeweils in dem Dreieck ABC fehlende Seitenlängen und Winkel und den Flächeninhalt. a = 1 cm, b = 8 cm, α = 90 b = 70 m, α = 3, β =
Prüfungsausschuss für die Zwischenprüfungen im Ausbildungsberuf Vermessungstechniker/in Prüfungstermin: 2005 Datum: Praktische Prüfung
Maximale Punktzahl: 100 Note: Name: Ausgegeben: 30. September 2005-8.30 Uhr Abgegeben: 30. September 2005 Uhr Aufgabenstellung: Die in den Anlagen 1-10 enthaltenen Aufgaben 1-10 sind zu lösen. Lösungsfrist:
Fraktale. Mathe Fans an die Uni. Sommersemester 2009
Fraktale Mathe Fans an die Uni Ein Fraktal ist ein Muster, das einen hohen Grad Selbstähnlichkeit aufweist. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)
3. Erweiterung der trigonometrischen Funktionen
3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x
Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung:
Fixieren wir ein Seil der Länge r an einem Punkt M, nehmen das lose Ende in die Hand und bewegen uns so um den Punkt M herum, dass das Seil stets gespannt bleibt, erhalten wir, wie in nebenstehender Abbildung
/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras
Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND
Brückenkurs Mathematik. Mittwoch Freitag
Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs
Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich.
1 9. Ähnlichkeit rechtwinkliger Dreiecke Rechtwinklige Dreiecke, die in einem weiteren Winkel übereinstimmen, sind schon zueinander ähnlich. Die Höhe h zerlegt das Dreieck in zwei ähnliche Teildreiecke
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr),
Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), 12.01.11 Thema: Der Satz des Pythagoras (Einführung) Lernziele Groblernziel Die Schülerinnen und Schüler entdecken anhand
Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1
Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen
BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2012/2013 MATHEMATIK
Prüfungstag: Freitag, 24. Mai 2013 (HAUPTTERMIN) Prüfungsbeginn: 08:00 Uhr BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2012/2013 MATHEMATIK Hinweise für die Teilnehmerinnen und Teilnehmer Bearbeitungszeit:
Mathematik Geometrie
Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen
1. Elementare Dreiecksgeometrie
1. Elementare Dreiecksgeometrie Die Menge s A1B 2 der Punkte, die von zwei Punkten A und B gleich weit entfernt sind, bilden die Streckensymmetrale der Punkte A und B. Ist A B, so ist dies eine Gerade.
Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum:
Testen und Fördern Name: Klasse: Datum: 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.) den rechten Winkel einschließen heißen die Seiten, die Katheten, 1 Im rechtwinkligen Dreieck
ϕ (im Bogenmaß) = ϕ (in ) π
1 Kurze Einführung in die trigonometrischen Funktionen: Die trigonometrischen Funktionen gehören zum Standardstoff im Mathematik Unterricht der Gmnasien. Deshalb werde ich mich auf eine knappe Einführung
Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23
Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des
Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke
edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke
Definitionen. 1. Ein Punkt ist, was keine Teile hat. 3. Die Enden einer Linie sind Punkte.
Das erste der dreizehn Bücher von Euklids Elementen beginnt nach der Ausgabe in Ostwald s Klassikern der exakten Wissenschaften (Nr. 235), Leipzig 1933, folgendermaßen: Definitionen. 1. Ein Punkt ist,
