Lösungen zur Serie 5

Größe: px
Ab Seite anzeigen:

Download "Lösungen zur Serie 5"

Transkript

1 Dr. P. Thurnheer Grundlagen der Mathematik I ETH Zürich D-CHAB, D-BIOL (Analysis B) FS 10 Lösungen zur Serie 5 1. a) Die erste Kurve ist eine Kardioide (Herzkurve). i) Wenn man t durch t erstezt, kriegt man x( t) = x(t) und y( t) = y(t): die Kurve ist also zur x Achse symmetrisch. ii)/iii) Die gemeinsamen Punkte der Kurve mit der x /y Achse bestimmt man in dem man die Gleichungen x(t) = 0 und y(t) = 0 mit Hilfe der gegebenen trigonometrischen Identitäten löst. x(t) = cos t cos t = cos t cos t + 1 = 0 cos t = 1 3 Wegen der Periodizität der Cosinusfunktion, hat die obige Gleichung Lösungen t = ± arccos 1 3 und somit hat die Kurve zwei gemeinsame Punkte mit der ( y Achse: 0, ± 3 + ) 3. 1 In änlicher Weise y(t) = sin t sin t = sin t(1 cos t) = 0 sin t = 0 cos t = 1 und die gemeinsame Punkte mit der x Achse sind ( 1, 0 ) und ( 3, 0 ). 1 Hier haben wir die folgende Formel verwendet: sin ( arccos q ) = 1 q Bitte wenden!

2 iv)/v) Die Punkte mit horizontaler Tangente müssen die folgende Gleicung erfüllen y (t) = cos t cos t = cos t 4 cos t + = 0 cos t = 1 cos t = 1 Wenn wir das in der Parameterdarstellung der Kurve zurücksetzen, kriegen wir (1, 0), ( 1, 3 3 ) ( und 1, 3 3 Die änliche Gleichung für die Punkte mit vertikalen Tangente ). x (t) = sin t + sin t = sin t( 1 + cos t) = 0 sin t = 0 cos t = 1 liefert ( 3, 0), ( 3, 3 ) und ( 3, 3 ). vi) Bei dieser Funktion ist die Steigung für alle (x, y) wohldefiniert. b) Die zweite Kurve kann man als Graph einer Funktion x = x(y) deuten. i) Wenn man t durch t erstezt, kriegt man wieder x( t) = x(t) und y( t) = y(t): die Kurve ist also zur x Achse symmetrisch. ii)/iii) Die gemeinsamen Punkte der Kurve mit der x /y Achse bestimmt man durch die Gleichungen x(t) = t t4 = t (1 t ) = 0 y(t) = 4 3 t3 = 0 Daraus erhält man t = 0, ± und somit (0, 0) und Achse. Analog dazu liefert t = 0 nochmals (0, 0) als Lösung. ( 0, ± 8 3 ) auf die y Siehe nächstes Blatt!

3 iv)/v) An der Stelle t = 0 verschwinden beide Ableitungen x (t) = t t 3 und y (t) = 4 t. Das erste Polynom ( hat zusätzliche zwei symmetrische Nullstelle für 1 t = ± 1 und somit zwei Punkte, ± 4 ) mit vertikalen Tangente. 3 vi) In diesem Fall ist die Steigung der Tangente für t = 0 unbestimmt. In diesem Ausnahmepunkt berechnen wir die Steigung als Grenzwert: dy y (t) (0) = lim dx t 0 x (t) = lim 4 t t 0 t 3 t = lim 4 t 3 t 0 t = 0 Die Kurve hat also auch im Ursprung eine horizontale Tangente. c) Die dritte Kurve ist eine Lissajous-Figur i) Auch in diesem Fall besitzt die Kurve eine Spiegelsymmetrie, die man wie folgt verifizieren kann: x(t + π) = sin(t + π) = sin t = x(t) y(t + π) = sin( (t + π) 1) = sin( t 1 + π) sin( t 1) = y(t) Die Kurve ist also zur y Achse Symmetrisch. ii)/iii) Gemeinsamen Punkte der Kurve mit der x /y Achse: x(t) = 5 sin t = 0 t = 0, π, π (0, sin 1) (0, 0.841) y(t) = sin( t 1) = 0 t = 1 + kπ k = 0, 1,, 3 (± 5 sin 1 ), 0 (±.397, 0), ( ± 5 sin 1 + π ), 0 (± 4.07, 0) iv) Punkte mit horizontaler Tangente: y (t) = cos( t 1) = 0 t = k π + k = 1, 3, 5, 7 4 ( ( π ± 5 sin ) ) ( ( π, 1 (± 4.798, 1), ± 5 cos ) ), 1 (1.408, 1) Bitte wenden!

4 v) Punkte mit vertikaler Tangente: x (t) = 5 cos t = 0 t = π, 3 π (± 5, sin 1) (± 5, 0.841) vi). a) Wir bestimmen zunächst die Ableitungen der gegebenen Funktionen: dh(t) = ( h1 t, h ) T = (1, 1) T t und dg(x, y) = ( g x, g ) = (y, x). y b) Die verkettete Funktion lautet f = g h : R R, f(t) = g(h(t)) = g(t, t) = t. Die Ableitung von f kann man direkt bestimmen df(t) = t oder mit Hilfe der Kettenregel df(t) = dg ( h(t) ) ( ) 1 dh(t) = (t, t) = t. 1 Somit verifiziert man, dass df(t) = d ( g h ) (t) = dg ( h(t) ) dh(t) c) Die Niveaulinie von g zim Niveau ist die Hyperbel g(x, y) = x y = d.h. y = x. Die Liniarisierung p der gegebenen Funktion bei (x 0, y 0 ) = (, 1) ist p(x, y) = g(x 0, y 0 ) + x g(x 0, y 0 ) (x x 0 ) + y g(x 0, y 0 ) (y y 0 ) = = + 1 (x ) + (y 1) = x + y und somit lautet die Niveaulinie von p zum gleichen Niveau p(x, y) = x + y = ; Siehe nächstes Blatt!

5 anders gesagt, lautet die Tangente im Punkt (, 1) zur obigen Hyperbel y = 4 x. Schlussendlich kann man leicht verifizieren, dass im Punkt (, 1) steht die Tangente zum Gradient ( ) 1 g(, 1) = (dg(, 1)) T = senkrecht. 3. Die drei Funktionen ergeben drei verschiedene Darstellungen der gleichen Fläche (wenn eingeschränkte auf den oberen Halbraum). a) Wir bestimmen zunächst die Definitions- und Wertebereiche jeder Funktion. { } D f = (x, y) R x + y 5 und } W f = {z R + z 5 = [0, 5]. Der Definitionsbereich ist eine dimensionale Kreisscheibe mit Radius 5 um (0, 0) und der Wertebereich ist ein (abgeschlossene) Intervall. Die zweite Funktion ist für alle ϑ und ϕ wohldefiniert, d.h. D g = R (und offensichtlich dim R = ). Der Wertebereich bestimmt man in dem man die gewönliche trigonometrische Identität sin α + cos α = 1 mehrmals verwendet. Bitte wenden!

6 Sei g(ϑ, ϕ) = (g 1 (ϑ, ϕ), g (ϑ, ϕ), g 3 (ϑ, ϕ)) T, dann ist und somit g1 + g + g3 = 5 sin ϑ(cos ϕ + sin ϕ) + cos }{{} ϑ = 5 } =1 {{ } =1 W g = { } (x, y, z) R 3 x + y + z = 5. Wegen der Periodizität der trigonometrischen Funktionen, dieselbe Wertebereiche könnte man auch kriegen, wenn man nur [0, π] [0, π] als Definitionsbereich betrachtete. Auch die dritte Funktion ist überall wohledefiniert: in diesem Fall ist D h = R 3 (und dim R 3 = 3). Diese Funktion kann jeden positiven Wert annehmen, d.h. W h = R + = [0, ). b) Wie schon angedeutet, das Bild von g stimmt mit der Niveaufläche von h zum Niveau 5 überein: jede Niveaufläche von h entspricht eine Sphäre und g parametrisiert die Sphäre mit Radius r = 5. Wenn man z = f(x, y) setzt, kann man leicht verifizieren, dass der Graph von f ist die obere Halbspäre mit dem gleichen Radius. c) Die gesuchte Ableitungen lauten df(x, y) = 1 ( x, y) 5 x y 5 cos ϑ cos ϕ 5 sin ϑ sin ϕ dg(ϑ, ϕ) = 5 cos ϑ sin ϕ 5 sin ϑ cos ϕ 5 sin ϑ 0 (1 )-Matrix (3 )-Matrix dh(x, y, z) = ( x, y, z) (1 3)-Matrix d) Wenn wir h und g zusammensetzen, kriegen wir h g : R R mit h g(ϑ, ϕ) = (5 sin ϑ cos ϕ) + (5 sin ϑ sin ϕ) + (5 cos ϑ) = Somit ist offensichtlich = 5 sin ϑ (cos ϕ + sin ϕ) +5 cos ϑ = 5 }{{} =1 d ( h g ) )ϑ, ϕ) = (0, 0) Siehe nächstes Blatt!

7 e) Das gleiche Resultat kriegt man unter Verwendung der Kettenregel d ( h g ) (ϑ, ϕ) = dh ( g(ϑ, ϕ) ) dg(ϑ, ϕ) = 5 cos ϑ cos ϕ 5 sin ϑ sin ϕ = (g 1 (ϑ, ϕ), g (ϑ, ϕ), g 3 (ϑ, ϕ)) 5 cos ϑ sin ϕ 5 sin ϑ cos ϕ = 5 sin ϑ 0 cos ϑ cos ϕ sin ϑ sin ϕ =50 (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) cos ϑ sin ϕ sin ϑ cos ϕ = 0 sin ϑ 0 Das könnte man auch ohne zu rechnen erraten: g parametrisiert die Sphäre mit r = 5, hbeschreibt Niveauflächen, die Sphären entsprechen: h ist also per Konstruktion auf dem Bild von g konstant und somit muss die Ableitung verschwinden. f) Der zu betrachtende Gradient ist h(x, y, z) = ( dh(x, y, z) ) x T = y. z Der Vektor (x, y, z) T ist der Radius der Sphäre durch den Punkt (x, y, z) (0, 0, 0). Deshalb steht h(x, y, z) senkrecht auf der durch den Punkt verlaufenden Niveaufläche von h. 4. Aufgrund einfacher geometrischer Überlegungen müssen die Punkte folgende Gleichung erfüllen: y + (z + 1) = x + (z 1) Formt man das um, so ist ersichtlich, dass es sich um ein hyperbolisches Paraboloid im euklidischen Raum handelt: Der 3D Plot ist: z = 1 4 (x y ) Bitte wenden!

8

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Analysis 2 - Übung 1

Analysis 2 - Übung 1 Analysis - Übung 1 Felix Knorr 8 März 014 4 Gegeben sei die Polynomfunktion f(x, y xy 10x Man bestimme die Gleichungen ihrer Schnittkurven mit den senkrechten Ebenen x x 0 bzw y y 0 sowie die Höhenlinien

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Serie 3: Partielle Ableitungen

Serie 3: Partielle Ableitungen D-ERDW, D-HEST, D-USYS Mathematik II FS Dr Ana Cannas Serie 3: Partielle Ableitungen Bemerkungen: Die Aufgaben der Serie 3 bilden den Fokus der Übungsgruppen vom / März Skizzieren Sie den Graphen sowie

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander.

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander. -MAVT/-MATL FS 8 r. Andreas Steiger Analysis IILösung - Serie9. ie Fläche S sei einerseits durch die Parameterdarstellung (u, v) r(u, v) und andererseits durch die Gleichung f(x, y, z) = gegeben. Wir betrachten

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor.9.4 Prof. Dr. M. Heilmann, Apl. Prof. Dr. G. Herbort, Aufgabe Punkte. Zeigen Sie für alle n IN mittels Induktion die Gleichung

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Mathematik II Lösung 9. Lösung zu Serie 9

Mathematik II Lösung 9. Lösung zu Serie 9 D-EDW, D-HEST, D-USYS Dr. Ana annas 5. April 6 Lösung zu Serie 9. Überprüfung des Satzes von Green Für die Kreisscheibe mit adius a um Null gilt, dass die äußere Einheitsnormalen in einem Punkt (x, y auf

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Mathematische Grundkenntnisse Selbsteinschätzungstest, Herbst 2009

Mathematische Grundkenntnisse Selbsteinschätzungstest, Herbst 2009 Mit diesem Test bieten wir Ihnen an, Ihr mathematisches Schulwissen abzurufen, zu überprüfen und allenfalls Lücken zu identifizieren. Die Teilnahme ist nicht verpflichtend und hat keine Konsequenzen. Der

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

7.4. Gradient, Niveau und Tangentialebenen

7.4. Gradient, Niveau und Tangentialebenen 7.4. Gradient Niveau und Tangentialebenen Wieder sei f eine differenzierbare Funktion von einer Teilmenge A der Ebene R -dimensionalen Raumes R n ) nach R. (oder des n Der Anstieg von f in einem Punkt

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

MATHEMATIK I für Bauingenieure und Berufspädagogen

MATHEMATIK I für Bauingenieure und Berufspädagogen TU DRESDEN Dresden, 4. Februar 00 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Semesterbegleitende Klausur MATHEMATIK I für Bauingenieure und Berufspädagogen Immatrikulationsjahrgang

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Musterlösungen Serie 1

Musterlösungen Serie 1 D-MAVT D-MATL Analysis II FS 03 Prof. Dr. P. Biran Musterlösungen Serie. Frage Wie lautet der Gradient der Funktionf : R R,(x,y x y +y? f(x,y = x +xy +. f(x,y = ( xy x + f(x,y = ( x + xy Der Gradient vonf

Mehr

KAPITEL 5. Kurven im R 2. Definition 5.1. Kurve im R 2. Sei G R 2 und [a, b] R ein abgeschlossenes Intervall. Jede Abbildung

KAPITEL 5. Kurven im R 2. Definition 5.1. Kurve im R 2. Sei G R 2 und [a, b] R ein abgeschlossenes Intervall. Jede Abbildung KAPITEL 5 Kurven im R 2 1. Kurven In der Physik und in den Ingenieurwissenschaften besteht oft das Problem die Bewegungskurve\ von Objekten zu beschreiben. Der Einfachheit halber betrachten " wir Kurven

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Musterlösungen zu Serie 7

Musterlösungen zu Serie 7 D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Musterlösungen zu Serie 7 1. Für jede der vier trigonometrischen Funktionen gilt: Genau in den Nullstellen x k ist y x k = 0 und y x k 0, was bedeutet,

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben (Online-Abgabe). Berechnen Sie die Partialbruchzerlegung von + +. (a) + + + ( ). (b) + + + + ( ). (c) + + + + ( ). (d) + + +

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Steiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve stellt die Parametrisierung sin1 t rt = cos1 t, t R dar? a Ein Kreis. Es gilt x t +

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Zwischenprüfung Winter 2016 Analysis I D-BAUG

Zwischenprüfung Winter 2016 Analysis I D-BAUG ETH Zürich Zwischenprüfung Winter 216 Analysis I D-BAUG Dr. Meike Akveld Wichtige Hinweise Prüfungsdauer: 9 Minuten. Zugelassene Hilfsmittel: Keine, ausser das verteilte Blatt mit Standardintegralen. Es

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Zusammenfassung An1I HS2012 Analysis für Informatiker 1

Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Emanuel Duss emanuel.duss@gmail.com 19. November 2012 Analysis für Informatiker 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen der Lehre von

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 9.0.08 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+6+4 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12 D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben Online-Abgabe. Liegt der Schwerpunkt eines rotationssymmetrischen Körpers immer auf dessen Rotationsachse? a Nein. Dies würde

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen:

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen: D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen emerkungen: Die Aufgaben der Serie 6 bilden den Fokus der Übungsgruppen vom 3. März/2. April..

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y.

Lösung - Serie 24. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. 1. Welche der folgenden Differenzialgleichungen ist linear? (y 2) 2 = y. D-MAVT/D-MATL Analysis II FS 018 Dr. Andreas Steiger Lösung - Serie 4 1. Welche der folgenden Differenzialgleichungen ist linear? (a) (y ) = y (b) y + y 1 x + y 1 + x = 1 x (c) y = xy x y (d) y + y + y

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren

Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren a Lösung: Serie 7 - Hyperbelfunktionen Newton-Verfahren y ex +e x e x ye x + 0 e x y ± y Da y ist, ist die Wurzel auf der rechten Seite immer reell Wir interessieren uns nur für nichtnegative x Der Logarithmus

Mehr